INTRODUCTION TO QUANTUM ERROR CORRECTION

MSA

GROUPS AND HILBERT SPACES

Definition (Group). A group is a pair (G, \cdot) where G is a set and $\cdot : G^2 \to G$ is a binary operation such that (i) for all $g_1, g_2, g_3 \in G$, we have $g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$, (ii) there exists an $e \in G$ such that for all $g \in G$, $e \cdot g = g = g \cdot e$, and (iii) for all $g \in G$, there exists a $g^{-1} \in G$ so that $g \cdot g^{-1} = e = g^{-1} \cdot g.$

Definition (Homomorphism). A function $\phi : G \to G'$ between groups is a homomorphism if it preserves the respective operation functions of G and G'.

Definition (Isomorphism). A homomorphism ϕ is an isomorphism if it has an inverse ϕ^{-1} . **Definition** (Centralizer). *The centralizer* $C_G(S)$ *of a set* $S \subseteq G$ *is defined as*

$$C_G(S) = \{g \in G : gs = sg \text{ for all } s \in S\}.$$

Definition (Normalizer). *The normalizer* $\mathcal{N}_G(S)$ *of a subset* $S \subseteq G$ *is*

$$\mathcal{N}_G(S) = \{ g \in G : gSg^{-1} = S \},\$$

where

$$qSg^{-1} = \{gsg^{-1} : s \in S\}.$$

Definition (Vector Space). A vector space over \mathbb{C} is a pair $((\mathcal{H}, +), \cdot)$, where $(\mathcal{H}, +)$ is a group under addition and $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$ is an "action" by the complex numbers which satisfies compatibility, identity, and distributivity of the action over addition for both the "vectors" in H and the "scalars." **Definition** (Direct Sum). *The direct sum* $\mathcal{H}_1 \oplus \mathcal{H}_2$ *takes two vector spaces and returns a third, larger space of tuples in* \mathcal{H}_1 *and* \mathcal{H}_2 *, respectively, and thus, is closed under both operations' componentwise* addition and scalar multiplication from \mathbb{C} . In general, the direct sum of spaces indexed by $i \in I$ is all tuples in \mathcal{H}_i with finitely many nonzero entries.

Definition (Finite-Dimensional Hilbert Space). *A complex, finite-dimensional Hilbert space* H is a complex, finite-dimensional inner product space $(\mathcal{H}, (\cdot, \cdot))$.

KNILL-LAFLAMME SUBSPACE CONDITION

Definition (Superoperator). A superoperator is a bounded linear map $\Phi : \mathbb{B}(\mathcal{H}^A) \to \mathbb{B}(\mathcal{H}^B)$, where $\mathbb{B}(\mathcal{H})$ represents the space of bounded linear operators on \mathcal{H} . Since $\mathbb{B}(\mathcal{H})$ itself forms a Hilbert space, these maps describe the transformations between spaces of operators.

Definition (Quantum Channel). A quantum channel is a type of superoperator, represented as a bounded linear map $\mathcal{E} : \mathbb{B}(\mathcal{H}^A) \to \mathbb{B}(\mathcal{H}^B)$ that satisfies the following properties: (i) Completely Positive: The map \mathcal{E} is completely positive, meaning that for any auxiliary Hilbert space \mathcal{H}^C , the extended map $\mathcal{I}^C \otimes \mathcal{E}$ is positive, where \mathcal{I}^C is the identity map on $\mathbb{B}(\mathcal{H}^C)$, and (ii) Trace Preserving: *The map* \mathcal{E} *is trace preserving, meaning that for any state* ρ *,* $tr(\rho) = tr(\mathcal{E}(\rho))$ *.*

Theorem (Choi-Jamiołkowski Isomorphism). A vector isomorphism Δ can be drawn between from superoperators in the set $\mathbb{B}(\mathbb{B}(\mathcal{H}^A) : \mathbb{B}(\mathcal{H}^B))$ to bounded operators in the set $\mathbb{B}(\mathcal{H}^A \otimes \mathcal{H}^B)$. This isomorphism sends every superoperator Φ to its Choi matrix J_{Φ} . The inverse map Δ^{-1} sends every *Choi matrix to a superoperator* $\Phi : \rho \mapsto tr_A((\rho^t \otimes I^B)(J)).$

Theorem (Kraus Representation). A superoperator $\Phi : \mathbb{B}(\mathcal{H}^A) \to \mathbb{B}(\mathcal{H}^B)$ is completely positive if and only if there exist Kraus operators $\{E_i: \mathcal{H}^A \to \mathcal{H}^B\}_{i=1}^r$ such that:

$$\Phi(X) = \sum_{i} E_{i} X E_{i}^{\dagger}, \quad \text{for all } X \in \mathbb{B}(\mathcal{H}^{A}).$$

Students: H. Ananthakrishnan, E. Barajas, A. Bhutiani, A. Brahmandam, S. Cheng, S. Choudhary, S. Dulam, C. Eddington, J. Go P. Jasso, V. Joshi, D. Kamaraj, S. Karuturi, A. Mansingh, L. Miao, A. Pashupati, M. Perera, A. Prakash, K. Prasad, C. Schneider, A. Sivaraman, S. Somani, K. Uppal, D. Wang, R. Wang, D. Xianto, L. Yang, Y. Yardi Primary Facilitator: Dheeran E. Wiggins Co-Facilitator: Dr. Micah E. Fogel

Definition (Correctable Error). An error \mathcal{E} which can be corrected by a recovery operation \mathcal{R} via $(\mathcal{R} \circ \mathcal{E})(\rho) \propto \rho$ is called "correctable" as long as both are quantum channels and there exists a \mathbb{C} -linear subspace $C \subseteq \mathcal{H}$ called the code space such that $\rho \in \mathbb{B}(C)$.

Theorem (Knill-Laflamme). *Let* $\mathcal{E} : \mathbb{B}(\mathcal{H}) \to \mathbb{B}(\mathcal{H})$ *be a quantum error channel with Kraus opera*tors $\{E_i\}_{i=1}^r$, and let $P : \mathcal{H} \to \mathcal{C}$ be the orthogonal projection onto the code space $\mathcal{C} \subseteq \mathcal{H}$. Then, \mathcal{E} is correctable if and only if

 $PE_a^{\dagger}E_bP = \lambda_{ab}P,$

where $[\lambda_{ab}] \in \mathbb{M}_r(\mathbb{C})$ is self-adjoint (Hermitian).

In other words, a quantum error \mathcal{E} 's "correctability" is entirely determined by its Kraus operators and the projection. When the Knill-Laflamme condition is satisfied, a correctable error can be inputted into the recovery channel \mathcal{R} to return the code space \mathcal{C} to its previous state, as $\mathcal{R}(\mathcal{E}(\rho)) \propto \rho$ (which becomes $\mathcal{R}(\mathcal{E}(\rho)) = \rho$ when the partial trace is applied).

The Stabilizer Formalism and *n*-qubit Pauli Group

Definition (Pauli Group). The Pauli group is a multiplicative 2×2 matrix group defined by $\mathcal{P} = \langle X, Y, Z \rangle$, where

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The Pauli group naturally acts on a 1-qubit system (with state space \mathbb{C}^2) via multiplication. Since an *n*-qubit system has state space $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$, the analog of the Pauli group for this space should somehow "live in" $\mathcal{P}_n \otimes \mathcal{P}_n \otimes \cdots \otimes \mathcal{P}_n$ to act on this state space.

Definition (*n*-qubit Pauli Group). *The n-qubit Pauli group is the set*

$$\mathcal{P}_n = \left\{ \gamma \bigotimes_{i=1}^n \sigma_i : \sigma_i \in \mathcal{P} \text{ and } \gamma \in \{\pm 1, \pm i\} \right\}.$$

Definition (Stabilizer Subgroup). Let there be a subgroup $S \leq P_n$ that is abelian and such that $-I \notin S$. Without loss of generality, assume $S = \langle Z_1, \ldots, Z_s \rangle$ for $s \leq n$, where Z_j denotes a 1-local action of Z on the jth qubit. We call S a stabilizer subgroup.

Definition (Stabilizer Code Space). *Given a stabilizer* S, define the associated code space by $\mathcal{C}(\mathcal{S}) = \operatorname{span}\{v \in (\mathbb{C}^2)^{\otimes n} : Z_j v = v \text{ for all } 1 \leq j \leq s\}.$ These are all vectors which are invariant under the action of the stabilizer S.

Theorem (Stabilizer Formalism). An error \mathcal{E} with Kraus operators $\{E_i\}_{i=1}^r$ is correctable on the *code space* C(S) *if and only if*

 $E_a^{\dagger} E_b \in \operatorname{span} \{ \mathcal{P}_n \setminus \mathcal{N}_{\mathcal{P}_n}(\mathcal{S}) \cup \mathcal{S} \}.$

This expositional poster was compiled and presented by the listed students at the Intersession 2025 Expo at the Illinois Mathematics and Science Academy.

OPERATOR QUANTUM ERROR CORRECTION

In general, motivated by the form of the so-called *noise commutant* \mathcal{A}' , we may form a Hilbert space decomposition

$$\mathcal{H} \simeq \bigoplus_J \mathcal{H}_J^A \otimes \mathcal{H}_J^B.$$

Pulling apart the sectors of the decomposition, we may simplify and fix a code space $\mathcal{H}^A \otimes \mathcal{H}^B$, yielding a new fixed partition

 $\mathcal{H} = (\mathcal{H}^{\mathcal{H}})$

group

$$\mathcal{G} = \langle i, Z_1, \ldots, Z_s, X$$

writing that there exist *s* stabilizer qubits, *r* gauge qubits, and n - s - r logical qubits.

Theorem (Poulin's Stabilizer Formalism). *Given an error channel* \mathcal{E} *on* \mathcal{H} *, as above, a recovery channel* \mathcal{R} *exists if and only if for all* a, b*, the error Kraus operators satisfy*

References

- [2] R. Duan. Super-activation of zero-error capacity of noisy quantum channels, 2009.
- [3] D. S. Dummit and R. M. Foote. *Abstract Algebra*. Wiley, 3 edition, 2003.
- [5] D. Gottesman. Stabilizer codes and quantum error correction, 1997.
- *Physical Review Letters*, 84(11), 2000.
- 2006.
- bridge University Press, 10 edition, 2016.
- 95:230504, Dec 2005.

$$\underbrace{\mathcal{A}\otimes\mathcal{H}^B}_{\mathcal{C}}\oplus\mathcal{C}^{\perp}.$$

We call \mathcal{H}^A a *noiseless subsystem*, thus stashing any information in the A-system of the code space. Then, letting $S = \langle Z_1, Z_2, \dots, Z_s \rangle$ be an *n*-fold Pauli stabilizer, we may form the gauge

 $X_{s+1}, Z_{s+1}, \ldots, X_{s+r}, Z_{s+r} \rangle,$

 $E_a^{\dagger} E_b \in \operatorname{span} \{ \mathcal{P}_n \setminus \mathcal{N}_{\mathcal{P}_n}(\mathcal{S}) \cup \mathcal{G} \}.$

[1] R. Araiza and F. Leditzky. Basics of finite-dimensional quantum information theory, 2022.

[4] S. H. Friedberg, A. J. Insel, and L. E. Spence. *Linear Algebra*. Pearson, 5 edition, 2021.

[6] E. Knill, R. Laflamme, and L. Viola. Theory of quantum error correction for general noise.

[7] D. Kribs, R. Laflamme, D. Poulin, and M. Lesosky. Operator quantum error correction,

[8] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-

[9] D. Poulin. Stabilizer formalism for operator quantum error correction. *Phys. Rev. Lett.*,