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Groups and Hilbert Spaces

Definition (Group). A group is a pair (G, ·) where G is a set and · : G2 → G is a binary operation
such that (i) for all g1, g2, g3 ∈ G, we have g1 · (g2 · g3) = (g1 · g2) · g3, (ii) there exists an e ∈ G
such that for all g ∈ G, e · g = g = g · e, and (iii) for all g ∈ G, there exists a g−1 ∈ G so that
g · g−1 = e = g−1 · g.
Definition (Homomorphism). A function ϕ : G → G′ between groups is a homomorphism if it
preserves the respective operation functions of G and G′.
Definition (Isomorphism). A homomorphism ϕ is an isomorphism if it has an inverse ϕ−1.
Definition (Centralizer). The centralizer CG(S) of a set S ⊆ G is defined as

CG(S) = {g ∈ G : gs = sg for all s ∈ S}.
Definition (Normalizer). The normalizer NG(S) of a subset S ⊆ G is

NG(S) = {g ∈ G : gSg−1 = S},
where

gSg−1 = {gsg−1 : s ∈ S}.
Definition (Vector Space). A vector space over C is a pair ((H,+), ·), where (H,+) is a group under
addition and · : C × H → H is an “action” by the complex numbers which satisfies compatibility,
identity, and distributivity of the action over addition for both the “vectors” in H and the “scalars.”
Definition (Direct Sum). The direct sum H1⊕H2 takes two vector spaces and returns a third, larger
space of tuples in H1 and H2, respectively, and thus, is closed under both operations’ componentwise
addition and scalar multiplication from C. In general, the direct sum of spaces indexed by i ∈ I is all
tuples in Hi with finitely many nonzero entries.
Definition (Finite-Dimensional Hilbert Space). A complex, finite-dimensional Hilbert space H is
a complex, finite-dimensional inner product space (H, (·, ·)).

Knill-Laflamme Subspace Condition

Definition (Superoperator). A superoperator is a bounded linear map Φ : B(HA) → B(HB), where
B(H) represents the space of bounded linear operators on H. Since B(H) itself forms a Hilbert space,
these maps describe the transformations between spaces of operators.
Definition (Quantum Channel). A quantum channel is a type of superoperator, represented as a
bounded linear map E : B(HA) → B(HB) that satisfies the following properties: (i) Completely
Positive: The map E is completely positive, meaning that for any auxiliary Hilbert space HC , the
extended map IC ⊗ E is positive, where IC is the identity map on B(HC), and (ii) Trace Preserving:
The map E is trace preserving, meaning that for any state ρ, tr(ρ) = tr(E(ρ)).
Theorem (Choi-Jamiołkowski Isomorphism). A vector isomorphism∆ can be drawn between from
superoperators in the set B(B(HA) : B(HB)) to bounded operators in the set B(HA ⊗ HB). This
isomorphism sends every superoperator Φ to its Choi matrix JΦ. The inverse map ∆−1 sends every
Choi matrix to a superoperator Φ : ρ 7→ trA((ρ

t ⊗ IB)(J)).
Theorem (Kraus Representation). A superoperator Φ : B(HA) → B(HB) is completely positive if
and only if there exist Kraus operators {Ei : HA → HB}ri=1 such that:

Φ(X) =
∑
i

EiXE
†
i , for all X ∈ B(HA).

Definition (Correctable Error). An error E which can be corrected by a recovery operation R via
(R◦E)(ρ) ∝ ρ is called “correctable” as long as both are quantum channels and there exists a C-linear
subspace C ⊆ H called the code space such that ρ ∈ B(C).

Theorem (Knill-Laflamme). Let E : B(H) → B(H) be a quantum error channel with Kraus opera-
tors {Ei}ri=1, and let P : H ↠ C be the orthogonal projection onto the code space C ⊆ H. Then, E is
correctable if and only if

PE
†
aEbP = λabP,

where [λab] ∈ Mr(C) is self-adjoint (Hermitian).

In other words, a quantum error E ’s “correctability” is entirely determined by its Kraus oper-
ators and the projection. When the Knill-Laflamme condition is satisfied, a correctable error
can be inputted into the recovery channel R to return the code space C to its previous state,
as R(E(ρ)) ∝ ρ (which becomes R(E(ρ)) = ρ when the partial trace is applied).

The Stabilizer Formalism and n-qubit Pauli Group

Definition (Pauli Group). The Pauli group is a multiplicative 2 × 2 matrix group defined by
P = ⟨X, Y, Z⟩, where

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The Pauli group naturally acts on a 1-qubit system (with state space C2) via multiplication.
Since an n-qubit system has state space C2⊗C2⊗ · · · ⊗C2, the analog of the Pauli group for
this space should somehow "live in" Pn ⊗ Pn ⊗ · · · ⊗ Pn to act on this state space.

Definition (n-qubit Pauli Group). The n-qubit Pauli group is the set

Pn =

γ

n⊗
i=1

σi : σi ∈ P and γ ∈ {±1,±i}

 .

Definition (Stabilizer Subgroup). Let there be a subgroup S ≤ Pn that is abelian and such that
−I /∈ S . Without loss of generality, assume S = ⟨Z1, . . . , Zs⟩ for s ≤ n, where Zj denotes a 1-local
action of Z on the jth qubit. We call S a stabilizer subgroup.

Definition (Stabilizer Code Space). Given a stabilizer S , define the associated code space by
C(S) = span{v ∈ (C2)⊗n : Zjv = v for all 1 ≤ j ≤ s}. These are all vectors which are in-
variant under the action of the stabilizer S .

Theorem (Stabilizer Formalism). An error E with Kraus operators {Ei}ri=1 is correctable on the
code space C(S) if and only if

E
†
aEb ∈ span{Pn\NPn

(S) ∪ S}.

Operator Quantum Error Correction

In general, motivated by the form of the so-called noise commutant A′, we may form a Hilbert
space decomposition

H ≃
⊕
J

HA
J ⊗HB

J .

Pulling apart the sectors of the decomposition, we may simplify and fix a code spaceHA⊗HB,
yielding a new fixed partition

H = (HA ⊗HB)︸ ︷︷ ︸
C

⊕C⊥.

We call HA a noiseless subsystem, thus stashing any information in the A-system of the code
space. Then, letting S = ⟨Z1, Z2, . . . , Zs⟩ be an n-fold Pauli stabilizer, we may form the gauge
group

G = ⟨i, Z1, . . . , Zs, Xs+1, Zs+1, . . . , Xs+r, Zs+r⟩,

writing that there exist s stabilizer qubits, r gauge qubits, and n− s− r logical qubits.

Theorem (Poulin’s Stabilizer Formalism). Given an error channel E on H, as above, a recovery
channel R exists if and only if for all a, b, the error Kraus operators satisfy

E
†
aEb ∈ span{Pn \ NPn

(S) ∪ G}.
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