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The contemporary mathematical paradigm for quantum

mechanics can be summarized via four axioms.
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The axioms give a account of how a quantum system can be

modeled using the rich mathematical framework of Hilbert spaces.
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Quantum Axioms Visualized
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Pauli Group

We call Hilbert spaces A ' C2 qubits.

Pauli Group

The Pauli group P is the nonabelian matrix group generated by

X ´

�
0 1

1 0

�
; Y ´

�
0 �i

i 0

�
; Z´

�
1 0

0 �1

�
2M2.C/:

There is a natural action of P on a qubit A.
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If a qubit is “modeled” by the space C2, then n qubits should be

modeled by the space

C2 ˝ � � � ˝̃

n times

C2 D .C2/˝n:

We can generalize the Pauli group to n qubits.
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n-Qubit Pauli Group

Denote a 1-local action of † 2 P on qubit j of A '
N
j C2 by

†j ´ I2 ˝ I2 ˝ � � � ˝†•̋
j th position

� � � ˝ I2:

Then, define the n-qubit Pauli group

Pn´ hiIj ; Xj ; Zj W 1 � j � ni

If A ' .C2/˝n, then †j 2 Pn and Pn Õ A.
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In the Limit

Q: What happens when we take n!1? How could we do

algebra in1-qubit systems?

A: What does that even mean?
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In the Limit

˚
n-qubit systems

Pn
.C2/˝n

	 ˚
1-qubit systems

P1
G
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Formal Approach

There are natural inclusions

P D P1
�21
,��! P2

�22
,��! � � �

�nn�1
,���! Pn

�
nC1
n

,����! � � �

which send

� 7! � ˝ I2:

Take the direct limit and define P1´ colim hPn; �mn i.
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Constructive Approach

Consider the invertible 2 � 2matrices GL2.C/. If A1; : : : ; An are

invertible, then we can form n-fold tensor matrices

A1 ˝ A2 ˝ � � � ˝ An:

We call the group of all these tensors GL2.C/˝n.
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Constructive Approach

To generalize, we could take all sequences of tensors
1

A˝´ A1 ˝ A2 ˝ � � � ˝ Ai ˝ � � �

and form a group GL12 .C/. We call these A˝ the N-fold tensor

map associated to fAigi2N.

1
In practice, it is easier to consider the Ai as

automorphisms C2 ��! C2.
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Constructive Approach

But doing some algebra tells us we want finite multilinearity.

Instead, consider all finitely supported sequences and form the

subgroup of restricted N-fold tensor maps GL12 .C/.

Here, all but finitely many of the Ai are trivial.
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Constructive Approach

We know P lives in GL2.C/, so take all finitely supported tensor

sequences from P and form P1 in GL12 .C/.

We call this our1-qubit Pauli group.
2

2
Finding the correct Hilbert space G for P1 to act

on requires some care. It turns out a natural setting

is (isomorphic to) `2Œ�� for a well-chosen�.
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Error Correction

We model quantum errors as quantum channels.

(i) A superoperator is a linear map E W B.A/! B.B/.

(ii) A quantum channel E is a superoperator which is completely

positive and trace-preserving.

That is, E ˝ idk � 0 for all k and tr.E�/ D tr.�/.
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Error Correction

A theorem due to Karl Kraus tells us that every quantum channel

E W B.A/! B.A/ has a decomposition
3

E.�/ D
X
x2X

Ex.�/E
�
x;

where fExgx2X � B.A/.

3
Tracking down precisely how large X is and in what

topology convergence works can be a bit challenging. If A is

separable, then X D N allows ultraweak convergence.
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Some terminology:

(i) A codespace is a subspace C � A.

(ii) Given an error E W B.A/! B.A/, we call R W B.A/! B.A/ a

recovery channel if for all states � 2 B.A/,

.R ı E/.�/ / �:

on the codespace.

(iii) An error E is correctable if a codespace C and recovery channel

R exist.
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Gottesman’s Stabilizer Formalism

Theorem (Gottesman, 1997)

Let A ' .C/˝n, let E be a noise channel on A with Kraus operators

fEig
r
iD1, and let S � Pn be a finitely-generated abelian subgroup

without �.I˝n/. Then, E is correctable on FixS .A/ if and only if

for all 1 � i; j � r , we have

E
�
i Ej 2 spanf.Pn nNPn

.S// [ Sg � B.A/;

where NPn
.S/ is the normalizer of S in the n-qubit Pauli group.
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1-Qubit Stabilizer Formalism

Letting G be an1-qubit space, can we recover the Stabilizer

Formalism for errors on G by simply “exchanging nwith1?”
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