A model for the infinite tensor product of groups

Insights from quantum information

DHEERAN E. WIGGINS and IGOR MINEYEV

Department of Mathematics University of Illinois

April 24, 2025

D. E. WIGGINS & I. MINEYEV

Stabilizer Formalism

Final Remarks 00

1 Quantum Setting

- **2** On ∞ -qubit Systems
- 3 Stabilizer Formalism

D. E. WIGGINS & I. MINEYEV

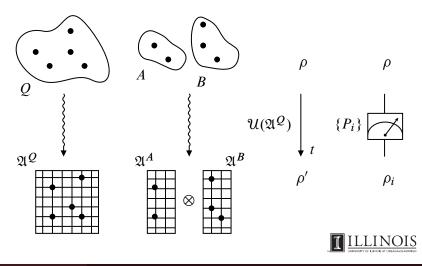
The contemporary mathematical paradigm for quantum mechanics can be summarized via four axioms.

The axioms give a account of how a quantum system can be modeled using the rich mathematical framework of Hilbert spaces.

Stabilizer Formalism

Final Remarks 00

QUANTUM AXIOMS VISUALIZED



D. E. WIGGINS & I. MINEYEV

On ∞-qubit Systems ●00000000 Stabilizer Formalism

Final Remarks

Pauli Group

We call Hilbert spaces $\mathfrak{A} \simeq \mathbb{C}^2$ qubits.

Pauli Group

The *Pauli group* \mathcal{P} is the nonabelian matrix group generated by

$$X := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathbb{M}_2(\mathbb{C}).$$

There is a natural action of \mathcal{P} on a qubit \mathfrak{A} .

If a qubit is "modeled" by the space \mathbb{C}^2 , then *n* qubits should be modeled by the space

$$\mathbb{C}^2 \underbrace{\otimes \cdots \otimes}_{\mathbb{C}^2} \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n}.$$

n times

We can generalize the Pauli group to *n* qubits.

Stabilizer Formalism

Final Remarks 00

n-Qubit Pauli Group

Denote a 1-local action of $\Sigma \in \mathcal{P}$ on qubit j of $\mathfrak{A} \simeq \bigotimes_j \mathbb{C}^2$ by

$$\Sigma_j := I_2 \otimes I_2 \otimes \cdots \underbrace{\otimes \Sigma \otimes}_{j \text{ th position}} \cdots \otimes I_2.$$

Then, define the *n*-qubit Pauli group

$$\mathcal{P}_n := \langle i I_j, X_j, Z_j : 1 \le j \le n \rangle$$

If $\mathfrak{A} \simeq (\mathbb{C}^2)^{\otimes n}$, then $\Sigma_j \in \mathcal{P}_n$ and $\mathcal{P}_n \curvearrowright \mathfrak{A}$.

On ∞-qubit Systems

Stabilizer Formalism

Final Remarks 00

In the Limit

Q: What happens when we take $n \to \infty$? How could we do algebra in ∞ -qubit systems?

A: What does that even mean?

On ∞-qubit Systems

Stabilizer Formalism

Final Remarks 00

In the Limit

Q: What happens when we take $n \to \infty$? How could we do algebra in ∞ -qubit systems?

A: What does that even mean?

On ∞-qubit Systems 000000000

Stabilizer Formalism

Final Remarks 00

In the Limit

On ∞-qubit Systems

Stabilizer Formalism

Final Remarks 00

Formal Approach

There are natural inclusions

$$\mathcal{P} = \mathcal{P}_1 \xrightarrow{\iota_1^2} \mathcal{P}_2 \xrightarrow{\iota_2^2} \cdots \xrightarrow{\iota_{n-1}^n} \mathcal{P}_n \xrightarrow{\iota_n^{n+1}} \cdots$$

which send

 $\sigma \mapsto \sigma \otimes I_2.$

Take the direct limit and define $\mathcal{P}_{\infty} := \operatorname{colim} \langle \mathcal{P}_n, \iota_n^m \rangle$.

Stabilizer Formalism

Final Remarks 00

CONSTRUCTIVE APPROACH

Consider the invertible 2 × 2 matrices $GL_2(\mathbb{C})$. If A_1, \ldots, A_n are invertible, then we can form *n*-fold tensor matrices

 $A_1 \otimes A_2 \otimes \cdots \otimes A_n$.

We call the group of all these tensors $\operatorname{GL}_2(\mathbb{C})^{\otimes n}$.

Final Remarks

Constructive Approach

To generalize, we could take all sequences of tensors¹

$$A_{\otimes} := A_1 \otimes A_2 \otimes \cdots \otimes A_i \otimes \cdots$$

and form a group $\overline{\operatorname{GL}_2^{\infty}(\mathbb{C})}$. We call these A_{\otimes} the N-fold tensor map associated to $\{A_i\}_{i \in \mathbb{N}}$.

¹In practice, it is easier to consider the A_i as automorphisms $\mathbb{C}^2 \xrightarrow{\sim} \mathbb{C}^2$.

Final Remarks

Constructive Approach

But doing some algebra tells us we want finite multilinearity. Instead, consider all finitely supported sequences and form the subgroup of restricted N-fold tensor maps $\operatorname{GL}_2^\infty(\mathbb{C})$.

Here, all but finitely many of the A_i are trivial.

Constructive Approach

We know \mathcal{P} lives in $\operatorname{GL}_2(\mathbb{C})$, so take all finitely supported tensor sequences from \mathcal{P} and form \mathcal{P}_{∞} in $\operatorname{GL}_2^{\infty}(\mathbb{C})$.

We call this our ∞ -qubit Pauli group.²

²Finding the correct Hilbert space \mathfrak{G} for \mathcal{P}_{∞} to act on requires some care. It turns out a natural setting is (isomorphic to) $\ell^2[\Omega]$ for a well-chosen Ω .

Stabilizer Formalism ●0000 Final Remarks

Error Correction

We model quantum errors as quantum channels.

- (i) A superoperator is a linear map $\mathcal{E} : \mathbb{B}(\mathfrak{A}) \to \mathbb{B}(\mathfrak{B})$.
- (ii) A *quantum channel* \mathcal{E} is a superoperator which is completely positive and trace-preserving.

That is, $\mathcal{E} \otimes id_k \ge 0$ for all k and $tr(\mathcal{E}\rho) = tr(\rho)$.

Stabilizer Formalism ○●○○○ Final Remarks

Error Correction

A theorem due to Karl Kraus tells us that every quantum channel $\mathcal{E} : \mathbb{B}(\mathfrak{A}) \to \mathbb{B}(\mathfrak{A})$ has a decomposition³

$$\mathcal{E}(-) = \sum_{x \in X} E_x(-)E_x^{\dagger},$$

where $\{E_x\}_{x \in X} \subseteq \mathbb{B}(\mathfrak{A})$.

³Tracking down precisely how large *X* is and in what topology convergence works can be a bit challenging. If \mathfrak{A} is separable, then *X* = \mathbb{N} allows ultraweak convergence.

Some terminology:

- (i) A *codespace* is a subspace $\mathcal{C} \subseteq \mathfrak{A}$.
- (ii) Given an error $\mathcal{E} : \mathbb{B}(\mathfrak{A}) \to \mathbb{B}(\mathfrak{A})$, we call $\mathcal{R} : \mathbb{B}(\mathfrak{A}) \to \mathbb{B}(\mathfrak{A})$ a *recovery channel* if for all states $\rho \in \mathbb{B}(\mathfrak{A})$,

 $(\mathcal{R}\circ\mathcal{E})(\rho)\propto\rho.$

on the codespace.

(iii) An error $\mathcal E$ is *correctable* if a codespace $\mathcal C$ and recovery channel $\mathcal R$ exist.

Gottesman's Stabilizer Formalism

Theorem (Gottesman, 1997)

Let $\mathfrak{A} \simeq (\mathbb{C})^{\otimes n}$, let \mathscr{E} be a noise channel on \mathfrak{A} with Kraus operators $\{E_i\}_{i=1}^r$, and let $\mathscr{S} \leq \mathscr{P}_n$ be a finitely-generated abelian subgroup without $-(I^{\otimes n})$. Then, \mathscr{E} is correctable on $\operatorname{Fix}_{\mathscr{S}}(\mathfrak{A})$ if and only if for all $1 \leq i, j \leq r$, we have

$$E_i^{\dagger} E_j \in \operatorname{span}\{(\mathscr{P}_n \setminus \mathscr{N}_{\mathscr{P}_n}(\mathscr{S})) \cup \mathscr{S}\} \subseteq \mathbb{B}(\mathfrak{A}),$$

where $\mathcal{N}_{\mathcal{P}_n}(\mathcal{S})$ is the normalizer of \mathcal{S} in the *n*-qubit Pauli group.

Stabilizer Formalism 0000●

Final Remarks 00

∞ -Qubit Stabilizer Formalism

Letting \mathfrak{G} be an ∞ -qubit space, can we recover the Stabilizer Formalism for errors on \mathfrak{G} by simply "exchanging *n* with ∞ ?"

D. E. WIGGINS & I. MINEYEV

A MODEL FOR THE INFINITE TENSOR PRODUCT OF GROUPS

Stabilizer Formalism

Final Remarks

Acknowledgements

I would like to thank my advisor *Igor Mineyev* for his wisdom on this project–and on general questions of mathematics–and his unfaltering sense of humor.

I also thank the Illinois Office of Undergraduate Research for the platform to present my work.

dheeran2@illinois.edu

dheeranwiggins.com

References

David Emrys Evans and John T. Lewis. *Dilations of irreversible evolutions in algebraic quantum theory*. Number 24 in A. Dublin Institute for Advanced Studies, 1977.

Daniel Gottesman.

Stabilizer Codes and Quantum Error Correction, 1997.

Alexei Y. Kitaev.

Quantum computations: algorithms and error correction. *Russian Mathematical Surveys*, 52(6), 1997.

Karl Kraus. States, Effects, and Operations. Springer-Verlag Berlin, 1 edition, 1983.

