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Quantum Setting
(e]

The contemporary mathematical paradigm for quantum
mechanics can be summarized via four axioms.
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Quantum Setting
(e]

The axioms give a account of how a quantum system can be
modeled using the rich mathematical framework of Hilbert spaces.
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Quantum Setting
o

QuaNTUM Ax1ioMS VISUALIZED

Pi
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On 0o-qubit Systems

0000000000

Paur1 Grour

We call Hilbert spaces 2 ~ C? qubits.

Pauli Group

The Pauli group & is the nonabelian matrix group generated by

(01 (0 —i (1 0
xi=(04) v=(0 7). z2=(; O)em

There is a natural action of & on a qubit 2.
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On co-qubit Systems
0®00000000

If a qubit is “modeled” by the space C?, then n qubits should be
modeled by the space

C?> ®---® C? = (C>®".

n times

We can generalize the Pauli group to n qubits.
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On 00-qubit Systems
0080000000

n-Qusit PauLt Group

Denote a 1-local action of X € & on qubit j of A >~ &), C? by

i =hL® - QX ---Q I>.

Jth position
Then, define the n-qubit Pauli group
ﬂ)n = (i]j,Xj,Zj 1< j < I’l)

If A ~ (C?)®", then Y; € Ppand P ~ 2L
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On 00-qubit Systems
000®000000

INn TE LimiT

Q: What happens when we take n — oo? How could we do
algebra in co-qubit systems?

1
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On 00-qubit Systems
000®000000

INn TE LimiT

Q: What happens when we take n — oo? How could we do
algebra in co-qubit systems?

A: What does that even mean?

1
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On 00-qubit Systems
0000800000

INn TE LimiT

n-qubit systems oo-qubit systems
(C2)®n &

1
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On 0o-qubit Systems
00000®0000

ForMmAaL APPROACH

There are natural inclusions

3 3 ooy St
n— n
p=p bl Py

which send
oo QI

Take the direct limit and define P := colim (Py, 1)').

1
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On co-qubit Systems
0000000000

CONSTRUCTIVE APPROACH

Consider the invertible 2 x 2 matrices GL,(C). If Ay, ..., A, are
invertible, then we can form n-fold tensor matrices

A1 ® A2 ® - ® Ap.

We call the group of all these tensors GL(C)®".
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On co-qubit Systems
0000000800

CONSTRUCTIVE APPROACH

To generalize, we could take all sequences of tensors'

Ag =410 420 QA ® -

and form a group GL5°(C). We call these Ag the N-fold tensor
map associated to {A4; };eN.

IIn practice, it is easier to consider the 4; as

automorphisms Cc? =~ C2. m

D. E. WiGGINs & I. MINEYEV A MODEL FOR THE INFINITE TENSOR PRODUCT OF GROUPS



On 0o-qubit Systems
0000000080

CONSTRUCTIVE APPROACH

But doing some algebra tells us we want finite multilinearity.
Instead, consider all finitely supported sequences and form the
subgroup of restricted N-fold tensor maps GL5°(C).

Here, all but finitely many of the A; are trivial.
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On 0o-qubit Systems
0000000008

CONSTRUCTIVE APPROACH

We know £ lives in GL2(C), so take all finitely supported tensor
sequences from & and form Lo in GL5°(C).

We call this our co-qubit Pauli group.?

2Finding the correct Hilbert space & for £ to act
on requires some care. It turns out a natural setting

is (isomorphic to) £2[] for a well-chosen . ILLI NOIS
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Stabilizer Formalism
@0000

ErRrROR CORRECTION

We model quantum errors as quantum channels.
(i) A superoperator is a linear map & : B(2() — B(*B).
(i) A quantum channel & is a superoperator which is completely
positive and trace-preserving.
Thatis, & ® id; > 0 for all k and tr(&p) = tr(p).
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Stabilizer Formalism
(o] lelele]

Error Correction

A theorem due to Karl Kraus tells us that every quantum channel
€ : B(A) — B(2A) has a decomposition®

E(-) =Y Ex(-)EL

xeX

where {Ex}xex < B(20).

3Tracking down precisely how large X is and in what
topology convergence works can be a bit challenging. If 2 is
separable, then X = N allows ultraweak convergence. ILLINOIS
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Stabilizer Formalism

[e]e] le]e}

Some terminology:
(i) A codespace is a subspace € C 2.

(ii) Given an error & : B(2) — B(2(), we call R : B() — B(2) a
recovery channel if for all states p € B(2(),

(Ro&)(p) xp.

on the codespace.

(iii) An error & is correctable if a codespace € and recovery channel
R exist.
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Stabilizer Formalism

[e]e]e] o}

GOTTESMAN’S STABILIZER FORMALISM

Theorem (Gottesman, 1997)

Let 2 ~ (C)®", let € be a noise channel on 2 with Kraus operators
{Ei}i_,, and let 8 < 5, be a finitely-generated abelian subgroup
without —(/®"). Then, & is correctable on Fixg(2!) if and only if
foralll <i,j <r,wehave

E[E; € span{(Px \ Nz, (8)) U 8} € B,

where Ngp, (&) is the normalizer of § in the n-qubit Pauli group.
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Stabilizer Formalism
[ee]e]e] ]

00-QuUBIT STABILIZER FORMALISM

Letting & be an oo-qubit space, can we recover the Stabilizer
Formalism for errors on & by simply “exchanging n with c0?”

BYILLINOILS

D. E. WicaGins & 1. MINEYEV A MODEL FOR THE INFINITE TENSOR PRODUCT OF GROUPS 20/ 22



Final Remarks
[ Je]
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Final Remarks
oe
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