WHAT IS A TQFT?
A SYMMETRIC MONOIDAL FUNCTOR.

DHEERAN E. WIGGINS

AsstrACT. In this note I spell out how to realize topological field theories as functors
on a suitable category of cobordisms. [Really, this ended up being an introduction
to symmetric monoidal categories. At some point, I plan complete this note, i.e.,
type up sequel sections on conformal and topological conformal field theories.] This
is intended for an audience who is familiar with Atiyah’s axioms for a topological
(quantum) field theory, but is maybe only familiar with the rudiments of ordinary
category theory.
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A functorial quantum field theory (rQFT) tends to refer to an assignment
physical spaces and trajectories <~~~ state spaces and linear maps.

At the very least, we like to ask that such an assignment respects the usual notions
of sewing and multiplication/correlation in either setting. This tells us that an FQFr
should be some symmetric monoidal functor from a category of cobordisms to a
category of vector spaces. Of course, if we add structure to the domain and target
categories, then the type of functor should be tweaked to respect that.

Three of our familiar field theories can be viewed as rqFrs.

(i) A (d + 1)-dimensional topological quantum field theory (TQFT) is a symmetric
monoidal functor from a category of d-manifolds and (d + 1)-dimensional
cobordisms to the category of complex vector spaces and C-linear maps.

(ii) A conformal field theory (cFr) is a continuous symmetric monoidal functor from
a category of 1-manifolds with parametrization and 2-dimensional conformal
cobordisms to the category of complex vector spaces and C-linear maps.

(iii) A topological conformal field theory (1cFr) is a chain complex-enriched
homotopy-symmetric monoidal functor from a dg-category of 1-manifolds
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with parametrization and 2-dimensional conformal cobordisms to the
dg-category of chain complexes of complex vector spaces and chain maps.

Motivated by these three examples, we build the necessary categorical machinery
to define some rQFts, though we will only have the time to make it to (i).

1. CATEGORICAL PRELIMINARIES

Recall that a category C consists of a collection of objects |C|, for every pair of
objects a,b € C, a set C(a, b) of morphisms a — b, and for every triple of objects
a,b,c € C,a composition map

oa.pc ' C(b,c) x C(a,b) — C(a,c).

We require that composition is associative and that for all @ € € there is a morphism
idg : @ — a so that id, is a two-sided identity for C(a, a) with respect to 04,4,4.

Example 1.1. We usually populate our categories with algebraic objects, giving rise
to the category

(i) Vect, of finite-dimensional complex vector spaces and C-linear maps.
(if) coCh, of cochain complexes of complex vector spaces and chain maps.
(iii) Repg, of G-representations (U, ¢) and G-equivariant maps.
(iv) FdHilb of finite-dimensional Hilbert spaces and bounded C-linear maps.
(v) CFrob, of finite-dimensional complex commutative Frobenius algebras and
Frobenius algebra maps.

Example 1.2. We often care about categories of spaces with continuous maps, like
Top, of all topological spaces, or the nicer category CGWH, of compactly generated
weak Hausdorff spaces.

Example 1.3. Adding a bit more structure, we could consider the category SMan of
smooth manifolds and smooth maps, or more generally, the category D”Man of C?
manifolds and C? maps forany p € 0 U N U oo.

Yet, it is certainly not the case that a category must have objects that are sets with
extra structure and morphisms that are structure-preserving functions. Notably, if
our goal is for trajectories or cobordisms to correspond to linear maps, we should
have a category with morphisms given by cobordisms. Since two diffeomorphically
equivalent cobordisms should eventually give rise to the same map, the morphisms
in such a category should be defined as equivalence classes.

Definition 1.4 (Bordism Category). The category Bord,; has objects that are closed

and oriented d-manifolds. Given My, M; € Bordg 1, the morphisms My — M, are

given by equivalence classes of cobordisms from M, to M, where a pair of cobordisms

W, W’ : My == M, are equivalent if there is a diffeomorphism ¢ : W — W’ so that
w ¢ W’

\ J

Mo I M,

commutes. The composition law is given by the gluing of cobordisms. That is, we
have a map

oMy, M, M - Bordgy1 (M1, M>) x Bordg1 (Mo, M1) — Bordg1 (Mo, M>)
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prescribed by
Wiz opmo,my,M, Wo1 = Wor A]Z[ Wiz = Woa.
1

For each d-manifold M € Bordg ., we use the natural choice of identity morphism
idpas € Bordg1(M, M) given by the cylinder

idy = M x [0, 1].

1.1. Functoriality. Recall that a functor f : € — 9 between categories C and
assigns an object f(a) € O for each object a € € and a morphism f(«) : f(a) —
f(b) € ® for each morphisma : a — b € C. Functoriality then requires that functors
respect the composition and unitality structure of the categories:

f(Ba) = f(B)f(a), foralla € C(a,b)and B € C(b,c)
and
f(@dy) =idys(g), foralla € C.

Functors give us a natural notion of morphisms between categories, and so we can
assemble all categories into a single category Cat.

Likewise, given parallel functors f, g : € = 9, anatural transformationn : f = g
is an assignment, for each objecta € €, of a component morphismn, : f(a) — g(a) €
D so that the naturality square

fla) =% g(a)

f (a)l lg(a)

f(b) 2> g(b)

commutes for all morphisms « : @ — b € C. Natural transformations are the natural
notion of morphisms between functors, and so after fixing a pair of categories C and
D, we can assemble a category of functors Fun(C, ) which has functors € — D
for objects, natural transformations as morphisms, and the (vertical) composition of
natural transformations is done componentwise.

Now, an isomorphism a ~ b in an arbitrary category C isa morphism ¢ : a — b so
that there is a two-sided inverse ¢! : b — a with respect to the identity morphisms.
Thus, an isomorphism of categories is such a functor in Cat. However, this turns out
to be a bit too restrictive, and so we weaken this to the notion of equivalence.

Definition 1.5 (Natural Isomorphism). We call a natural transformation  : f = g
a natural isomorphism if its component morphisms 7, are all isomorphisms. In this
case, we call f and g naturally isomorphic, writing f* ~ g.

Definition 1.6 (Equivalence). A functor f : € — ® is an equivalence if there is a
functor g : ® — Csuch thatide ~ gf and fg ~ idg.
1.2. Monoidal Structure.
Definition 1.7 (Monoidal Category). A monoidal category consists of

(i) acategory C.
(ii) a tensor product bifunctor (—) ® (—) : € x € — C.
(iii) a unit object 1 € C.
(iv) an associator natural isomorphism

()= ((-) ()

with components ¢ 5. 1 (@ ® b)) ®c - a ® (b ®c), for all triples a, b, c € C.
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(v) a left unitor natural isomorphism
A:1®(-) = ide

with components 1, : 1® a — g, foralla € C.
(vi) a right unitor natural isomorphism

p:(—)®1=ide
with components p; : a ® 1 — a, foralla € C.

These data must satisfy commutativity of the triangle (Fig. 1) and pentagon (Fig. 2)
diagrams for all objects a, b, c,d € C.

@1 ®b a1b a®(1®Db)
pu% Aflb
a®b

Ficure 1. Triangle diagram

%a,b@c.d

@®bec)ed a®((b®c)®d)

Ola,h.c@iddI lida ®ap,c.d

(a®b)®@c)®d a®(b®(c®d)

aam %ﬁ@d

(a®b)®(c®d)
FiGure 2. Pentagon diagram

We will abbreviate the data of such a monoidal category by writing (C, ®, 1).

Example 1.8. The category Set, of sets and functions between them, is monoidal with
tensor product given by the Cartesian product, unit object given by a chosen singleton
*, associator given by

((p.q).1) = (p.(q.7)),
and unitors given by (*, g) — ¢ and (p, *) — p, where p, g, and r live in some sets.

Example 1.9. The category Vect is monoidal with tensor product given by the usual
tensor product ® = ®c¢, unit object given by C, associator sending

(PRYYr—>pR(gRr),

and unitors sending 1 ® ¢ — ¢ and p ® 1 — p, where p, ¢, and r live in some vector
spaces.

Example 1.10. The category Bord; 4 is monoidal with tensor product given by LI,
unit object given by &. The associator and unitors are again the natural ones.
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To formalize the notion of swapping systems, we introduce the additional structure
of braiding on a monoidal category.

Definition 1.11 (Braided Monoidal Category). A braided monoidal category consists
of a monoidal category (C, ®, 1) and a braiding natural isomorphism

yV:=)®H= == )

with components y,, : a ® b — b ® a, for all a,b € C. These data must satisfy
commutativity of the hexagon diagrams (Fig. 3) for all objects a, b, c € C.

L a®be) ™ e ®a

—1

@®b)®c b® (c ®a)

Va,b®% /i(il:@yu,c

(b®a)®Cmb®(a®c)

@®b)®c “22 ¢ @ (a ®b)
aay wz,h
a® b ®c) (c®a)®b

ida ®1% /J’a.c®idb

a®(c®b)a—>(a®c)®b

a.c.b

Ficure 3. Hexagon diagrams

We abbreviate the above data by writing (C, ®, 1, y).
Example 1.12. For any pair of vector spaces U, U, there is a unique linear map
yv,u:D®U—>”UL®"U

given by v ® u — u ® v on the basic tensors. Moreover, this map is natural and an
isomorphism, so the components assemble into a braiding y on Vect.

Example 1.13. The twist cobordism 7 gives a braiding on Bord, 4 ;.

Definition 1.14 (Symmetric Monoidal Category). A symmetric monoidal category is
a braided monoidal category (C, ®, 1, y) where yp 4V4» = idsgs foralla,b € C.

Proposition 1.15. The braiding t on Bordg and the braiding y on Vect are symmetric.
Proof. Let U and WL be C-linear spaces with v € U and u € W. Then,
ruo((V, W u) = yu v ®v) =vQ@u = idygu (v ® u).
Now, let My and M; be closed and oriented d-manifolds. Then,
71,00 To1 - Mo LI My — Moy I M,
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is a cobordism diffeomorphic to the parallel cylinders (M, x [0, 1]) LI (M; x [0, 1]).
Moreover, this diffeomorphism can be taken relative on the boundary M, and M;.
Finally, we have another diffeomorphism equivalence of these parallel cylinders to

(Mo I My) x[0,1] = idMOHMl .
O
1.3. Symmetric Monoidal Maps. Now that our categories have the added structure

of a tensor product, we should add structure to the definition of functor. This leads
us to the definition of a monoidal functor, i.e., a morphism of monoidal categories.

Definition 1.16 (Monoidal Functor). Let (C,®,1,a,4,p) and (9,K,1, 8,4, ) be
monoidal categories. Then, a (strong) monoidal functor f : € — 9 consists of
an ordinary functor f : ¢ — 9, a natural isomorphism

p: fOR )= f(=®-)
with components ¢, 5 : f(a)X f(b) — f(a®b),foralla,b € €, and an isomorphism
fi1— f(D).

These data must fulfill the intuitive compatibility requirements with the associator
(Fig. 1.3) and unitors (Fig. 1.3) for all objects a, b, ¢ € C.

(f@) B f(b) B f(c) LLLOIO 1y R (f(b) B f(c)

Pa.b Eidf(c)l lidf(a)mbﬁ
fla®b)® f(c) @R f(bRc)
‘pa®h.0l l’ﬂa,h@c

fla®b)®c) fla® (b ®o)

Sf@ap.c.)

Ficure 4. Associator compatibility for a monoidal functor

18 f(a) —2“— f(a)
Lgidﬂml lf azhH
SO —5— f(1®a)

Ficure 5. Left unitor compatibility for a monoidal functor. The right
unitor compatibility is completely analogous.

Once we have a monoidal functor f : € — 9, if we have the additional structure
of a braiding on both the domain and target categories, it is reasonable to ask for f
to be compatible with this as well.

Definition 1.17 (Braided Monoidal Functor). Let € and ® be monoidal categories
with braidings y and o, respectively. Then, a braided monoidal functor is a monoidal
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functor f : € — D such that the square

f@ & f(b) L1 1) R f(a)

‘Pa,hl lfﬂh,a

fla®b) —o—

commutes for all objects a, b € C.

If we further have that the braidings on our domain and target categories are
actually symmetries, then a braided monoidal functor between them is called a
symmetric monoidal functor. Note that we do not have to enforce the symmetry.

Finally, we should ask that natural transformations between monoidal functors are
compatible with the added structure.

Definition 1.18 (Monoidal Natural Transformation). Let f,g : € = 9 be a pair of
parallel monoidal functors, using the same notation as above. Let ¥ be the natural
isomorphism for g. Then, a monoidal natural transformation consists of a natural
transformation 1 : f = g such that the naturality square

f@) R f(b) —22 f(a ®b)
Na g']bl l’la@h

g(a) X g(b) BT gla®b)

and the triangle
S —— g

N A

Definition 1.19 (Symmetric Monoidal Functor Category). Let C and 9 be symmetric
monoidal categories. We can form a category Fung (C, ) with objects given by the
symmetric monoidal functors € — ® and morphisms given by the corresponding
monoidal natural transformations. The maps are composed as in Fun(C, 9).

commute foralla,b € C.

Remark 1.20 (Strictness). A result due to Saunders Mac Lane says that every monoidal
category is monoidally equivalent to a strict monoidal category, i.e., one where the
associator and unitors are the identity natural isomorphism. Thus, suppressing them
is less of an abuse than it seems at first glance. This can be extended to the symmetric
monoidal case, in which case the resulting structure is called a permutative category.

2. TororocicaL QuanTtuM FieLD THEORIES

Our goal was to functorially assign complex vector spaces and linear maps to
manifolds and cobordisms therebetween, all while respecting the (symmetric)
multiplicative structure of both.

Definition 2.1 (TQFT). A (d + 1)-dimensional topological quantum field theory is a
(strong) symmetric monoidal functor

Z : (Bordg4+1, U, a,7) — (Vect, ®,C, y).
We should probably further require that Z is the identity isomorphism C — Z(@).
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Looking back at our definition of an isomorphism of TQFrs, it is clear that this is
encoded in a monoidal natural isomorphism. Thus, the sensible choice of morphism
between two TQFTs is exactly a monoidal natural transformation.

Definition 2.2 (TQFT Category). The (d + 1)-dimensional TQFr category is the
symmetric monoidal functor category

TQFTd+1 = Funfg (BOl’dd+1 , Vect).

Now, recall our construction €2 which took a two-dimensional topological quantum
field theory Z € TQFT, and outputted a Frobenius algebra. We set 2 = Z($'),
let the multiplication m be given by the pair of pants with unit cup, and let the
comultiplication A be given by the reversed pair of pants and counit cap. Coupling
this construction with the obvious action of € on morphisms, we conclude the
following.

Theorem 2.3 (Classification of 2D TQFTs). The functor Q : TQFT, — CFrob is an
equivalence of categories.

Of Atiyah’s axioms, our functorial picture recovers all except what we called
involutivity and duality. We will skip duality, but a few words can be quickly said
about involutivity.

Definition 2.4 (Dagger Frobenius Algebra). A dagger Frobenius algebra is a
Frobenius algebra (2, m, A, n, £) such that mf = A and 77Jr =e.

The commutative dagger Frobenius algebras assemble into a category CFrob'.

Put the usual { structure on FdHilb given by adjoints. On Bord,, we have an
involution given by reversing cobordisms. Both are compatible with the previously
described symmetric monoidal structures, so we can consider the category of all
symmetric monoidal dagger functors Bord, — FdHilb. Call the resulting category
UTQFT, and call these objects unitary TQFrs.

Proposition 2.5 (Classification of Unitary 2D TQFTs). The equivalence Q2 from before
descends to an equivalence on the subcategories of T-structures identified above:

TQFT, ——=— CFrob

]

UTQFT, --=-> CFrob'

Proof. Follows from the definition of a symmetric monoidal {-functor. O
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