
BREDON COHOMOLOGY FOR SMITH THEORY

DHEERAN E. WIGGINS

Abstract. In this brief expository paper, we develop the basic theory of Bredon
cohomology, an equivariant analogue of ordinary cohomology. Rather immediately,
we will be able to apply this machinery to prove some results about modulo-p
cohomology spheres due to Paul Althaus Smith [Smi38]. We follow [May96].

In the ordinary algebraic topology of spaces, we try and study the relationship
between (suitably nice) topological spaces, the continuous maps therebetween, and
corresponding algebraic structures equipped with their usual notion of map. In
particular, our goal is often to distinguish spaces, so we proceed functorially.�
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This framework leads us to define the usual invariants like the homotopy groups
and singular (co)homology. The story of equivariant algebraic topology is analogous.
After allowing spaces to have a (continuous) group action attached to them, our goal
is to construct algebraic invariants that have the power to distinguish such objects.�
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We will begin here in §1, defining the basic structures, notably G-spaces and G-CW
complexes, necessary to build the Bredon equivariant cohomology in §2. Then, in §3,
we will apply our equivariant theory to prove the following result for a prime p.
Theorem 0.1 (P. A. Smith, 1938). Let G be a finite p-group and X be a finite-dimensional
G-CW complex that is a modulo-p cohomology n-sphere. Then, there is an m � n so that
XG is either empty or a modulo-p cohomology m-sphere. If p ¤ 2, then n �m is even, and
even n means XG is nonempty.

We will denote by Set the category of sets, by Ab the category of abelian groups,
by Vect.k/ the category of k-vector spaces, by Top the category of (nice, i.e., CGWH)
spaces, and for categories C and D, by Fun.C;D/ the functor category between them.
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1. Spaces with Actions

Let G be a topological group, i.e., a group object in Top. In the way that a G-set is
nothing more than a Set-valued functor from G and a G-representation is nothing
more than a Vect.k/-valued functor fromG, aG-space should assign to each element
ofG a homeomorphism of the spaceX , such that this assignment is compatible with
the group structure.

Definition 1.1 (G-Space). A G-space is a topological space X equipped with a
continuous group action G �X ! X .

In analogy with the theories of G-sets or G-representations, we need a way to
talk about maps on a G-space X that respect the action. Precisely, we will say a
G-equivariant map f W X ! Y between two G-spaces is a continuous map such that
for all g 2 G and x 2 X ,

f .gx/ D gf .x/:

That is, we need the naturality square
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Y Y
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to commute. Note that G-equivariant maps are also called G-maps.

Definition 1.2 (Category ofG-Spaces). Let Top.G/denote the category whose objects
are G-spaces and whose morphisms are G-equivariant maps.

The usual constructions from a G-set translate over to the setting of G-spaces.

Definition 1.3 (Stabilizer, Orbit, Fixed Point Space). Let X be a G-space.
(i) The stabilizer of a point x 2 X is the subgroup Gx D fg 2 G W gx D xg � G.

If X is reasonably nice (T1), then Gx is a closed subgroup.
(ii) The orbit of a point x 2 X is the subspace xG D fgx 2 X W g 2 Gg � X .

(iii) The fixed point space XH of a closed subgroup H � G is the space of all
x 2 X such that hx D x for all h 2 H .

IfH � G is a closed subgroup, we will writeG=H for the coset space. Coset spaces
G=H naturally correspond to orbits xG for x 2 G, so we will often call the spaces
G=H the orbits. The following slogan in [May96] helps motivate much of the theory.

“In equivariant theory, orbits G=H play the role of points, and the set of
G-maps G=H ! G=H can be identified with the groupWH .”

Here,WH is just the quotient of the normalizer ofH in G byH .

Definition 1.4 (Orbit Category). Given a G-space X , define the orbit category OG �
Top.G/ to be the full subcategory cut out by the orbits G=H .

In practice, the usual notions of isomorphism in Top.G/ and OG are too strong,
and we will want to work with our new equivariant structures in a homotopical
setting. If f; g W X � Y are G-equivariant maps, we say that H W X � I ! Y is a
homotopy from f to g ifH is a G-equivariant homotopy in the usual sense, where we
letG act trivially on the interval. Then, a homotopy equivalence is aG-equivariant map
that is an isomorphism of G-spaces up to homotopy.
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Definition 1.5 (Homotopy Category). Let C be a category and let W be a wide
subcategory. The homotopy category of C localized at W is a category CŒW�1� with
a functor

C


��! CŒW�1�

such that
(i) if f 2 mor.W/, then 
.f / is an isomorphism in CŒW�1�.

(ii) if � W C ! D is any functor so that �.W/ are all D-isomorphisms, then there
is a unique functor e� W CŒW�1�! D

such that the triangle

C D

CŒW�1�

 

!


 

!
�

 

!e�

commutes.

That is, the homotopy category CŒW�1� is a sort of category of fractions, where we
have formally inverted the morphisms in W.

Example 1.6 (Naïve Homotopy Category). Let C D Top and H be the wide
subcategory of homotopy equivalences. Then, CŒH�1� is the usual (naïve) homotopy
category one encounters in a first course in algebraic topology, written hTop.

Example 1.7 (CW Complexes). When we actually do algebraic topology, we tend to
restrict ourselves to the subcategory CW � Top of CW complexes and cellular maps.
Inverting homotopy equivalences, we obtain a full subcategory hCW � hTop.

Example 1.8 (Orbits and G-Spaces). We will write hOG for the homotopy category
OG ŒH�1�, where H is homotopy equivalences in the equivariant sense. Likewise, we
will write hTop.G/ for the homotopy category ofG-spaces localized at the homotopy
equivalences.

In many settings, however, we can get away with a notion even weaker than
homotopy. In the ordinary theory, we say a map f W X ! Y of spaces is a
weak equivalence if it induces an isomorphism f� W �n.X/ ! �n.Y / for all n 2 N.
Switching to the equivariant picture, we will say that aG-equivariant map f W X ! Y

of G-spaces is a weak equivalence if the induced map f H W XH ! YH on the fixed
point spaces of any closedH � G is a weak equivalence in the ordinary sense.

Example 1.9 (True Homotopy Category). We could have instead defined a homotopy
category of spaces to be TopŒW�1�, where W is the wide subcategory of spaces and
weak equivalences.

Example 1.10 (Weak G-Spaces). Let wTop.G/ denote the homotopy category of G-
spaces localized at the equivariant weak equivalences.

A standard result is that the homotopy theory of CW complexes is the same as the
weak homotopy theory of spaces. That is, there is an equivalence of categories

TopŒW�1� ' hCW � hTop:
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Our ordinary invariants are then defined on the CW homotopy category. If our goal is
to extend such theories to G-spaces, we should thus have a sturdy notion of a G-CW
complex. By analogy, this should be a G-space that has the G-action integrated into
each cell of a CW complex in a coherent way. Moreover, it should have the same
homotopy theory as the weak homotopy theory of G-spaces.

Definition 1.11 (G-CW Complex). A G-CW complex X is a G-space with n-skeleton
Xn defined recursively in the following way:

(i) the 0-skeleton X0 is given by a disjoint union of orbits G=H .
(ii) by picking G-equivariant maps

G=H � Sn ! Xn;

we can form the pushout

XnC1 D colim

 a
H

G=H � DnC1  -
a
H

G=H � Sn ! Xn

!
;

where G acts trivially on the disks and spheres.
(iii) X is the directed colimit of the n-skeleta with the inclusions Xn ! XnC1.

We now have a category CW.G/ � Top.G/ ofG-CW complexes and cellular maps.
Of course, we could have instead defined relative G-CW complexes .X;A/, in which
case we specify that the 0-skeleton also has a copy of A. Using this definition of
G-CW complex, it can be shown that the equivariant theory satisfies the expected
versions of the homotopy extension and lifting property, Whitehead’s theorem,
cellular approximation, and (G-)CW approximation. See [May96] for proofs. These
results are enough to conclude that there is an equivalence of categories

wTop.G/ ' hCW.G/ � hTop.G/;

where hCW.G/ is the homotopy category of CW.G/ localized at the equivariant
homotopy equivalences. (Of course, we could again consider pairs, yielding the
category hCW2.G/.) That is, the weak homotopy theory of G-spaces is equivalent to
the homotopy theory of G-CW complexes, so we will define our invariant, Bredon
cohomology, on the homotopy category of G-CW complexes.

2. Bredon Cohomology

To define a cohomology theory in the equivariant setting, we should first determine
what category our coefficients lie in. We will call any functor hO

op
G ! Ab a coefficient

system. That is, coefficient systems are Ab-valued presheaves on the homotopy
category of orbits. Evidently, this is contravariant, since we have taken the opposite
homotopy category of orbits in the domain. If our goal was to define an equivariant
homology theory, we would instead use covariant coefficient systems hOG ! Ab.
We can arrange coefficient systems into a category Coef by letting morphisms be
natural transformations. That is, define the category of coefficient systems

Coef D Fun.hO
op
G ;Ab/:

The following is a standard result. For a proof, see Proposition 5.93 of [Rot09].

Theorem 2.1. If D is an abelian category, then so is Fun.C;D/.
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In particular, this means our coefficient systems form an abelian category, so we
can do homological algebra with them, i.e., we can define and manipulate chain
complexes of coefficient systems. We will write Ch�.Coef/ (resp. coCh�.Coef/) for
the category of (resp. co)chain complexes in coefficient systems with chain maps.

Let C W hO
op
G ! Ab be a coefficient system. By a (relative, unreduced) Bredon

equivariant cohomology theory, we will mean then a sequence of functors
H �G.�;�IC/ W hCW2.G/! Ab;

along with natural transformations ı that have components

ı.X;A/ W H
�
G.X;¿IC/! H �C1G .X;AIC/

such that this data satisfies equivariant analogues of the Eilenberg-Steenrod axioms
for ordinary unreduced cohomology. Note that while the rest of the axioms look like
their ordinary counterparts, the dimension axiom should be treated with care. In
particular, we follow the slogan that orbits are points, so that for each orbit G=H ,

Hn
G.G=H;¿IC/ D

(
C.G=H/; n D 0

0; otherwise;

where C.G=H/ is the evaluation of our coefficient system on the orbit space. As we
would expect, such a theory, if one exists, is unique.
Theorem 2.2. Let C be a coefficient system. Then, there is no more than one natural
isomorphism class of Bredon equivariant cohomology theoriesH �G.�;�IC/.

The proof of uniqueness is similar to the proof for ordinary cohomology theories.
We now construct cellular Bredon cohomology, which can then be shown to satisfy
the Eilenberg-Steenrod axioms.

Definition 2.3 (Cellular Bredon Chain Complex). Let X be a G-CW complex. Then,
the cellular Bredon chain complex C � 2 Ch�.Coef/ assigns to each n and each orbit
G=H the relative integral homology (in ordinary spaces) of the pair of fixed point
spaces ..Xn/H ; .Xn�1/H /. That is,

C n.G=H/ D Hn..X
n/H ; .Xn�1/H IZ/:

In ordinary spaces, there is a connecting homomorphism associated to the triple

..Xn/H ; .Xn�1/H ; .Xn�2/H /;

so we obtain the desired differential
d W C n.X/! C n�1.X/:

Definition 2.4 (Cellular Bredon Cohomology). Let X be a G-CW complex and C be
a coefficient system. Then, the cellular Bredon cohomology of X is the cohomology

H �G;cell.X IC/ D H
�.Coef.C �.X/; C //:

That is, we take the cohomology of the cochain complex obtained by considering
maps from the cellular Bredon complex into our chosen coefficient system C .

We have thus constructed a sequence of functors

H �G;cell.�IC/ W CW.G/
C�
���! Ch�.Coef/

Coef.�;C /
�������! coCh�.Coef/

H�

���! Ab:
Note that homotopic G-equivariant maps induce isomorphisms on cellular Bredon
cohomology, so H �G;cell.�IC/ descends to a functor from hCW.G/ ' wTop.G/.
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The remaining axioms can be shown to be satisfied by this cellular construction.
Hereafter, by Bredon cohomology we mean any theory isomorphic to cellular Bredon
cohomology, writing H �G.�IC/. For ordinary homology with coefficients in Fp , we
writeH �.�/ W hCW! Vect.Fp/, using the notation eH �.�/ for the reduced version.

3. Smith Theory

We now turn our attention back to proving Theorem 0.1. The intent is to use our
new equivariant tool Bredon cohomology, plus some rudimentary algebra, to prove
Smith’s results about ordinary cohomology spheres. We begin with the following
simple observation about fixed point subspace.

Lemma 3.1. Let H CG be a nontrivial normal subgroup. Then, XG D .XH /G=H , where
XH � X is interpreted as a G=H -space in the natural way.

Proof. We compute

XG D fx 2 X W gx D x for all g 2 Gg
D fx 2 X W ghx D x for all g 2 G and all h 2 H g

D fx 2 XH W .gH/x D x for all g 2 Gg;

which is precisely .XH /G=H . □

We now recall the notion of solvability for groups, which will allow us to make a
notable reduction in the complexity of the problem.

Definition 3.2 (Solvable Group). A group G is solvable if there is a chain

1 D G0CG1C � � �CGn D G;

where Gi=Gi�1 is abelian for 1 � i � n.

Then, the following is a brief exericse in induction.

Exercise 3.3. Finite p-groups are solvable.

Corollary 3.4. If Theorem 0.1 holds in the cyclic case G D Z=p, it also holds for arbitrary
finite p-groups G.

Proof. Since G is solvable, there is some H CG so that G=H ' Z=p. By Lemma 3.1,
we can focus on XH as a Z=p-space. Induction tells us that either XH is empty or a
cohomology sphere of the desired type, which implies the result for XG . □

Let us establish some notation. Per Corollary 3.4, G will be the cyclic group
Z=p, unless otherwise noted. We define FX as the G-space XC=XG , where XC is
the G-space union X [ � with a disjoint basepoint. While we have not explicitly
mentioned basepoints until now, the basics of our equivariant theory continue to
work as expected with based G-spaces. Per usual, we refer the reader to [May96] for
details. We also define three coefficient systems L;M;N 2 Coef such that

Hn
G.X IL/ '

eHn.FX=G/; Hn
G.X IM/ ' Hn.X/; and Hn

G.X IN/ ' H
n.XG/:

That such coefficient systems exist can be shown by defining on objects

L.c/ D

(
Fp; c D G

0; c D �;
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M.c/ D

(
FpŒG�; c D G

Fp; c D �;

where FpŒG� is the group ring, and

N.c/ D

(
0; c D G

Fp; c D �:

Observe that the uniqueness of a Bredon equivariant cohomology theory satisfying
the axioms (Theorem 2.2) assures us that this is enough data to give the desired
characterization. Finally, we define the following shorthands for dimensions:

an D dim
�eHn.FX=G/

�
an D dim .Hn

G.X I I //

bn D dim .H q.X//

cn D dim
�
Hn.XG/

�
:

We now need to do some algebra.

Definition 3.5 (Augmention Map, Ideal). Define the augmentation map " to be the
usual ring homomorphism

" W FpŒG�! Fp
so that ".g/ D 1 for all g 2 G. The augmentation ideal of FpŒG� is the ideal I D ker."/.

Note that this definition makes sense for any group ring RŒG�. See [Bro82] for
characterizations and applications of the augmentation ideal in group cohomology.
In particular, it can be shown that " is surjective. Define a coefficient system I by

I.c/ D

(
I; c D G

0; c D �:

Lemma 3.6. We have a pair of short exact sequences of coefficient systems
0! I !M ! L˚N ! 0

and
0! L!M ! I ˚N ! 0:

Proof. When we evaluate on �, both sequences are
0! 0! Fp ! 0˚ Fp ! 0;

which is exact. When we evalute on G, we get the sequences
0! I ! FpŒG�! Fp ˚ 0! 0

and
0! Fp ! FpŒG�! I ˚ 0! 0:

The rank-nullity theorem tells us that these sequences are not just exact, but split
exact, since I D ker."/ and Fp D ".FpŒG�/. □

Corollary 3.7. There are long exact sequences

� � � ! Hn
G.X I I /! Hn.X/! eHn.FX=G/˚Hn.XG/! HnC1

G .X I I /! � � �

and
� � � ! eHn.FX=G/! Hn.X/! Hn

G.X I I /˚H
n.XG/! eHnC1.FX=G/! � � � :
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Proof. We get two long exact sequences in Bredon cohomology that arise from the
short exact sequences in Lemma 3.6 in the usual way. Then, just use the definitions
of the coefficient systems L, M , and N to obtain the above sequences in terms of
ordinary and Bredon cohomology. □

By bounding the dimensions of images, the first long exact sequence gives us the
inequality bn C cn � bn C anC1. Likewise, the second long exact sequence yields
an C cn � bn C anC1. Together, these give the inequality

2cn C bn C an � 2bn C anC1 C anC1:

Summing over both sides, it is simple to observe thatX
cn �

X
bn:

We will now need one (rather, p � 1) more exact sequence(s).

Lemma 3.8. For 1 � n � p � 1, there is a short exact sequence of coefficient systems

0! I nC1 ! I n ! L! 0

where I n is the nth power of the coefficient system I .

Idea. We omit the proof, but note that this falls easily from the ideal structure of I n,
which in turn, follows from the ideal structure of the augmentation ideal I . See the
exercises of Chapter 1, §2 in [Bro82] for the latter. □

The above short exact sequences give rise to cohomological long exact sequences
in the usual way. Filling in the standard Euler characteristic formula for each term in
the sequences and summing over 1 � n � p � 1, we obtain the following.

Corollary 3.9. The Euler characteristic of X admits

�.X/ D �.XG/C p�.FX=G/ � p:

In particular, �.X/ is just �.XG/ modulo-p.

We can now prove our main result.

Theorem 0.1 (P. A. Smith, 1938). Let G be a finite p-group and X be a finite-dimensional
G-CW complex that is a modulo-p cohomology n-sphere. Then, there is an m � n so that
XG is either empty or a modulo-p cohomology m-sphere. If p ¤ 2, then n �m is even, and
even n means XG is nonempty.

Proof. Let X be a modulo-p cohomology n-sphere. Then, its cohomology is, with
ranks of 1, concentrated in degrees 0 and n, so

P
q bq D 2. Thus, our dimension

counting from the long exact sequences tells us that
P
q cq � 2, i.e.,

P
q cq 2 f0; 1; 2g.

However, as X is a cohomology sphere, we know that �.X/ 2 f0; 2g, so the formula
of Corollary 3.9 means

P
q cq can also only be 0 or 2. If we have the former, then

XG is empty, and if we have the latter, then this means XG has the cohomology of
an m-sphere for some m � n. That m being less than n is clear from the dimension
counting inequalities. Finally, observe that when p is odd, the Euler characteristics
of n-spheres and m-spheres agree modulo-p exactly when they are equal, so the
quantity n �mmust be even. Then, if n is even, this forces �.XG/ D 2modulo-p, so
the fixed point space XG cannot be empty. This completes the proof. □
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