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1. Motivations

Many mathematical objects, such as functions, sections of bundles, or solutions to differential equa-

tions, are naturally defined on small, local regions of a space. A natural question to ask is whether

having a locally defined object everywhere gives rise to a global object; can we ’glue’ together local

objects to provide a global object? Sheaf cohomology provides a powerful framework to quantify the

obstructions to this gluing process, revealing whether local data can be assembled into a global whole

and, if not, what prevents it.

For example, consider the topological space X = S1
, the circle, with two proper open sets U1 and

U2, each covering half the circle plus some overlap (i.e., U1 ∪U2 = S1
, and U1 ∩U2 consists of two

arcs). Suppose we define a continuous function f1 : U1 → R and f2 : U2 → R. To obtain a global

continuous function f : S1→R, we need f1 and f2 to agree on the overlap U1∩U2. If they do not, there

is an obstruction to gluing them into a global function. The question now arise: what compatibility

conditions need to be satisfied on triple, quadruple, and higher order intersections? Cohomology

provides a tool in handling more complicated layers of consistency.
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2. Abelian Categories

To study sheaf cohomology, we need a categorical framework to do homological algebra–in partic-

ular, we want categorical notions of kernels and cokernels that behave in the desired way. This will

lead us to the setting of abelian categories.

Definition 2.1 (Additive Category). A category C is called additive if

(i) for all objects X ,Y ∈ obC , the hom-set HomC (X ,Y ) is an abelian group.

(ii) composition of morphisms is bilinear, i.e.,

g◦ ( f1 + f2) = g◦ f1 +g◦ f2, ( f1 + f2)◦h = f1 ◦h+ f2 ◦h,

whenever the compositions are defined.

(iii) for every pair of objects X ,Y ∈ obC , their coproduct X⊕Y exists.

Proposition 2.2. If C is additive,
(i) finite products exist and agree with coproducts (up to isomorphism).
(ii) there is a unique (up to isomorphism) object 0 ∈ obC such that HomC (0,x) and HomC (x,0) are one

element sets for all x ∈ obC .

Definition 2.3 (Monomorphism, Epimorphism). Let f : X → Y be a morphism in C .

(i) f is a monomorphism if for every Z ∈ obC and g1,g2 : Z ⇒ X , f ◦g1 = f ◦g2 implies g1 = g2.

(ii) f is an epimorphism if for every Z ∈ obC and g1,g2 : Y ⇒ Z, g1 ◦ f = g2 ◦ f implies g1 = g2.

Remark 2.4. Looking at monomorphisms and epimorphisms, we should think of them as “injective”

morphisms and “surjective” morphisms, respectively. It is the case that every isomorphism is both

a monomorphism and an epimorphism, but the converse is not true generally. We will focus on the

case of abelian categories which, among other benefits, do not have this shortcoming.

Definition 2.5 (Kernel, Cokernel, Image). Let f : X → Y be a morphism in an additive category C .

(i) The kernel of f is the limit of the following diagram:

X Y← →
0

← →f

(ii) The cokernel of f is the colimit of the same diagram.

(iii) The image of f , denoted im f , is the kernel of the cokernel map p : B→ coker( f ).

Definition 2.6 (Abelian Category). An additive category C is called abelian if:

(i) every morphism has a kernel and a cokernel.

(ii) for f : X → Y , the natural map coker((ker(( f ))→ ker((coker(( f )) is an isomorphism.

Theorem 2.7 (Properties of Abelian Categories). Let f : X → Y be a morphism in an abelian category C .

(i) f can be decomposed into a pair X
p−→ im( f ) i−→Y where p is an epimorphism and i a monomorphism.

(ii) f is a monomorphism if and only if ker( f ) = 0 if and only if im( f ) = Y.
(iii) f is an epimorphism if and only if coker( f ) = 0 if and only if im( f ) = X .
(iv) f is an isomorphism if and only if it is a monomorphism and an epimorphism.

Example 2.8. The category of abelian groups Ab= ZMod is an example of an abelian category. More

generally RMod is an abelian category for any ring R. By the next theorem we will see that many

abelian categories act like the category of R-modules. It is, in some sense, the ‘model’ for how we

want abelian categories to act.
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Theorem 2.9 (Freyd-Mitchell Embedding). If C is an abelian category that is small, that is the objects and
hom-sets form sets, then there is a fully faithfull and exact functor F : C → RMod for some ring R.

Theorem 2.10. Exact functors preserve kernels and cokernels.

3. Presheaves

Presheaves are the natural way in which to define "local data" on parts of a topological space.

Additionally given "global data", presheaves will respect the restriction of that data to a subset.

Sheaves in turn we be a special type of presheaf in which certain circumstances allow "local data" to

be glued back together to "global data".

Definition 3.1 (Opposite Category). Let C be a category. The opposite category C op
is defined as

follows:

(i) The objects of C op
are the same as the objects of C .

(ii) For any two objects X ,Y , the set of morphisms from X to Y in C op
is defined by

HomC op(X ,Y ) := HomC (Y,X).

(iii) The composition of morphisms in C op
is given by

f op ◦gop := (g◦ f )op,

where f op : Y → Z and gop : X → Y are morphisms in C op
, corresponding to f : Z → Y and

g : Y → X in C .

Definition 3.2 (Poset Category). Every poset (P,≤) can be regarded as a category P , often called a

poset category, where

(i) objects in P are the elements of P.

(ii) there exists a unique morphism in HomP(p,q) if p≤ q.

Definition 3.3 (Topological Space). A topological space is a pair (X ,T ), where X is a set and T ⊆
P(X) is a subfamily of the power set of X consisting of open sets satisfying:

(i) ∅,X ∈T .

(ii) If Xi ∈T for all i ∈ I a set, then (
⋃

i∈I Xi) ∈T .

(iii) If Xi ∈T for i ∈ I a finite set, then (
⋂

i∈I Xi) ∈T .

Example 3.4. Let X = R. A set U ⊆ X is open in the standard topology if for all p ∈U there is an open

interval I such that p ∈ I ⊆U .

Remark 3.5 (Topology as a Poset and Poset Category). Given a topological space (X ,T ), the set of

open subsets T forms a partially ordered set (poset) under inclusion: for U,V ∈ T , we write U ≤V
if U ⊆V . This relation is reflexive, antisymmetric, and transitive, making (T ,⊆) a poset. In turn, we

can define the poset category OpenX .

Definition 3.6 (Presheaf). Let X be a topological space. A presheaf of sets F on X consists of:

(i) A set, F (U), for each open set U ⊆ X .

(ii) A restriction map,

ρU,V : F (U)→F (V ), s 7→ s|V ,
for each inclusion V ⊆U , such that the following properties hold:

(a) (Identity) For every open set U , the restriction map ρU,U is the identity.
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(b) (Composition) For every chain of inclusions W ⊆V ⊆U , we have:

F (U) F (V )

F (W )

← →
ρU,V

←

→ρU,W
←→

ρV,W

Remark 3.7. In categorical terms, a presheaf of sets is a functor

F : Openop
X → Set.

In this way, one can define a presheaf with values in a category C to be a functor

F : Openop
X → C .

Example 3.8. Let X = R, and define, for all U ∈ OpenR, F (U) := Map(U,R), the set of real-valued

continuous functions on U . For V ⊆U , take the restriction map given by function restriction, i.e. f |V
is the function sending v 7→ f (v) for v ∈ V ⊆U . This choice defines a presheaf of abelian groups (or

rings) on R. Diagrammatically, the presheaf F does the following on the inclusion ι : V ↪→U :

Open

op

R Ab

U 7−−−→ Map(U,R)

7−−−→

V 7−−−→ Map(V,R)

← →F

←

→

ιop

←

→

ι∗

Here, ι∗ : Map(U,R)→Map(V,R) denotes the pre-composition f 7→ f ◦ ι = f |V .

Example 3.9 (Constant Presheaf). Let X be a topological space and A a set (or an abelian group). The

constant presheaf on X with values in A, denoted Fconst, is defined as:

• For every open set U ⊆ X , set

Fconst(U) = A

• For every inclusion of open sets V ⊆U , define the restriction map

ρU,V : Fconst(U)→Fconst(V )

to be the identity map on A, that is,

ρU,V (a) = a, for all a ∈ A

This presheaf does not generally satisfy the sheaf gluing condition, as discussed in the next section,

and thus is not a sheaf unless the topological space X is very simple (e.g., discrete).
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4. The Category of Sheaves

To do sheaf cohomology we will want to define not only (pre)sheaves but also maps between them.

One should hope that (pre)sheaves will live in some abelian category and we will see that this is often

the case.

Definition 4.1 (Vertical Composite). Let F,G,H : C → D be functors with natural transformations

α : F ⇒ G and β : G⇒ H. There is a natural composition β ◦α : F ⇒ H, called the vertical composite,
defined objectwise (β ◦α)X = βX ◦αX for all X ∈ obC (Fig. 1).

C D C D

⇐

⇒

α ⇐

⇒
β◦α

← →

F

← →G

← →

H

⇐

⇒

β

←→

← →
F

← →

H

Figure 1. Vertical composition of natural transformations

Exercise 4.2. The vertical composite is, in fact, a natural transformation.

Definition 4.3 (Functor Category). Let C ,D be an categories. Then, define the functor category

Fun(C ,D)≡ [C ,D ] to be the category which has functors F : C →D as objects and natural transfor-

mations α : F⇒G as morphisms between F,G : C ⇒D . Composition is given by vertical composition.

Theorem 4.4. If D is an abelian category, then so is [C ,D ]

Example 4.5 (Presheaf Category). Let X be a topological space, C =Open

op

X and D =Ab. Then, the cat-

egory Psh(X) of abelian group-valued presheaves on X is the functor category [C ,D ] = [Open

op

X ,Ab].
Observe that since Ab= ZMod is an abelian category, so is the functor category Psh(X).

Definition 4.6 (Sheaf). A sheaf is a presheaf, F , which additionally satisfies the so-called sheaf

condition
1

:

(i) For every open cover {Ui}i∈I of an open setU ⊆X , if there exists a family { fi}i∈I with fi ∈F (Ui)
such that fi|Ui∩U j = f j|Ui∩U j for all i, j ∈ I, then there is a unique f ∈F (U) such that f |Ui = fi
for all i ∈ I.

(ii) F (∅) is terminal.

Example 4.7. The prior example of the presheaf on X = R defined by F (U) = Map(U,R) is a sheaf.

However, if we wanted to send U to the bounded continuous functions B(U,R), we would have a

presheaf, but not a sheaf. In particular, the set of open intervals {(n,n+ 2)}n∈Z cover R and the

function f (x) = x is bounded on each of these intervals. However, the function f (x) = x fails to be

bounded on R.

Example 4.8. Let X be any topological space and p ∈ X a point. Let S be any set. Then

ι∗,pS(U) =

{
S if p ∈U
{∗} if p /∈U,

with restriction maps idS and s 7→ ∗, defines a sheaf on X with values in Set.

1
There are many (equivalent) ways to define the sheaf condition–we give one. See [Vak24] for others.
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Definition 4.9 (Full Subcategory). We say a category C is a full subcategory of a category D if

obC ⊆ obD , and for all x,y ∈ obC , we have HomC (x,y) = HomD (x,y).

Example 4.10 (Category of Sheaves). We define the category of sheaves on X (with values in Ab),

denoted Sh(X), to be the full subcategory of Psh(X) restricted to objects which are sheaves.

Remark 4.11. Just as for presheaves, the category of sheaves on X with values in Ab is an abelian

category.

5. Sheaf Cohomology

Seeing as (pre)sheaves in abelian groups form an abelian category, we can define the cohomology

of a sheaf. As is done in group cohomology, the cohomology is defined using derived functors.

Definition 5.1 (Injective Object). An object E in an abelian categoryA is injective if, for every monomor-

phism g : A→ B and every f : A→ E , there exists h : B→ E such that f = hg.

Definition 5.2 (Injective Resolution). An injective resolution of A∈ obC , where C is an abelian category,

is an exact sequence

E := 0−→ A
µ−−→ E0 d0−−→ E1 d1−−→ E2→ . . .

in which each En
is injective. If E is an injective resolution of A, then its deleted injective resolution is

the complex

EA := 0−→ E0 d0−−→ E1 d1−−→ E2→ . . .

Theorem 5.3. The category of sheaves on abelian groups has enough injectives, i.e. for every object it is possible
to construct an injective resolution.2

Definition 5.4 (Additive Functor). If C and D are additive categories, a functor T : C →D (of either

variance) is additive if, for all A,B and all f ,g ∈ HomC (A,B), we have

T ( f +g) = T f +T g;

that is, the function HomC (A,B)→ HomD (TA,T B), given by f 7→ T f , is a homomorphism of abelian

groups.

Definition 5.5 (Right Derived Functor). A right derived functor RnT , where T : A → C is an additive

covariant functor between abelian categories. Choose, once for all, an injective resolution

E := 0−→ B
µ−−→ E0 d0−−→ E1 d1−−→ E2→ . . .

of every object B, form the complex T EB
, where EB

is the deleted injective resolution, and take

homology:

(RnT )B = Hn(T EB) =
kerT dn

imT dn−1 .

Definition 5.6 (Global Sections Functor). Let X be a topological space, and let Sh(X) be the category

of sheaves of abelian groups on X . The global sections functor Γ : Sh(X)→ Ab is defined by

Γ(F ) = F (X),

where F (X) is the group of sections of F over the entire space X . For a morphism ϕ : F → G of

sheaves, Γ(ϕ) = ϕX : F (X)→ G (X).

2
See [Rot09] Proposition 5.97 for a proof.
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Definition 5.7 (Sheaf Cohomology). If X is a topological space, then sheaf cohomology is defined, for

every sheaf F over X, by

Hq(F ) = Rq
Γ(F ).

In short, take an injective resolution E of F , delete F to obtain EF
, apply Γ, and take homology:

Hq(F ) = Hq(ΓEF ).

Remark 5.8. In practice, sheaf cohomology can be computed using finer resolutions, like Čech coho-

mology, which is more concrete for explicit calculations. We explore this in the examples below.

6. Examples

To better understand sheaf cohomology, we compute it explicitly for a simple case using Čech

cohomology, which approximates the derived functor definition with combinatorial tools. We begin

by briefly investigating conditions to use Čech cohomology, and then consider a few easy examples.

Definition 6.1 (Locally Finite). A family of subsets {Aα} of a topological space X is called locally finite
if for every point x ∈ X , there exists an open neighborhood U of x such that U intersects only finitely

many of the Aα ’s.

Definition 6.2 (Paracompact). A topological space X is called paracompact if every open cover {Uα} of

X has an open locally finite refinement {Vβ} such that for each β , there exists α with Vβ ⊆Uα .

Definition 6.3 (Hausdorff). A topological space X is called Hausdorff (or a T2 space) if for any two

distinct points x,y ∈ X , there exist disjoint open sets U and V such that x ∈U and y ∈V .

Remark 6.4. Some commonly seen examples of paracompact Hausdorff spaces are: manifolds, metric

spaces, CW complexes.

Theorem 6.5. If X is a paracompact Hausdorff space and F is a sheaf of X , then Ȟ i(X ,F )≃ H i(X ,F ).3

Definition 6.6 (Čech Cohomology, Informal). For a presheaf F ∈ Sh(X), an open cover U = {Ui}i∈I of

X , and q≥ 0, the Čech cochain group Čq(U ,F ) assigns to each set of q+1 open sets in U with nontrivial

intersection a section over Ui0 ∩·· ·∩Uiq . The differential d : Čq→ Čq+1
is defined by alternating sums

of restrictions. The Čech cohomology is

Ȟq(U ,F ) = Hq(Č•(U ,F )).

Definition 6.7 (Čech Cohomology, Explicit). Let X be a topological space, U = {Ui} an open cover of

X , and F a presheaf of abelian groups on X . The Čech cochain complex Č•(U ,F ) is defined by:

Čq(U ,F ) := ∏
i0<···<iq

F (Ui0 ∩·· ·∩Uiq)

The coboundary map δ q : Čq→ Čq+1
is given by:

(δα)i0···iq+1 =
q+1

∑
j=0

(−1) j
αi0···î j ···iq+1

∣∣∣
Ui0∩···∩Uiq+1

The Čech cohomology of U with coefficients in F is:

Ȟq(U ,F ) := Hq (Č•(U ,F )
)

3
A detailed proof can be found in Theorem 5.10.1 from Godement’s Topologie algébrique et théorie des faisceaux.
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Remark 6.8. There exists connection between Čech cohomology and singular cohomology:

• Singular cohomology Hn
sing

(X ,A) is defined by using the cochains on all continuous maps from

standard simplices into X .

• Čech cohomology Ȟn(X ,A) is defined using open covers and examining the intersections of open

sets and assembling data over them.

• If X is a nice space–specifically if it is homotopy equivalent to a CW complex–then

Ȟn(X ,A)≃ Hn
sing

(X ,A).

Definition 6.9 (Constant Sheaf). For a locally connected space X , we define the constant sheaf with

values in S as, for each open set U ⊆ X

SX (U) := ∏
CC(U)

S.

Where CC(U) denotes the set of connected components of U . These can be thought of as functions

taking a constant value in S on each connected component of U . The restriction maps thus correspond

to function restriction.

Remark 6.10. The constant sheaf is a more general construction, in particular it is the image of the

constant presheaf under a specific adjoint functor Psh(X)→ Sh(X).

Example 6.11. Let X = S1
, and let ZS1 be the constant sheaf. Choose a cover U = {U1,U2}, where U1

and U2 are open arcs covering S1
, with U1∩U2 =V1⊔V2, two disjoint open intervals. Compute:

• Č0(U ,ZS1) = ZS1(U1)×ZS1(U2) = Z×Z.

• Č1(U ,ZS1) = ZS1(V1)×ZS1(V2) = Z×Z.

• Differential d : Č0→ Č1
, d(n1,n2) = (n2−n1,n2−n1).

• Compute the cohomology:

– Ȟ0 = kerd = {(n,n) : n ∈ Z} ≃ Z, the global sections.

– Ȟ1 = Č1/ imd = (Z×Z)/{(m,m) : m ∈ Z} ≃ Z.

Thus, H0(S1,ZS1)≃ Z, H1(S1,ZS1)≃ Z, reflecting the topology of S1
.

Example 6.12. Consider X = R with the constant sheaf ZR.

Choose an open cover U = {U1,U2}where U1 = (−∞,1) and U2 = (0,∞), with U1∩U2 = (0,1), then:

• Č0(U ,ZR) = ZR(U1)×ZR(U2) = Z×Z.

• Č1(U ,ZR) = ZR(U1∩U2) = Z.

• Differential d : Č0→ Č1
, d(n1,n2) = n2−n1.

• Compute the cohomology:

– Ȟ0(U ,ZR) = kerd = {(n,n) ∈ Z2}= Z.

– Ȟ1(U ,ZR) = Z/ imd = Z/{n2−n1}= Z/Z= 0.

Thus, Ȟ0(R,ZR) ≃ Z and Ȟ1(R,ZR) ≃ 0. Note that the higher cohomology vanishes due to R being

contractible.

7. Applications

There are useful applications of sheaf cohomology in various areas of mathematics. One such area

is complex analysis, where it can be used to construct global functions from local data. An example

of this is known as the first cousin problem. For this problem, the type of topological space we will

be considering sheaves on is a complex manifold.
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Definition 7.1 (Complex Manifold). A complex manifold is a topological manifold that is locally home-

omorphic to Cn
with a holomorphic atlas of charts. That is, for any charts (Ui,ϕ) and (Vi,ψ) such that

Ui∩Vi ̸=∅,

ϕ ◦ψ
−1

is holomorphic.

On a complex manifold, a function is considered holomorphic or meromorphic if it is with respect

to all charts. Let O and M denote the sheaves of holomorphic functions and meromorphic functions

on a complex manifold, respectively.

Example 7.2 (The First Cousin Problem). Let X be a complex manifold and let U be a cover of X by

open sets Ui. For all Ui, let hi ∈M (Ui) such that

hi−h j ∈ O(Ui∩U j)

for all j. The problem then, is to find an h ∈M (X) such that

h|Ui −hi ∈ O(Ui)

for all i. Now, consider the short exact sequence,

0−→ O −→M
ϕ−−→M /O −→ 0

From which we can derive the long exact sequence,

0−→ H0(X ,O)−→ H0(X ,M )
ϕ∗−−→ H0(X ,M /O)

δ−→ H1(X ,O)−→ ·· ·
We can then define a global section s on M /O from the hi. This means s ∈H0(X ,M /O) and a specific

first cousin problem has a solution if there is an h ∈ H0(X ,M ) such that

ϕ∗(h) = s

More generally, a first cousin problem is solvable for all open covers U and compatible sets of

meromorphic functions if and only if the map ϕ∗ is surjective, and this is the case if H1(X ,O) = 0.

It is always the case that H1(X ,O) = 0–and thus, that the first cousin problem is solvable–for a

class of complex manifolds known as Stein manifolds. This fact is the result of a theorem in complex

geometry known as Cartan’s Theorem B.
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