PROBLEM SET 05: CYCLIC QUANTUM FOURIER TRANSFORM AND HSP

Exercise 0.1 (Recalling Defintions). Define the

- (i) quantum Fourier transform F_N on a register R with $n \ge \log N$ qubits.
- (ii) hidden subgroup problem for the cyclic group \mathbb{Z}/n . In particular, why does finding |H| give us a solution to the cyclic HSP?
- (iii) Euclidean algorithm to compute gcd(n, m).¹

Exercise 0.2. Show that

$$\sum_{s=0}^{|H|-1} e^{\frac{2\pi i s h k}{N}} = \begin{cases} 0, & H \nmid k \\ |H|, & |H| \mid k, \end{cases}$$

where all characters mean what they did in lecture.

Exercise 0.3. Prove that the quantum Fourier transform F_N is, in fact, unitary.

Exercise 0.4. Read the *introduction* (§1) of Kuperberg's paper on the dihedral hidden subgroup problem.² Write up a brief summary of the content of this section.

University of Illinois Urbana-Champaign, Illinois, 61801 *Email address*: dheeran2@illinois.edu

Date: July 24, 2025.

 $^{^{1}}$ We did not cover this in lecture, but it is how we computed |H| for the cyclic HSP algorithm. Look up the definition of the algorithm if you have not seen it before.

²See the course page for a link.