PROBLEM SET 04: STATES AND QUANTUM CIRCUITS

Exercise 0.1 (Recalling Defintions). Define a

- (i) unitary operator U on a Hilbert space \mathcal{H} .
- (ii) pure state.
- (iii) quantum circuit U.
- (iv) function $f: G \to S$ which separates H-cosets.

Exercise 0.2. Let A and B be single-qubit quantum systems. Let AB denote their joint system, which thus has state space $\mathcal{H}^{AB} \simeq \mathbb{C}^2 \otimes \mathbb{C}^2$. Define the 00th Bell basis vector $|\Phi_{00}\rangle \in \mathcal{H}^{AB}$ by

$$|\Phi_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$$

- (i) Prove that $\Phi = |\Phi_{00}\rangle\langle\Phi_{00}|$ is a (pure) state. That is, show that
 - (a) $|\Phi_{00}\rangle$ is a unit vector.
 - (b) $\operatorname{tr} \Phi = 1$.
 - (c) for all $|\psi\rangle \in \mathcal{H}^{AB}$, we have $\langle \psi | \Phi | \psi \rangle \geq 0$.
- (ii) Show that $|\Phi_{00}\rangle\langle\Phi_{00}|$ cannot be written in the form $|\varphi_1\rangle\otimes|\varphi_2\rangle$, where $|\varphi_1\rangle\in\mathcal{H}^A\simeq\mathbb{C}^2$ and $|\varphi_2\rangle\in\mathcal{H}^B\simeq\mathbb{C}^2$. This phenomenon is what we call *entanglement*.

Exercise 0.3. Let Q be an arbitrary quantum system; let \mathcal{H}^Q denote its state space. Prove that closed evolution of a density operator $\rho \in \mathcal{D}(\mathcal{H})^Q$ is reversible.

Exercise 0.4. Read the *abstract* of Kuperberg's paper on the dihedral hidden subgroup problem. Write up a brief summary of the content of this section.

University of Illinois Urbana-Champaign, Illinois, 61801 Email address: dheeran2@illinois.edu

Date: July 24, 2025.

¹See the course page for a link.