PROBLEM SET 01: GROUP BASICS

Exercise 0.1 (Recalling Defintions). Define a

- (i) group (G, \cdot) .
- (ii) finitely generated abelian group (G, \cdot) .
- (iii) normal subgroup $H \triangleleft (G, \cdot)$.
- (iv) group homomorphism $\varphi: (G_1, \cdot) \to (G_2, *)$.

Exercise 0.2 (Subgroups). Prove that

- (i) the set $n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z}, +)$.
- (ii) every subgroup H of an abelian group (G, \cdot) is normal.

Conclude that we can define a quotient group $\mathbb{Z}/n\mathbb{Z}$.

Exercise 0.3 (Direct Products). Let (G_1, \cdot) and $(G_2, *)$ be groups. The (direct) product $G_1 \times G_2$ was defined with an underlying set given by the Cartesian product

$$G_1 \times G_2 = \{(g_1, g_2) : g_1 \in G_1 \text{ and } g_2 \in G_2\}$$

and with an operation $(-) \star (-) : (G_1 \times G_2)^2 \to G_1 \times G_2$ given by

$$(g_1, g_2) \star (g'_1, g'_2) = (g_1 \cdot g'_1, g_2 * g'_2).$$

Show that $(G_1 \times G_2, \star)$ does, in fact, define a group (i.e., check the three axioms).

Now, let e_1 and e_2 be the identity elements of G_1 and G_2 , respectively. Observe that there is a surjective homomorphism $\pi_1: G_1 \times G_2 \to G_1$ which sends an element (g_1, g_2) to (g_1, e_2) . Likewise for $\pi_2: G_1 \times G_2 \to G_2$. We call these π_j the *natural projections*, writing $\pi_j: G_1 \times G_2 \twoheadrightarrow G_j$. Let (K, +) be an arbitrary group and $\varphi_1: K \to G_1$ and and $\varphi_2: K \to G_2$ be homomorphisms. Show that there is a homomorphism $\Phi: K \to G_1 \times G_2$ such that for all $k \in K$,

$$\pi_j(\Phi(k)) = \varphi_j(k), \quad j \in \{1, 2\}.$$

It is then a simple check to show that Φ is actually the *unique* such homomorphism. This property is called the *universal property of products* for groups, which we may summarize using the following (commutative) diagram:

University of Illinois Urbana-Champaign, Illinois, 61801 Email address: dheeran2@illinois.edu

Date: June 20, 2025.