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We consider two, seemingly unrelated problems. On one hand, there is the classification of
smooth manifolds, and on the other, there is homotopy theory and computing the homotopy groups
of spheres. We hope to find a correspondence of sorts, so as to transfer tools between the seemingly
disjoint topics. The correspondence comes in the form of Pontryagin-Thom construction.

classification of
smooth manifolds
up to cobordism

homotopy classes
of maps Sk ! Sn

!

!

Pontryagin-Thom

1. Smooth Manifolds

Smooth manifolds, in some sense, are where we can do analysis. Recall that ifm � 0, thenM � Rn

is a smooth m-manifold if for all points p 2M , there is a neighborhood Up �M such that
(i) p 2 Up .

(ii) Up is open inM .
(iii) there is a diffeomorphism 'p W Up

��! Rm called a chart.
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Example 1.1. We have
(a) 0-dimensional manifolds: �.
(b) 1-dimensional manifolds: R, S1.
(c) 2-dimensional manifolds: R2, S2, T 2, and generally, any †p .
(d) m-dimensional manifolds: Sm � RmC1.

Definition 1.2 (Smooth). Let M be an m-manifold and N be a k-manifold. Then, a map f WM ! N

is smooth at a point p 2M if  pf '�1p is smooth at 'p.p/, where 'pM ��! Rm is a chart at p 2M and
 p W N

��! Rk is a chart at f .p/.

Let TpM be the tangent space ofM at p.1

Exercise 1.3. Check that TpM is a R-linear space of dimension dim.M/.

Definition 1.4 (Differential). The differential at p 2M is the map

.df /p W TpM ! Tf .p/N

given by d. pf '�1p /.

Recall that a smooth map f WM ! N is a diffeomorphism if it has a smooth inverse.

1.1. Regular Values. It turns out that if we have a smooth map M ! N , then picking a so-called
regular value q of f gives us a new manifold f �1.q/.

Definition 1.5 (Regular Value). Let f W M ! N be a smooth map. Let q 2 N . We say q is a regular
value of f , writing q 2 Reg.f /, if for all p 2 f �1.q/, the differential map

TpM
.df /p
������! TqN

is a surjection.

Example 1.6.
(a) Given two manifolds,M �N is a manifold. Further, the projection � WM �N !M is smooth

and Reg.�/ DM , as we would hope.
(b) Map †1 to the line via h, forming a 1-dimensional annulus A with boundary @.A/ D

f˙1;˙1=2g. Then, Reg.h/ D @.A/.

Let f WM ! N be smooth.

Theorem 1.7 (Sard’s, Weak). Then, Reg.f / is dense in N . Thus, if N is nonempty, then so is Reg.f /.

Theorem 1.8. If q is a regular value of f , then f �1.q/ �M is a manifold of dimension dim.M/�dim.N /.

Corollary 1.9. Let f WM ! N be smooth with dim.M/ < dim.N /. Then, f is not a surjection.2

1For example, we could take it to be the image of the differential of the chart d'p at p 2M .
2That is, there are no space-filling smooth curves.
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1.2. Framed Submanifold. Suppose p is a regular value of f WM ! N . Then, there is a submanifold
f �1.p/ � m. In particular, it is actually a submanifold which admits a framing.
Definition 1.10 (Orthogonal Complement). Let K � M ,! Rn be a submanifold. Given a point
p 2 K, we set

.TpK/
?
D fv 2 TpM W v ? TpKg;

using the inherited inner product in Rn.
Definition 1.11 (Framing). A framing on K � M , as above, is a function ˇ from K to the normal
bundle which assigns to each point p 2 K a basis of .TpK/?. Further, ˇ depends continuously on the
choice of point p.
Definition 1.12 (Framed Submanifold). A framed submanifold of M is a pair .K; ˇ/, where K � M
and ˇ is a framing.
Exercise 1.13. Heuristically, explain why S1 � I can be framed, whereas the Möbius stripM cannot.
Theorem 1.14. Let f WM ! N be smooth.

(i) If q 2 Reg.f /, then f �1.q/ can be framed.
(ii) A submanifold K � N can be framed if and only if there is an open neighborhood U � N of K and

U Š K � Rdim.N/�dim.K/:

We call U , as above, a tubular neighborhood.
Exercise 1.15. Show that S1 _ S1 is not a smooth manifold.
Exercise 1.16. Show S2 is a manifold by constructing charts.
Exercise 1.17. Show that any polynomial f 2 CŒ´� is a smooth map S2 ! S2, where we identify S2

with C [ f1g and define f .1/ D1.
Exercise 1.18. Let f WM ! N be a smooth map. LetM be a compact manifold. Show that if f is not
constant, then f has no less than two critical values.
Exercise 1.19. A knot is an embedded submanifold S1 ,! R3. Show that any knot can be framed.
What does a tubular neighborhood of a knot look like.

2. Homotopy Groups

Recall that if .X; x0/; .Y; y0/ 2 Top�, then a pointed homotopy h between a pair of pointed maps
f; g W .X; x0/ � .Y; y0/ is a homotopy h W f ' g so that h.x0; t / D y0 for all t 2 I . We will write
ŒX; Y �� for the set of pointed maps X ! Y modulo pointed homotopies.
Definition 2.1 (nth Homotopy Group). Let .X; x0/ 2 Top�. Let Sn be pointed at s0 D e1 2 RnC1.
Then, the nth homotopy group of .X; x0/ is

�nX D �n.X; x0/ D ŒS
n; X��:

Of course, �1X is just the usual fundamental group of X .
Remark 2.2. We must define the group operation on �nX . Think of each map f W Sn ! X as a map

f W I n ! X

such that @Œ0; 1�n 7! x0. If we have maps f; g W I n � X , then define f � g to be the concatenation
map, which makes �nX into a group.3

3The proof is similar to the proof for �1X .
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2.1. Simple Results.

Exercise 2.3. The group �nX is abelian for n � 2.

Example 2.4. Using the usual proof via covering spaces, �1S1 ' Z.

Example 2.5. We have that �nSn ' Z using the map Œf W Sn ! Sn� 7! deg.f /. Here, if f is a smooth
map and p 2 Sn is a regular value, then f �1.p/ is a finite set, and we say deg.f / is the cardinality
counted with orientation. Of course, f need not be smooth, but every map is homotopic to a smooth
one. Alternatively, if ! is a volume form on Sn, then

deg.f / D
Z

Sn
f �!:

Example 2.6. Let i < n. Then, of course, �iSn is trivial.

Proof. We know f W Si ! Sn is homotopic to a smooth map g. Then, g is not surjective, per the
corollary of Sard’s theorem. We can then factor

S1 Sn

Sn n � Rn

 

!
g

 

!

 

!
'

 

!

Sicne Rn ' �, we have that g ' f ' cx0 . □

Example 2.7. What about �iSn for i > n? Let us focus on �iS1.

Proof. Use the universal covering map exp W R! S1. Then, we have

R

Si S1

 

!

exp

 

!
f

Applying �i .�/ W Top� ! Grp, we get

0

Z Z

 

!

exp�

 

!
f�
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Certainly,f�.�iSi / D 0, so by monodromy, there is a (commuting) lift meaningf is nullhomotopic.4

R

Si S1

 

!

exp

 

!
9Š

 

!
f

□

For n > 1, things become rather difficult to calculate, and in general, is an open problem. The
earliest example is �3S2, due to Hopf. The proof is given by using the Hopf fibration � W S3 ! S2.

We can realize the Hopf fibration in the following way.

C� C2 n f0g CP1

S1 S3 S2

 

!
fibre  �

quotient

 
-

!

 

!

 
-

!

 

!
�

(

(
Proposition 2.8 (Hopf). We have �3S2 ' Z, generated by �.

2.2. Stabilization. Let X be a space. The suspension SX of X is the quotient of the cylinder X � I
which identifies S � 0with a point and S � 1with another. For example, S.Sn/ ' SnC1. Given a map
f W SkCn ! Sn, then we get a new map Sf W SkCnC1 ! SnC1.
Theorem 2.9 (Freudenthal Suspension). The function

S W �kCnSk ! �kCnC1S
nC1

is a group homomorphism that is
(i) surjective if k D n � 1.
(ii) bĳective if k � n � 2.

As a consequence, the sequence

�kS0
S
��! �kC1X

S
��! �kC2X

S
��! �kC3S

3 S
��! � � �

stabilizes at SkC2. Further, the stable value is called the kth stable homotopy group of spheres. We will
denote this by �st

k
S0.

Exercise 2.10. Show that the degree is multiplicative.

Exercise 2.11. We saw that any degree n polynomial p 2 CŒ´� defines a self-map of S2. Show that
this map has degree n.

Exercise 2.12. Show that the exponential map exp W R ! S1, or any covering space, for that matter,
gives an isomorphism on homotopy groups �n whenever n � 2.

4Again, we use that R ' �.
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Exercise 2.13. Show that any continuous function between smooth manifolds is homotopic to a smooth
one.

3. Cobordisms

LetM be a manifold. An orientation onM is a function � which continuously assigns to each point
p 2M an orientation on TpM , as a vector space. Then, we call .M; �/ an orientable manifold.

Definition 3.1 (Manifold with Boundary). An m-manifold with boundary M � Rn locally looks like
Rm or Hm, the upper half-space.

We define @M , for a manifold with boundary, to be the points p 2M that look like Hm.

Remark 3.2. The boundary @M of a manifold with boundary is a submanifold of dimension dim.M/�1.
Further, it can be framed.

Example 3.3. Some examples include Dn andM � I .

WriteM n for a manifoldM of dimension n.

Definition 3.4 (Cobordant). Let M n and Nm be compact with empty boundary. We say that M
is cobordant to N if there exists a manifold with boundary W nC1 which is compact and so that
@W DM qN . We write �cob for the relation of being cobordant.

Example 3.5. We have that S1 �cob S1 q S1 via the pair of pants.

Definition 3.6. We define

�k.R
n/ D

˚
k-dimensional submanifolds in Rn

	.
�cob :

Remark 3.7. The set �k.Rn/ is an abelian group. We have the operation ŒM �C ŒN � D ŒM q N�. The
identity is Œ¿�. Observe that ŒM � D Œ¿� if and only ifM is @W for some compactW . Further, observe
that

2ŒM� D ŒM �C ŒM � D ŒM qM� D Œ¿�
in�k.Rn/, via the trivial cobordism. Thus, every element of�k.Rn/ is 2-torsion.

3.1. Framed Cobordism.

Definition 3.8 (Framed Cobordism). Let .K0; ˇ0/ and .K1; ˇ1/ be framed k-submanifolds of M . We
say K0 is framed cobordant to K1 if there is a W kC1 � M � I that is compact with framing ˇ such
that

(i) @W D K0 qK1.
(ii) ˇ restricts to ˇ0 and ˇ1.

Definition 3.9. We define

�f
k.R

n/ D
˚
k-submanifolds framed in Rn

	.
�fcob :

Remark 3.10. If we instead work with oriented cobordism, then we have a group�or
k
.Rn/ D �SO

k
.Rn/.

Example 3.11. Certainly,�0.Rn/ D fŒ¿�; Œ��g ' Z=2.

Exercise 3.12. Compute�or
0 .R

n/.

Note that in�or
k
.Rn/, we get that �ŒM � D ŒM �, whereM isM with the opposite orientation.
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Theorem 3.13 (Unstable). There is a group isomorphism

�f
k.R

nCk/
PT

������! �nCkSn;

where we call PT the Pontryagin-Thom collapse map.

Proof. We will call the inverse ˆ. Think of Sn as the compactification of Rn. Let Œf � 2 �nCkSn such
that f W SnCk ! Sn is smooth, and so that f .1/ D 1 and 0 2 Sn is a regular value. Consider the
framed submanifold f �1.0/ ,! SnCk . Define5

ˆ.f / D Œf �1.0/�:

Now, let us show that ˆ is surjective. Pick out ŒM � 2 �f
k
.RnCk/. Since M has a framing, there is a

neighborhood U ofM so that U ŠM � Rn. We can project and include to get

U M � Rn Rn Sn 

!

g

 

!
Š  �p  - !

Now, we define PT.ŒM �/ as a map SnCk ! Sn by

x 7!

(
g.x/; x 2 U

1; x … U:

Check that ˆ.PT.ŒM �// D ŒM �. Checking that the map is monic is left as an exercise. □

3.2. Stable Version. We have the commutative square

�f
k
.RnCk/ �nCkSn

�f
k
.RnCkC1/ �nCkC1S

nC1

 

!E

 

!
PT
'

 

! S

 

!
PT
'

We saw that applying the suspension enough times yields an isomorphism, so we hope that the same
is true of E.

Definition 3.14 (kth Framed Cobordism Group). Let�f
k

be�f
k
.RN / for N � 0.

Theorem 3.15 (Stable). We have an isomorphism PT W �f
k
! �st

k
S0.

Exercise 3.16. Recall that a compact manifoldM is cobordant to¿ if there exists a compact manifold
with boundaryW such that @W ŠM . Show that the compactness ofW is essential here, since every
manifoldM is the boundary of someW .

Exercise 3.17. Show that the boundary@M �M of any manifold is a framed submanifold of dimension
dim.M/ � 1.

5Show that the multitude of choices made here do not change the prescription.
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Exercise 3.18. Compute the following groups of cobordisms:
(i) �0.

(ii) �fr
0 .

(iii) �1.
(iv) �or

1 .
(v) �2.

(vi) �or
2 .

4. Low Dimensional Examples

Our hope is to now study �iSn for small i � n using the Pontryagin-Thom construction. We will
start with �nSn, since we know what to expect. Well, �nSn is isomorphic to �f

0.R
n/. Each class is

represented by a fixed set of points x1; : : : ; xk 2 Rn, and finding a framing of the normal bundle of
Rn amounts to taking linear isomorphisms 'i W Rn ��! Rn for 1 � i � k. Two such tuples represent
some framed cobordism class. Since we are just taking signed sums, this means�f

0.R
n/ ' Z. Further,

PT W �nSn ! �f
0.R

n/ is precisely the degree map.
Proposition 4.1 (Hopf). Recall the result that �3S2 ' Z.

Proof. The Hopf fibration S1 ,! S3
�
�! S2 gives a piece of the long exact sequence so �3S2 ' Z, as

�3S1 �3S3 �3S2 �2S1

0 Z Z 0

(

(

 

!

 

! '

 

!
'  

!
 

! '

(

(

desired. □

By Freudenthal suspension, Sn W �3S2 ! �nC3SnC2 is surjective.
Proposition 4.2. We have �nC1Sn ' Z=2 for n � 3.

Proof. We will compute�f
1.R

nC1/. Our strategy is to produce homomorphisms

Z=2
Jn
��! �f

1.R
nC1/

!
��! Z=2;

where the composite is an isomorphism.6 Now, elements of�f
1.R

n1/ are represented by framed links�a
S1; framing

�
:

There is a framed cobordism S1 ! ¿, equipping S1 with the standard framing in R3, by using the
disk D2 � R3 with a matching framing. We can obtain interesting elements by changing the framing.
Any other framing ' of S1 in RnC1 gives

S1 � Rn
'

�����!
standard

NS1
'

�����!
'

S1 � Rn;

where NS1 is the normal bundle. Note that these isomorphisms can be distinct. For any x 2 S1, we
get a linear isomorphism 'x W Rn ��! Rn. In other words,

6If we know�f
1.R

nC1/ is cyclic, then this forces is to be Z=2
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S1 GLn.R/

SO.n/

 

!

 

!

 

!

up to homotopy

The upshot is that there is a bĳection˚
framings of S1 � RnC1

	.
'

'
����! ŒS1; SO.n/� D �1 SO.n/:

Now, �1 SO.n/ is Z for n D 2 and Z=2 for n � 3. For fixed S1 � RnC1, define !.S1/ 2 Z=2. For
general framed links, add ! of the components, so we get our desired ! for n � 3. Also, note that we
have the map

Jn W �1 SO.n/! �f
1.R

nC1/

given by .S1
˛
��! SO.n// 7! S1 � RnC1 with the framing corresponding to ˛.7 □

Exercise 4.3. Show the Hopf fibration � in �nC1Sn corresponds to the nontrivial framing in�f
1.R

nC1/.

Proposition 4.4. We have �nC2Sn ' Z=2 for n � 2, generated by �2.8

To show this, a good discussion of framed surfaces inside RnC2 would be needed, which we simply
do not have the time for.

Remark 4.5. Recall the Hopf map

S.C2/ D S3
�
��! CP1 ��! S2:

Similarly, there is a Hopf map for quaternionic projective space

S.H 2/ D S7
�
��! S4 ��! HP1;

which is not nullhomotopic. This defines an element � 2 �st
3 S0.

Proposition 4.6. We have �st
3 S0 ' Z=24, generated by �.

Sketch of Proof. The goal is, then, to describe the third framed cobordism group�f
3 D �

f
3.R

N /, where
N � 0. Well, let us look at S3 � RN . Certainly, S3 is a Lie group isomorphic to SU.2/. Any Lie group
G has a trivial tangent bundle. That is, TG ' G � Rn. In particular, TS3 is trivial, so the normal
bundle NS3 will be trivial (stably, for N � 0). Thus, S3 with this framing defines an element of
�f
3.R

N /. The claim is then that this element generates the group and is of order 24, thus completing
the proof. □

Definition 4.7 (K3 Surface). AK3 surface is a 2-dimensional complex manifold with trivial canonical
bundle and trivial odd dimensional singular cohomology.

Example 4.8. For example, x4 C y4 C ´4 C w4 D 0 in CP4.

7This is a special case of the J -homomorphism �k SO.n/! �nCkSn.
8That is, SnC2

�
�! SnC1

�
�! Sn, taking appropriate suspensions of the Hopf map.
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Lemma 4.9. Let X be aK3 surface. Then, the Euler characteristic �.X/ is 24. Thus, there exists a vector field
V on X with 24 zeros. Further, TX has the structure of S3 D SU.2/ � SO.4/, so we have operators Oi ; Oj ; Ok
acting on TX .

Now, define Y � X by adding small disks D4 around the zeros of C . The upshot is that Y has
boundary

@Y D
a
24

S3:

The vector field V is nowhere vanishing on Y , so we get four linearly independent vector fields
V; OiV; OjV; OkV on Y . Thus, T Y ' Y �R4, meaning Y is (stably) framed. What remains is to check that
the framing on the copies of S3 is the standard Lie group framing.

Remark 4.10. Considering framed cobordism classes of stable normal manifolds, equipped with a
map to a space X , forms a group �Un .X/. In fact, this is a cohomology theory with coefficients in
the homotopy groups of spheres. For further reading, see the works of Quillen, Connor-Floyd, and
coctalos by Hopkins.

Exercise 4.11. Show that every Lie group G has trivial tangent bundle. Conclude that any Lie group
can be given the structure of a stably framed manifold, and hence, under the Pontryagin-Thom
isomorphism, defines an element of the stable homotopy groups of spheres.

Exercise 4.12. The Hopf map � W S3 ! S2 defines a generator for the group �3S2 ' Z. Under the
Pontryagin-Thom isomorphism, it corresponds to an element of �fr

1 .R
3/, i.e., to a cobordism class of

framed 1-submanifolds of R3. Show that this submanifold can be taken to be the usual unknot S1 in
R3. What is the correct framing? Try working out the Pontrytagin-Thom map for this submanifold
explicitly and see the relation to the Hopf map directly.

University of Illinois Urbana-Champaign, Illinois, 61801
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