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Heuristically, a Lie group is a group paired with a smooth structure. By differentiating, we obtain
a Lie algebra, which is, in some sense, the infinitesimal analogue of a group. What about integration?
How much information about the group structure can we recover from the Lie algebra?

1. Parrl1

Recall that we write GL, (C) for the group of n x n invertible complex matrices. Well, GL,(C) €
M,,(C), which is isomorphic to C". We can equip C" with the usual topology, thus giving GL, (C)
the subspace topology.

Definition 1.1 (Matrix Lie Group). A matrix Lie group G is a subgroup of GL, (C) which is closed in
the subspace topology.

Notably, since GL, (C) is, in particular, closed, it is a matrix Lie group.

Example 1.2. The general linear group of R”, written GL, (R), embeds into GL, (C). That is, we follow
the restriction A € M, (R) < M, (C). The subgroup GL, (R) is a closed subset.

Example 1.3. The orthogonal group on R”, denoted O(n), is a matrix Lie group, restricting to M, (R),
as before, and requiring that A’ 4 = I,.

Example 1.4. The special linear group of R*, denoted SL, (R), is a matrix Lie group by restricting to
real matrices with det(A4) = 1.

Example 1.5. The special orthogonal group SO(n) is a matrix Lie group, restricting to the real,
orthogonal, and special operators.
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1.1. Matrix Exponential Map. Using the usual power series expansion of the exponential, we define
a useful tool for working with matrix Lie groups.

Definition 1.6 (Matrix Exponential). Let X € M, (C). The matrix exponential exp(X) is
-
= k!
Exercise 1.7. Check that exp(—) is well-defined and continuous.

Proposition 1.8. Let X,Y € M, (C) and C € GL,(C). Then,
(i) exp(CXC™') = Cexp(X)C™!
(ii) exp(X) € GL,(C) and exp(X) ™' = exp(—X).

(i) det(exp(X)) = exp(tr(X)).
(iv) if XY =YX, thenexp(X +Y) = exp(X)exp(Y).
(v) exp(X)™ = exp(mX).

Proof. Left as an exercise. O

Recall that .
ad -1
log(x) = 3 (-1t XD

k=1 k
converges absolutely for |x — 1| < 1.

Definition 1.9 (Matrix Logarithm). For |4 — I,|| < 1 with A € GL,(C), we have'

(o]

k
tog(4) = Y (- Al
k=1

Theorem 1.10. Let A € GL,(C) and X € M, (C), if |[A— I, <1,

exp(log(4)) = 4,
and if || X || < log2, then

log(exp(X)) = X.
Proposition 1.11. Let X,Y € M, (C). Then, we have

(exp(X/m) exp(Y /m)) — exp(X +7).
Proof. Define
Ay =exp(X/m)exp(Y/m) =1+ X/m+Y/m+ o(1/m?).
Since X/m,Y/m — 0 as m — oo, we have that 4,, — I, as m — oo. Thus, for large enough m,
|Am — In| <1,
meaning we can apply our logarithm. Now,
log(Am) = X/m +Y/m + O(1/m?).
Thus,
Am = exp(log(Am)) = exp(X/m +Y/m + O(I/mz)),

IWe mean the Hilbert-Schmidt norm, but the operator norm could work, too.
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so by (v),
Ap =exp(X +Y + 0(1/m)) ——— exp(X + 7).

1.2. Lie Algebras. We now define the so-called infinitesimal analogue of the Lie group.

Definition 1.12 (Lie algebra). A Lie algebra over R consists of a R-linear space g, along with a bilinear
map
[~ -l:axg—>g
such that [—, —] satisfies
(i) antisymmetry: forall X,Y e g, [X,Y] = —[Y, X].
(ii) the Jacobi identity: forall X,Y,Z e g,

(X, Y. Z]|+ [Y.[Z, X]]+ [Z.[X. Y]] = 0.
Example 1.13. Let @ be an associative R-algebra. Then, @ with the commutator bracket
[a,b] =ab—ba, a,beQ,
is a Lie algebra.
Exercise 1.14. Check that (&, [—, —]), as above, is a Lie algebra.

Example 1.15. Let @ = M, (C). Then, the associated Lie algebra, using the commutator bracket, is
denoted g, (C).

Definition 1.16. Let g be a Lie algebra. A Lie subalgebra is a R-linear subspace ) C g so that [h, h] C b.
Exercise 1.17. A Lie subalgebra is a Lie algebra.
Example 1.18. We define a Lie subalgebra
50, (C) = {X € gly(C) : tr(X) = 0} < gl (O).
Proof. Observe that, since the trace is cyclic,
tr[X, Y] =tr(XY) —tr(YX) =0,
so s, (C) is a bracket-invariant R-subspace. O

Example 1.19. The following are Lie subalgebras:
1) un) ={X eglh,(C) : X* = —-X}.
(i) o(n) = {X € gl,(R): X' = —X}.
(iii) su(n) = sl,(C) N u(n).
(iv) so(n) = sl,(R) N o(n).

Definition 1.20 (Adjoint Map). Let g be a Lie algebra. Then, for every X € g, define ady : g — g by
Y — [X,Y]. Then, we may define the adjoint map ad : g — End(g) by X — ady.

Remark 1.21. The Jacobi identity is equivalent to both of the following:
(i) adx[Y, Z] = [adx (Y). Z] + [Y,adx (Z)].
(i) ad[X,y](Z) = [ady, ady](Z).2

2The second bracket here is the commutator bracket in End(g).
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1.3. Lie Algebras of Lie Groups. We want to associate to each matrix Lie group a Lie algebra which
gives the directions inside GL, (C) that stay in, or are tangent to, G.

Definition 1.22 (Associated Lie Algebra). Let G € GL,(C) be a matrix Lie group. Then, its associated
Lie algebra g is
g=1{X €gly,(C): forallt € R,exp(tX) € G}.

Proposition 1.23. Let G be a matrix Lie group and g be its Lie algebra. Then, forall X,Y € gand C € G,
(i) forall A€ G, AXA ! e g.
(ii) foralls € R, sX € g.
(i) X +7Y €g.
(iv) XY —YX eg.
That is, g is a R-linear space that becomes a Lie algebra using the commutator bracket.
Proof. We have that forallt € R,
exp(tAXA™') = Aexp(tX)A~" € G,
so g is closed under G-conjugation. For all s € R,
exp(t(sX)) = exp((ts)X) € G,
so sX € g. Observe that
expt(X +7Y)) = mh_r)r}><> (exp(X/m)exp(tY/m))" € G,
and since G is closed, exp(t(X + Y)) € g, so g is closed under addition. Finally, since we have that g

is a R-linear space, observe that

d
— exp(tX)Y exp(—tX) = XY —YX,
dr =0

and the first expression isin g, so XY — YX € g by closure. O
Proposition 1.24. The Lie algebra of GL,, (C) is gl,(C) and SL,,(C) is sl,(C).
Proof. The first is trivial. Recall that A € SL,,(C) if it is invertible and det(4) = 1. Well, forall # € R,
det(exp(tX)) = exp(t tr(X)),
so applying the derivative at t = 0, we get tr(X) = 0. O
Definition 1.25 (Exponential). The exponential map of a Lie group G is
exp|g =exp:g—G.

Theorem 1.26. Let U, denote the e-ball at 0 in g, using the standard metric. There exists 0 < e < log?2 such
that the restriction of the exponential to U, — exp(Us) is a homeomorphism.

Proof. Let V, be the image exp(U;). Let D denote gt in gl,(C). Define a map
®:9g®d D — GL,(C)
by (X,Y) — exp(X) exp(Y). Note that the differential of ® at the origin is

d
—|  ®@rX,0)=X,
dr ;=0
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and likewise for Y on the second component. Thus, the differential of ® has D ¢)® = id. By the
inverse function theorem, there is an ¢ > 0 such that the restriction of ® to U, is a homeomorphism.
Then, to show exp = ®|y, g is a local homeomorphism, we simply need to show that V, is open.
Suppose V; is not open. Then, there is a sequence {4,, : m € N} converging to I/ that is not in
Ve, so log(A,;) ¢ g. For large enough m, A, lies in the image of the local homeomorphism ®, so
Am = exp(Xm)(Ym), where {X,,, : m € N} € gand {Y;, : m € N} € D. Then, exp(Y:;) € G. Observe
that Y, /|| Y| is on the unit sphere in D, which is compact. Thus, we may assume that Y, /|| Y| — Y
on the unit sphere in D. Let us try and show that Y € g.3 Since A,, — I, Y, — 0. Define k,, to be
hte floor of ¢ /|| Yo || . Then,

lkm | Ym |l =] < [I¥Ym| — 0.

Thus,
exp(tY) = lim exp(k,Y,) = lim exp(Ym)k’” e G,
m—>00 m—0o0
as G is closed. Yet, this would suggest Y € g, but g N D = 0, so we have our contradiction. O

Proposition 1.27. Let G be a connected matrix Lie group. Every element A € G may be written as

A= l_[ exp(X;),

i=1
where Xq,..., X, € g.

Definition 1.28 (Commutative Lie Algebra). A Lie algebra g is commutative if for all X,Y € g, the
bracket [X, Y] = 0.

Proposition 1.29. Let G be a matrix Lie group with Lie algebra g. Suppose G is abelian. Then, so is g. If G
is connected, then the converse also holds.

Exercise 1.30. Let g be a two-dimensional noncommutative Lie algbera. Show that there exists a basis
{x, y} for g such that [x, y] = x.

Exercise 1.31. The Heisenberg group is defined as

b

1
Heis = 0 c|eGL3(R):a,b,c eRy;.
0 1

S -

Show that this is a group. Further, check that Heis € GL3(R) is closed. Then, show that

1 a b
heis=4{|10 0 c¢|eGL3(R):a,b,ceR
0 0 O

is the Lie algebra of heis. Finally, show that the exponential map exp : heis — Heis is epic. This group
is called the Heisenberg group because the Lie bracket on its Lie algebra is [X, Y] = Z, for a suitable
basis, which is reminiscent of the commutation relation between position and momentum.

Exercise 1.32. Show that the Lie algebra of each usual matrix Lie group is the correspondingly named
Lie algebra defined in this section.

3That is, we want to show that for all ¢ € R, the exponential map exp(tY) € G.
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2. Part Il

We now hope to answer the question of whether we can produce a (matrix) Lie group from a Lie
algebra. We begin our discussion with the Baker-Campbell-Hausdorff (BcH) formula.

2.1. Baker-Campbell-Hausdorff. Our goalis to write the product exp(X) exp(Y') of two exponentials
as exp(Z ).* Recall that there exists U, C g such that exp : Ug — Vg is a local homeomorphism, so for
small X, Y, we may write

= log(exp(X) exp(Y)).
Remark 2.1. Let B1(1) € C be the open ball of radius 1. Define

1 m

The theorem we hope to prove is as follows.
Theorem 2.2 (scH, Integral Form). Thereexists e > Osuchthatforall X, Y € gl,(C)sothat | X||,||Y | <&,
we have .
log(exp(X) exp(Y)) =X+ / g(exp(ady) exp(ady)) dr.
0

Observe that we have
n

l—e_z_C><J &
z _n;,( D (n+ 1

so we can define

I —exp( A)
Z( (n + D

Lemma 2.3. Let J C R bean intervaland X : J — M,,(C) be smooth. Then,

i _ In—exp(—adx(,)) dx
L exp(x()) = exp(X(z))( i (E))

Proof. Left as an exercise. U
Lemma 2.4. Let A € GL,(C) and define Ad, : gl,(C) — gly(C) by X +— AXA™. Then,

Adexp(x) = exp(adx).
Proof. Define A(f) = Adep(rx)- Likewise, define B(r) = exp(f ady). Then,

AO) = TEPUX)Y exp(-1X))
=exp(tX)XY exp(—tX) —exp(tX)YX exp(—tX)
=exp(tX)[X, Y]exp(—tX)
= A(t)adx (Y).
Then, A(0) = Ad;, = I,,. Further,
B'(1)(Y) = B(t)adx (Y).

4Of course, in general, this is not possible.
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and B(0) = exp(0) = I,,. Thus, both satisfy the same opE, meaning A(t) = B(¢) for all# € R. Thus,
Adepx) = A(1) = B(1) = exp(adx).

O
Proof of BcH. Let Z(1) = log(exp(X) exp(1Y)). Then, by the first lemma,
d I—n —exp(adz(,)))(dz)
exp(—Z(t))—exp(Z(t)) = .
(-2 5 ez = (20 dt
Yet,
d
exp(—Z(t))aexp(Z(t)) =exp(—tY)exp(—X)exp(X)exp(tY)Y =7,
0]
(1,, —exp(—adz)) ) (dZ) _y
adz(,) dt '
Then,
I, — exp(—A)) N nATT
Dl "2 )h= —1 .
(== - i
Now, for A = 0, this becomes —/ /2 # 0. By the inverse function theorem, we can invert
I, — exp(— adZ(t))
adz(,)
for small Z(t). Write
dz Iy — —ad
az _ ( exp(—adz()) (Y)‘)
dr adz()
Now,
Adexp(Z(t)) = Adexp(X) exp(ty) = Adexp(X) Adexp(lY)a
so by the second lemma,
exp(adz(t)) = exp(ady) exp(t ady).
We can thus use the logarithm to get
dz I, — (exp(ady) exp(r ady)) ™! )
= ( o (expladn) oxp(radyy) ) ) = SR explrady)(Y)
By the fundamental theorem of calculus,
1 dz 1
Z(1) = Z(0) +/ T dt = X +/ g(exp(adx) exp(t ady))(Y) dt,
0 0
as desired. O

Remark 2.5 (BcH, Series Form). We have that g(z) = 1 + %(z — 1) + higher order terms. Likewise,
exp(ady) exp(t ady) — I = ady +7 ady + higher order terms.

Thus, by the Bcu formula,

1
log(exp(X) log(Y)) =X+Y+ E[X Y] + higher order terms.
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2.2. Lie Subgroups and Subalgebras. Recall that if g is a Lie algebra, then a Lie subalgebra is a linear
subspace ) C g such that forall X,Y € b, [X,Y] €bh.

Definition 2.6 (Connected Lie Subgroup). If G is a matrix Lie group with Lie algebra g, then a subset
H C G is a connected Lie subgroup if
(i) H =<G.
(ii) the associated Lie algebra h is a Lie subalgebra.
(iii) every element A € H can be written as

A= l_[exp(Xi), X; eb.

i=1

Theorem 2.7. Let G be a matrix Lie group with Lie algebra g. Let iy C g be a Lie subalgebra. Then, there exists
a unique connected Lie subgroup H € G with Lie algebra b.

Example 2.8. Consider the 2-torus
e? 0
'I]'ZZ%(O ew):é,qoelR}gGLz(C).

Wehave t = (X,Y) where [X,Y] = 0. Leta € R* and let h, = (X + «Y). Then,

et? 0
Ha:%(o eiae):gem}

is a connected Lie subgroup with Lie algebra by. If « is a 27-scaled rational, then Hy, ~ S$!, so Hy
would be a closed subgroup. However, if « is 27-scaled irrational, then Hy ~ R, and H, = T2.

Given a Lie subalgebra h C g, where g is associated to G C GL,(C), we can construct our
corresponding connected Lie subgroup

H = {exp(X1):--exp(Xp) :m > 0and X; € bh}.

We have that the third condition is satisfied, by definition. Since H is the subgroup generated by
exp(h), the subgroup condition is also satisfied. The tricky part is showing that Lie(H) = b. Pick a
complement N C g of h so that g = h & N. Since the exponential map is a diffeomorphism around
the origin, we have open neighborhoods 0 e U Chand0 e V € Nsothat f : U xV — f(U xV)
sending (X,Y) — exp(X)exp(Y) is a diffeomorphism. Note that h is contained in the Lie algebra
associated to H, so we want to show the opposite inclusion.

Suppose Y € Lie(H). Then, exp(tY) € H for all t € R. We must show that

— tY
T tzoexp( )eb

Since exp(0Y) = id in f(U x V), we find two maps C! X(¢) € hand Z(¢) € N such that
exp(X(t)) exp(Z(t)) = exp(tY).

Then,

=3l exp(tY) = X'(0) + Z'(0),

so we must simply show that Z’(0) vanishes.
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Lemma 2.9. The subset defined by
{ZeV:exp(Z)e H} C N
is countable.

Definition 2.10 (Rational Element). Let i be a Lie algebra. Fix a basis B of . A rational element of b
is an element with rational coefficients with respect to f.

Observe that if dimbh = n, so that h >~ R”, then the rational elements of h are in bijective
correspondence with Q". In particular, there are only countably many. Furthermore, the rational
elements lie ||—|| r.-dense in b.

Lemma 2.11. Let b be a Lie algebra with a fixed basis. Let § > 0 and take A € H. Then, there are rational
elements Ry,..., Ry, € hand an X € b such that

A =exp(Ry)---exp(Rm) exp(X)
and | X|| < 6.
Proof. We prove this in two steps. Given X € b, we have
exp(X/ h)h = exp(X),
so we can write
A =exp(Xy)---exp(Xn)

with all having norm less than §. The second step is by induction on N. Of course, for N = 1, we are
done. By BcH, there is some & > 0 such that for || X ||, [|Y| <&, C(X,Y) exists® and exp(X) exp(Y) =
exp(C(X,Y)).

Thus, C is continuous, so we may assume § < ¢, and for | X ||, [|Y|| < 8, we have |C(X,Y)| < e.
Thus, we have rational Ry, ..., R, and X with | X| < §:

A =-exp(X1)---exp(Xn)exp(Xn41) = exp(R1) -+ -exp(Ry) exp(X) exp(Xny + 1).

This is exp(R;) - exp(Ry;) exp(C(X, Xy +1)), and |C(X, Xn+1)|| < e. Since rational elements are
dense, we may find a sequence {R’ : j € N} which converges to C(X, Xy+1) as j — oo. Since
C(—Z,Z) = 0,we have

C(RY,C(X,Xn41)) — 0.
Jj—oo

Therefore, there exists a rational R+ such that
[C(=Rm+1, C(X, Xnt+1))| <38.

We can now write

A= HEXP(Ri) -exp(C(X, Xn 1))

i=1
as
m+1

l_[ exp(R;) - exp(C(—Rm+1, C(X, Xn+1))).

i=1

5Here, C(X,Y) is the map from the BcH formula.
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Proof of Countability. We have that A € f(U x V'), so we can write A = exp(X)exp(Y) with X e U
and Y € V, uniquely. Let § > 0 be small enough such that for || X ||, ||Y| <§,wehave X e U,Y €V,
and C(X,Y) exists and isin U x V. Now, suppose

exp(Z;) = [ [exp(Ri)-exp(X;). Xj €b

i=1
inexp(V), for j € {1,2}. Then,
exp(—Z1) = exp(—X1) exp(X2) exp(—Z2) = exp(C(—X1, X»)) exp(—=Z>)

and C(Xi,X,) € U. Since f is a bijection, Z; = Z, and C(—X;1,X5) = 0, s0 X; = X,. Any
exp(Z) € H has a representation

exp(Z) = 1_[ exp(R;) - exp(X),

i=1
where the R; are rational and X € h with | X| < §. Thus, E =V N log_1 (H) is countable. O

Proof of Theorem. For Y € Lie(H), we have exp(tY) = exp(X(¢))exp(Z(t)), as before, and
exp(tY),exp(X(¢)) € H, so exp(Z(t)) is in H too. Thus, Z(t) takes values in the intersection E,
meaning Z(t) is constant. Thatis, Z’(0) = 0and ¥ = X’(0) € b, as we had hoped. O
2.3. Lie’s Third Theorem. We can split our introductory question in two:

(i) Can we embed any Lie algebra into gl,, (C)?
(ii) Is every connected Lie subgroup a matrix Lie group?

Fortunately, both have positive answers. Unfortunately, both require some heavy machinery.

Theorem 2.12 (Ado). Every finite dimensional real Lie algebra g can be identified with a real Lie subalgebra
of gl (C), for some sufficiently large n.

That is, every finite dimensional real Lie algebra admits a faithful representation.
Theorem 2.13 (Goto). Every connected Lie subgroup of GL, (C) is a matrix Lie subgroup.
Theorem 2.14 (Lie’s Third Theorem). Let g be a finite dimensional real Lie algebra. Then, there exists a
matrix Lie group G so that Lie(G) = g.

Proof. By Ado’s theorem, we may view the given g in gl,,(C). Then, thereisa G € GL,(C) whichisa
connected Lie subgroup. By Goto’s theorem, this is a matrix Lie group. O

Exercise 2.15. Show that all connected Lie subgroups of the 2-torus T2 are {1}, Hy, T2, where « takes
its usual values and 0, co.

Proof. Evidently we have a flag

ic Da © t

inside the Lie algbera of the torus. By the correspondence between connected Lie subgroups and Lie
subalgebras, this means that each of the above uniquely corresponds to a connected Lie subgroup. By
drawing a figure, it is clear that these are {/ }, Hy, and T2 itself. O
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