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Heuristically, a Lie group is a group paired with a smooth structure. By differentiating, we obtain
a Lie algebra, which is, in some sense, the infinitesimal analogue of a group. What about integration?
How much information about the group structure can we recover from the Lie algebra?

1. Part I

Recall that we write GLn.C/ for the group of n � n invertible complex matrices. Well, GLn.C/ �
Mn.C/, which is isomorphic to Cn2 . We can equip Cn2 with the usual topology, thus giving GLn.C/
the subspace topology.

Definition 1.1 (Matrix Lie Group). A matrix Lie group G is a subgroup of GLn.C/which is closed in
the subspace topology.

Notably, since GLn.C/ is, in particular, closed, it is a matrix Lie group.

Example 1.2. The general linear group of Rn, written GLn.R/, embeds into GLn.C/. That is, we follow
the restriction A 2Mn.R/ ,!Mn.C/. The subgroup GLn.R/ is a closed subset.

Example 1.3. The orthogonal group on Rn, denoted O.n/, is a matrix Lie group, restricting to Mn.R/,
as before, and requiring that AtA D In.

Example 1.4. The special linear group of Rn, denoted SLn.R/, is a matrix Lie group by restricting to
real matrices with det.A/ D 1.

Example 1.5. The special orthogonal group SO.n/ is a matrix Lie group, restricting to the real,
orthogonal, and special operators.
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1.1. Matrix Exponential Map. Using the usual power series expansion of the exponential, we define
a useful tool for working with matrix Lie groups.

Definition 1.6 (Matrix Exponential). Let X 2Mn.C/. The matrix exponential exp.X/ is
1X
kD0

Xk

kŠ
:

Exercise 1.7. Check that exp.�/ is well-defined and continuous.

Proposition 1.8. Let X; Y 2Mn.C/ and C 2 GLn.C/. Then,

(i) exp
�
CXC�1

�
D C exp.X/C�1

(ii) exp.X/ 2 GLn.C/ and exp.X/�1 D exp.�X/.
(iii) det

�
exp.X/

�
D exp.tr.X//.

(iv) if XY D YX , then exp.X C Y / D exp.X/ exp.Y /.
(v) exp.X/m D exp.mX/.

Proof. Left as an exercise. □

Recall that

log.x/ D
1X
kD1

.�1/kC1
.x � 1/k

k

converges absolutely for jx � 1j < 1.

Definition 1.9 (Matrix Logarithm). For kA � Ink < 1with A 2 GLn.C/, we have1

log.A/ D
1X
kD1

.�1/kC1
.A � In/

k

k
:

Theorem 1.10. Let A 2 GLn.C/ and X 2Mn.C/, if kA � Ink < 1,

exp
�
log.A/

�
D A;

and if kXk < log 2, then

log
�
exp.X/

�
D X:

Proposition 1.11. Let X; Y 2Mn.C/. Then, we have

.exp.X=m/ exp.Y=m// ������!
m!1

exp.X C Y /:

Proof. Define
Am D exp.X=m/ exp.Y=m/ D I CX=mC Y=mCO.1=m2/:

Since X=m; Y=m! 0 as m!1, we have that Am ! In as m!1. Thus, for large enough m,
kAm � Ink < 1;

meaning we can apply our logarithm. Now,

log.Am/ D X=mC Y=mCO.1=m2/:
Thus,

Am D exp
�
log.Am/

�
D exp

�
X=mC Y=mCO.1=m2/

�
;

1We mean the Hilbert-Schmidt norm, but the operator norm could work, too.
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so by (v),

Amm D exp.X C Y CO.1=m// ������!
m!1

exp.X C Y /:

□

1.2. Lie Algebras. We now define the so-called infinitesimal analogue of the Lie group.

Definition 1.12 (Lie algebra). A Lie algebra over R consists of a R-linear space g, along with a bilinear
map

Œ�;�� W g � g! g

such that Œ�;�� satisfies
(i) antisymmetry: for all X; Y 2 g, ŒX; Y � D �ŒY; X�.

(ii) the Jacobi identity: for all X; Y;Z 2 g,

ŒX; ŒY;Z��C ŒY; ŒZ;X��C ŒZ; ŒX; Y �� D 0:

Example 1.13. Let A be an associative R-algebra. Then, A with the commutator bracket

Œa; b� D ab � ba; a; b 2 A;

is a Lie algebra.

Exercise 1.14. Check that .A; Œ�;��/, as above, is a Lie algebra.

Example 1.15. Let A D Mn.C/. Then, the associated Lie algebra, using the commutator bracket, is
denoted gln.C/.

Definition 1.16. Let g be a Lie algebra. A Lie subalgebra is a R-linear subspace h � g so that Œh; h� � h.

Exercise 1.17. A Lie subalgebra is a Lie algebra.

Example 1.18. We define a Lie subalgebra

sln.C/ D fX 2 gln.C/ W tr.X/ D 0g � gln.C/:

Proof. Observe that, since the trace is cyclic,

trŒX; Y � D tr.XY / � tr.YX/ D 0;

so sln.C/ is a bracket-invariant R-subspace. □

Example 1.19. The following are Lie subalgebras:
(i) u.n/ D fX 2 gln.C/ W X� D �Xg.

(ii) o.n/ D fX 2 gln.R/ W X t D �Xg.
(iii) su.n/ D sln.C/ \ u.n/.
(iv) so.n/ D sln.R/ \ o.n/.

Definition 1.20 (Adjoint Map). Let g be a Lie algebra. Then, for every X 2 g, define adX W g! g by
Y 7! ŒX; Y �. Then, we may define the adjoint map ad W g! End.g/ by X 7! adX .

Remark 1.21. The Jacobi identity is equivalent to both of the following:
(i) adX ŒY;Z� D ŒadX .Y /;Z�C ŒY; adX .Z/�.

(ii) adŒX;Y �.Z/ D ŒadX ; adY �.Z/.2

2The second bracket here is the commutator bracket in End.g/.
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1.3. Lie Algebras of Lie Groups. We want to associate to each matrix Lie group a Lie algebra which
gives the directions inside GLn.C/ that stay in, or are tangent to, G.

Definition 1.22 (Associated Lie Algebra). LetG � GLn.C/ be a matrix Lie group. Then, its associated
Lie algebra g is

g D fX 2 gln.C/ W for all t 2 R; exp.tX/ 2 Gg:

Proposition 1.23. Let G be a matrix Lie group and g be its Lie algebra. Then, for all X; Y 2 g and C 2 G,

(i) for all A 2 G, AXA�1 2 g.

(ii) for all s 2 R, sX 2 g.

(iii) X C Y 2 g.

(iv) XY � YX 2 g.

That is, g is a R-linear space that becomes a Lie algebra using the commutator bracket.

Proof. We have that for all t 2 R,

exp
�
tAXA�1

�
D A exp.tX/A�1 2 G;

so g is closed under G-conjugation. For all s 2 R,

exp.t.sX// D exp..ts/X/ 2 G;

so sX 2 g. Observe that

exp.t.X C Y // D lim
m!1

.exp.tX=m/ exp.tY=m//m 2 G;

and since G is closed, exp.t.X C Y // 2 g, so g is closed under addition. Finally, since we have that g
is a R-linear space, observe that

d
dt

ˇ̌̌̌
tD0

exp.tX/Y exp.�tX/ D XY � YX;

and the first expression is in g, so XY � YX 2 g by closure. □

Proposition 1.24. The Lie algebra of GLn.C/ is gln.C/ and SLn.C/ is sln.C/.

Proof. The first is trivial. Recall that A 2 SLn.C/ if it is invertible and det.A/ D 1. Well, for all t 2 R,

det
�
exp.tX/

�
D exp.t tr.X//;

so applying the derivative at t D 0, we get tr.X/ D 0. □

Definition 1.25 (Exponential). The exponential map of a Lie group G is

exp
ˇ̌
g
D exp W g! G:

Theorem 1.26. Let U" denote the "-ball at 0 in g, using the standard metric. There exists 0 < e < log 2 such

that the restriction of the exponential to U" ! exp.U"/ is a homeomorphism.

Proof. Let V" be the image exp.U"/. LetD denote g? in gln.C/. Define a map

ˆ W g˚D ! GLn.C/

by .X; Y / 7! exp.X/ exp.Y /. Note that the differential of ˆ at the origin is
d
dt

ˇ̌̌̌
tD0

ˆ.tX; 0/ D X;
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and likewise for Y on the second component. Thus, the differential of ˆ has D.0;0/ˆ D id. By the
inverse function theorem, there is an " > 0 such that the restriction of ˆ to U" is a homeomorphism.
Then, to show exp D ˆjU"˚0

is a local homeomorphism, we simply need to show that V" is open.
Suppose V" is not open. Then, there is a sequence fAm W m 2 Ng converging to I that is not in
V", so log.Am/ … g. For large enough m, Am lies in the image of the local homeomorphism ˆ, so
Am D exp.Xm/.Ym/, where fXm W m 2 Ng � g and fYm W m 2 Ng � D. Then, exp.Ym/ 2 G. Observe
that Ym=kYmk is on the unit sphere inD, which is compact. Thus, we may assume that Ym=kYmk ! Y

on the unit sphere in D. Let us try and show that Y 2 g.3 Since Am ! I , Ym ! 0. Define km to be
hte floor of t=kYmk . Then,

jkmkYmk � t j � kYmk ! 0:

Thus,
exp.tY / D lim

m!1
exp.kmYm/ D lim

m!1
exp.Ym/km 2 G;

as G is closed. Yet, this would suggest Y 2 g, but g \D D 0, so we have our contradiction. □

Proposition 1.27. Let G be a connected matrix Lie group. Every element A 2 G may be written as

A D

nY
iD1

exp.Xi /;

where X1; : : : ; Xn 2 g.

Definition 1.28 (Commutative Lie Algebra). A Lie algebra g is commutative if for all X; Y 2 g, the
bracket ŒX; Y � D 0.

Proposition 1.29. Let G be a matrix Lie group with Lie algebra g. Suppose G is abelian. Then, so is g. If G

is connected, then the converse also holds.

Exercise 1.30. Let g be a two-dimensional noncommutative Lie algbera. Show that there exists a basis
fx; yg for g such that Œx; y� D x.

Exercise 1.31. The Heisenberg group is defined as

Heis D

˚0@1 a b

0 1 c

0 0 1

1A 2 GL3.R/ W a; b; c 2 R

	
:

Show that this is a group. Further, check that Heis � GL3.R/ is closed. Then, show that

heis D

˚0@1 a b

0 0 c

0 0 0

1A 2 GL3.R/ W a; b; c 2 R

	

is the Lie algebra of heis. Finally, show that the exponential map exp W heis! Heis is epic. This group
is called the Heisenberg group because the Lie bracket on its Lie algebra is ŒX; Y � D Z, for a suitable
basis, which is reminiscent of the commutation relation between position and momentum.

Exercise 1.32. Show that the Lie algebra of each usual matrix Lie group is the correspondingly named
Lie algebra defined in this section.

3That is, we want to show that for all t 2 R, the exponential map exp.tY / 2 G.
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2. Part II

We now hope to answer the question of whether we can produce a (matrix) Lie group from a Lie
algebra. We begin our discussion with the Baker-Campbell-Hausdorff (bch) formula.

2.1. Baker-Campbell-Hausdorff. Our goal is to write the product exp.X/ exp.Y / of two exponentials
as exp.Z/.4 Recall that there exists U" � g such that exp W U" ! V" is a local homeomorphism, so for
small X; Y , we may write

Z D log
�
exp.X/ exp.Y /

�
:

Remark 2.1. Let B1.1/ � C be the open ball of radius 1. Define

g.´/ D
log ´
1 � ´�1

D

1X
mD1

.�1/mC1
.´ � 1/m

m.mC 1/
:

The theorem we hope to prove is as follows.

Theorem 2.2 (bch, Integral Form). There exists " > 0 such that for allX; Y 2 gln.C/ so that kXk ; kY k < ",

we have

log
�
exp.X/ exp.Y /

�
D X C

Z 1

0

g.exp.adX / exp.adY //dt :

Observe that we have
1 � e�´

´
D

1X
nD0

.�1/n
´n

.nC 1/Š
;

so we can define
In � exp.�A/

A
D

1X
nD0

.�1/n
An

.nC 1/Š
:

Lemma 2.3. Let J � R be an interval and X W J !Mn.C/ be smooth. Then,

d
dt

exp.X.t// D exp.X.t//
�
In � exp

�
� adX.t/

�
adX.t/

�
dX
dt

��
:

Proof. Left as an exercise. □

Lemma 2.4. Let A 2 GLn.C/ and define AdA W gln.C/! gln.C/ by X 7! AXA�1. Then,

Adexp.X/ D exp.adX /:

Proof. Define A.t/ D Adexp.tX/. Likewise, define B.t/ D exp.t adX /. Then,

A0.t/.Y / D
d
dt
.exp.tX/Y exp.�tX//

D exp.tX/XY exp.�tX/ � exp.tX/YX exp.�tX/
D exp.tX/ŒX; Y � exp.�tX/
D A.t/ adX .Y /:

Then, A.0/ D AdIn
D In. Further,

B 0.t/.Y / D B.t/ adX .Y /;

4Of course, in general, this is not possible.
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and B.0/ D exp.0/ D In. Thus, both satisfy the same ode, meaning A.t/ D B.t/ for all t 2 R. Thus,

Adexp.X/ D A.1/ D B.1/ D exp.adX /:

□

Proof of bch. Let Z.t/ D log
�
exp.X/ exp.tY /

�
. Then, by the first lemma,

exp.�Z.t//
d
dt

exp.Z.t// D
�
I � n � exp

�
adZ.t/

�
adZ.t/

��
dZ
dt

�
:

Yet,

exp.�Z.t//
d
dt

exp.Z.t// D exp.�tY / exp.�X/ exp.X/ exp.tY /Y D Y;
so �

In � exp
�
� adZ.t/

�
adZ.t/

��
dZ
dt

�
D Y:

Then,

D

�
In � exp.�A/

A

�
h D

1X
nD0

.�1/n
nAn�1h

.nC 1/Š
:

Now, for A D 0, this becomes �h=2 ¤ 0. By the inverse function theorem, we can invert

In � exp
�
� adZ.t/

�
adZ.t/

for small Z.t/. Write
dZ
dt
D

�
In � exp

�
� adZ.t/

�
adZ.t/

.Y /:

�
Now,

Adexp.Z.t// D Adexp.X/ exp.ty/ D Adexp.X/ Adexp.tY /;

so by the second lemma,
exp

�
adZ.t/

�
D exp.adX / exp.t adY /:

We can thus use the logarithm to get

dZ
dt
D

�
In � .exp.adX / exp.t adY //�1

log
�
exp.adX / exp.t adY /

� �
.Y / D g.exp.adX / exp.t adY //.Y /:

By the fundamental theorem of calculus,

Z.1/ D Z.0/C

Z 1

0

dZ
dt

dt D X C
Z 1

0

g.exp.adX / exp.t adY //.Y /dt ;

as desired. □

Remark 2.5 (bch, Series Form). We have that g.´/ D 1C 1
2
.´ � 1/C higher order terms. Likewise,

exp.adX / exp.t adY / � I D adX Ct adY C higher order terms:

Thus, by the bch formula,

log
�
exp.X/ log.Y /

�
D X C Y C

1

2
ŒX; Y �C higher order terms:
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2.2. Lie Subgroups and Subalgebras. Recall that if g is a Lie algebra, then a Lie subalgebra is a linear
subspace h � g such that for all X; Y 2 h, ŒX; Y � 2 h.

Definition 2.6 (Connected Lie Subgroup). IfG is a matrix Lie group with Lie algebra g, then a subset
H � G is a connected Lie subgroup if

(i) H � G.
(ii) the associated Lie algebra h is a Lie subalgebra.

(iii) every element A 2 H can be written as

A D

mY
iD1

exp.Xi /; Xi 2 h:

Theorem 2.7. LetG be a matrix Lie group with Lie algebra g. Let h � g be a Lie subalgebra. Then, there exists

a unique connected Lie subgroupH � G with Lie algebra h.

Example 2.8. Consider the 2-torus

T 2
D

��
ei� 0

0 ei'

�
W �; ' 2 R

�
� GL2.C/:

We have t D hX; Y iwhere ŒX; Y � D 0. Let ˛ 2 R� and let h˛ D hX C ˛Y i. Then,

H˛ D

��
ei� 0

0 ei˛�

�
W � 2 R

�
is a connected Lie subgroup with Lie algebra h˛ . If ˛ is a 2�-scaled rational, then H˛ ' S1, so H˛
would be a closed subgroup. However, if ˛ is 2�-scaled irrational, thenH˛ ' R, andH˛ D T 2.

Given a Lie subalgebra h � g, where g is associated to G � GLn.C/, we can construct our
corresponding connected Lie subgroup

H D fexp.X1/ � � � exp.Xm/ W m � 0 and Xi 2 hg:

We have that the third condition is satisfied, by definition. Since H is the subgroup generated by
exp.h/, the subgroup condition is also satisfied. The tricky part is showing that Lie.H/ D h. Pick a
complement N � g of h so that g D h˚ N . Since the exponential map is a diffeomorphism around
the origin, we have open neighborhoods 0 2 U � h and 0 2 V � N so that f W U � V ! f .U � V /

sending .X; Y / ! exp.X/ exp.Y / is a diffeomorphism. Note that h is contained in the Lie algebra
associated toH , so we want to show the opposite inclusion.

Suppose Y 2 Lie.H/. Then, exp.tY / 2 H for all t 2 R. We must show that

d
dt

ˇ̌̌̌
tD0

exp.tY / 2 h

Since exp.0Y / D id in f .U � V /, we find two maps C1 X.t/ 2 h and Z.t/ 2 N such that

exp.X.t// exp.Z.t// D exp.tY /:

Then,

Y D
d
dt

ˇ̌̌̌
tD0

exp.tY / D X 0.0/CZ0.0/;

so we must simply show that Z0.0/ vanishes.



MATRIX LIE GROUPS 9

Lemma 2.9. The subset defined by

fZ 2 V W exp.Z/ 2 H g � N

is countable.

Definition 2.10 (Rational Element). Let h be a Lie algebra. Fix a basis ˇ of h. A rational element of h
is an element with rational coefficients with respect to ˇ.

Observe that if dim h D n, so that h ' Rn, then the rational elements of h are in bĳective
correspondence with Qn. In particular, there are only countably many. Furthermore, the rational
elements lie k�k Rn -dense in h.

Lemma 2.11. Let h be a Lie algebra with a fixed basis. Let ı > 0 and take A 2 H . Then, there are rational

elements R1; : : : ; Rm 2 h and an X 2 h such that

A D exp.R1/ � � � exp.Rm/ exp.X/

and kXk < ı.

Proof. We prove this in two steps. Given X 2 h, we have

exp.X=h/h D exp.X/;

so we can write
A D exp.X1/ � � � exp.XN /

with all having norm less than ı. The second step is by induction on N . Of course, for N D 1, we are
done. By bch, there is some " > 0 such that for kXk ; kY k < ", C.X; Y / exists5 and exp.X/ exp.Y / D
exp.C.X; Y //.

Thus, C is continuous, so we may assume ı < ", and for kXk ; kY k < ı, we have kC.X; Y /k < ".
Thus, we have rational R1; : : : ; Rm and X with kXk < ı:

A D exp.X1/ � � � exp.XN / exp.XNC1/ D exp.R1/ � � � exp.Rm/ exp.X/ exp.XN C 1/:

This is exp.R1/ � � � exp.Rm/ exp.C.X;XNC1//, and kC.X;XNC1/k < ". Since rational elements are
dense, we may find a sequence fRj W j 2 Ng which converges to C.X;XNC1/ as j ! 1. Since
C.�Z;Z/ D 0, we have

C.Rj ; C.X;XNC1// ������!
j!1

0:

Therefore, there exists a rational RmC1 such that

kC.�RmC1; C.X;XnC1//k < ı:

We can now write

A D

mY
iD1

exp.Ri / � exp.C.X;XNC1//

as
mC1Y
iD1

exp.Ri / � exp.C.�RmC1; C.X;XNC1///:

□

5Here, C.X;Y / is the map from the bch formula.
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Proof of Countability. We have that A 2 f .U � V /, so we can write A D exp.X/ exp.Y / with X 2 U
and Y 2 V , uniquely. Let ı > 0 be small enough such that for kXk ; kY k < ı, we haveX 2 U , Y 2 V ,
and C.X; Y / exists and is in U � V . Now, suppose

exp
�
Zj
�
D

mY
iD1

exp.Ri / � exp
�
Xj
�
; Xj 2 h

in exp.V /, for j 2 f1; 2g. Then,
exp.�Z1/ D exp.�X1/ exp.X2/ exp.�Z2/ D exp.C.�X1; X2// exp.�Z2/

and C.X1; X2/ 2 U . Since f is a bĳection, Z1 D Z2 and C.�X1; X2/ D 0, so X1 D X2. Any
exp.Z/ 2 H has a representation

exp.Z/ D
nY
iD1

exp.Ri / � exp.X/;

where the Ri are rational and X 2 h with kXk < ı. Thus, E D V \ log�1.H/ is countable. □

Proof of Theorem. For Y 2 Lie.H/, we have exp.tY / D exp.X.t// exp.Z.t//, as before, and
exp.tY /; exp.X.t// 2 H , so exp.Z.t// is in H too. Thus, Z.t/ takes values in the intersection E,
meaning Z.t/ is constant. That is, Z0.0/ D 0 and Y D X 0.0/ 2 h, as we had hoped. □

2.3. Lie’s Third Theorem. We can split our introductory question in two:
(i) Can we embed any Lie algebra into gln.C/?

(ii) Is every connected Lie subgroup a matrix Lie group?
Fortunately, both have positive answers. Unfortunately, both require some heavy machinery.
Theorem 2.12 (Ado). Every finite dimensional real Lie algebra g can be identified with a real Lie subalgebra

of gln.C/, for some sufficiently large n.

That is, every finite dimensional real Lie algebra admits a faithful representation.
Theorem 2.13 (Goto). Every connected Lie subgroup of GLn.C/ is a matrix Lie subgroup.

Theorem 2.14 (Lie’s Third Theorem). Let g be a finite dimensional real Lie algebra. Then, there exists a

matrix Lie group G so that Lie.G/ D g.

Proof. By Ado’s theorem, we may view the given g in gln.C/. Then, there is a G � GLn.C/which is a
connected Lie subgroup. By Goto’s theorem, this is a matrix Lie group. □

Exercise 2.15. Show that all connected Lie subgroups of the 2-torus T 2 are fI g;H˛;T 2, where ˛ takes
its usual values and 0;1.

Proof. Evidently we have a flag

i h˛ t - !  - !

inside the Lie algbera of the torus. By the correspondence between connected Lie subgroups and Lie
subalgebras, this means that each of the above uniquely corresponds to a connected Lie subgroup. By
drawing a figure, it is clear that these are fI g;H˛; and T 2 itself. □
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