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Today we will take a look at the general qft.

Then, I will go over some background about dihedral groups,

which should make reading Kuperberg’s paper easier.
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If we would like to talk about the hsp for general finite groups, then

we need a general qft.
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Let G be a finite group such that jGj D n, f W G ! C be a

function, and � W G ! GL.V/ be a representation.
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The Fourier transform of the function f at the representation � is

Of .�/ D

r
d�

n

X
g2G

f .g/�.g/:
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Recall that we denote a complete set of irreducibles of G by
bG.
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The inverse Fourier transform of
Of is

f .g/ D

r
1

n

X
�2bG

q
d� tr

�
Of .�/�.g�1/

�
:

Check that this recovers our original function f .

D. E. Wiggins Hidden Subgroups and Quantum Computation 8 / 50



General QFT Dihedral Groups Dihedral HSP

Fix an ordering G D fg1; : : : ; gng of the finite group. We can then

label f by its action on each element of G, writing

f D .f .g1/; : : : ; f .gn//;

which is a vector in Cn.
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Likewise, order the set of irreducibles
bG D f�1; : : : ; �mg. For all

1 � k � m, let Vk be a C-linear space of dimension d�k .
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For each k, pick a basis ˇk for Vk such that
Of .�k/ is a d�k � d�k

unitary matrix.
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The reason that we can choose our bases in such a way is sketched

in Lomont’s review.
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Add up the number of all possible matrix entries of
Of .�k/ for

1 � k � m:

d2�1 C d
2
�2
C � � � C d2�m D

X
�2bG d2� :

From Lecture 06, we know this is just jGj D n.
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We can thus arrange these matrix entries in a vector
Of 2 Cn,

starting with
Of .�1/1;1 and continuing up through

Of .�m/d�m ;d�m .
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That is, both f and
Of are realizable in Cn, so define a (unitary)

linear transformation

� W Cn ! Cn

by f 7! Of .
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We call this � the general quantum Fourier transform.
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Given an arbitrary finite group G of order n, a finite set S , and an

H -coset separating function f W G ! S , there is a general path

toward a solution of the hsp.
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Compute

1
p
n

X
g2G

jgi ˝ jf .g/i :
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Measure the second register, yielding

1p
jH j

X
h2H

jchi ˝ jf .ch/i ;

where we pick the coset cH uniformly. Then, apply the general

qft.
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Perform a projective measurement on the register and observe a

representation �. We can also choose to observe indices of the

resultant matrix after applying the qft.
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Use some classical information processing on the

(post-measurement) classical data to find generators ofH � G.
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Assigned reading: �5 of Lomont’s review to see an overview of

progress on the hsp for nonabelian groups.

https://arxiv.org/pdf/quant-ph/0411037:
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In a sense, the dihedral groupDn, of order 2n, is the quintessential

nonabelian group.
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The dihedral groupDn encodes information about the rigid

motions of a regular n-gon.
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Let n D 4, so that we are working with a regular 4-gon P . That is,

P is a square.
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Say P is embedded in the plane R2, with its center at the origin, so

that it looks like

P
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How many times can we rotate P counterclockwise about the

origin so that it still looks the same in the plane?
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Clearly, we have four possible rotations. If r is a rigid rotation of P

by the angle �=4, then the four rotations are r , r2, r3, and r4 puts

us back where we started. That is, r4 D e, the “identity” rotation.
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How many lines through the origin can we reflect P over so that it

looks the same in the plane?
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Well we can reflect over the x-axis, over the y-axis, and over the

lines y D x and y D �x.
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Let s be the reflection over the x-axis. Clearly, s2 D e, the

“identity” reflection.
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Reflecting over the y-axis is the same as rotating the square P by

�=4 (applying r) and then reflecting over the x-axis (applying s).

We write this motion as sr .
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In this way, the other two reflections are precisely sr2 and sr3.
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Thus, including the three nontrivial rotations r; r2; r3, the four

reflections s; sr; sr2; sr3, and the identity r4 D s2 D e, there are

eight so-called rigid motions of P .
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Since we embedded P ,! R2, we can realize each rigid motion as a

linear transformation R2 ! R2. Further, these are all

isomorphisms, since each rigid motion has an inverse.
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Putting the rigid motions of P together, the set

D4 D fe; r; r
2; r3; s; sr; sr2; sr3g

forms a group under the operation of function composition.
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Formally, the dihedral groupDn is the subgroup generated by two

formal elements r and s. If e is the identity element inDn, then we

require that

(i) r is of order n.

(ii) s is of order 2.

(iii) srsr D e.

This characterizes a unique (up to isomorphism) group of order 2n.
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Note

To make rigorous sense of the previous characterization, we could write

Dn ' hr; sjr
n; s2; srsri D Free.r; s/= ncl.rn; s2; srsr/;

where Free.�/ W Set! Grp is the free group functor and ncl denotes
normal closure, i.e., the smallest normal subgroup of Free.r; s/
containing frn; s2; srsrg. We call such a quotient a presentation ofDn.

D. E. Wiggins Hidden Subgroups and Quantum Computation 38 / 50



General QFT Dihedral Groups Dihedral HSP

The elements of the form rk are called rotations and the elements

of the form srk are called reflections.
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If we extended our geometric discussion ofD4 toDn, we could

have discovered the listed relations ourselves. See Keith Conrad’s

notes for a nice investigation ofDn.

kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf
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Intuitively, the power k of a reflection srk is called the slope of the

reflection, since �k=n is precisely the angle between the line of

reflection of srk and the line of reflection of s.
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In the context of the hsp, we would call the task of finding a hidden

subgroupH � Dn generated by a reflectionH D hsrki the

dihedral hidden subgroup problem (dhsp).
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We say thatH is the hidden reflection.
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Certainly, finding a hidden reflection amounts to finding its slope.

But, why does the dhsp reduce to finding reflections?
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Theorem

Finding an arbitrary hidden subgroupH � Dn amounts to finding the
slope k of a hidden reflection.
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Observe that there is a subgroup hri � Dn which is isomorphic to

Z=n. We will write Cn D hri.
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Further Cn is normal inDn. It is easy to check thatH 0 D H \ Cn
is thus normal inH , for any subgroupH � Dn.
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Proof.

SupposeH ¤ hsrki for all 1 � k � n. Then, eitherH D feg or

H 0 ¤ feg, since Cn has all the rotations. Shor’s algorithm allows us

to factor n, so we can find the hidden subgroupH 0 � Cn using the

cyclic hsp.
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Proof, continued.

Again, since Cn has all the rotations,H=H 0 has no nontrivial

rotations. Thus, we have

H=H 0 D

(
feH 0g; H has only rotations

reflection H has at least one reflection:

IfH D feg, then any algorithm to find the slope of a reflection will

fail, so we indirectly findH to be trivial.

D. E. Wiggins Hidden Subgroups and Quantum Computation 49 / 50



General QFT Dihedral Groups Dihedral HSP

Kuperberg proves the following.

Theorem

There is a quantum algorithm that finds a hidden reflection inDn with
time and query complexity 2O.

p
logn/.
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