HIDDEN SUBGROUPS AND QUANTUM COMPUTATION Lecture 07

DHEERAN E. WIGGINS

SUMMER 2025 ILLINOIS MATHEMATICS AND SCIENCE ACADEMY

August 01, 2025

- 1 Abelian HSP
- 2 Simon's Algorithm
- 3 Shor's Algorithm
- 4 Outlook

We use the same notation as from the previous lecture, where *G* will be an abelian group (using additive notation).

Begin with the computational 0 state $|0\rangle \otimes |0\rangle$ on a pair of registers.

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |0\rangle.$$

Apply our black box function f which separates H-cosets:

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |f(g)\rangle.$$

Let $C = \{c_1, \dots, c_m\}$ be a set of coset representatives for the subgroup $H \leq G$.

Using the fact that f is constant and is different for each H-coset, we get

$$\frac{1}{\sqrt{|C|}} \sum_{c \in C} |c + H\rangle \otimes |f(c)\rangle = \frac{1}{\sqrt{|C|}} \sum_{c \in C} \tau_c |H\rangle \otimes |f(c)\rangle.$$

Applying F_G to the first register again, we get

$$\frac{1}{\sqrt{|C|}} \sum_{c \in C} F_G \tau_c |H\rangle \otimes |f(c)\rangle.$$

Using the relation $F_G \tau_c = \varphi_c F_G$, and the fact that F_G takes $|H\rangle$ to $|H^{\perp}\rangle$, we simplify to

$$\frac{1}{\sqrt{|C|}} \sum_{c \in C} \varphi_c |H^{\perp}\rangle \otimes |f(c)\rangle.$$

Further, since $|G|/|H| = |H^{\perp}|$, we know that $|C| = |H^{\perp}|$, so we have

$$\frac{1}{\sqrt{|H^{\perp}|}} \sum_{c \in C} \varphi_c |H^{\perp}\rangle \otimes |f(c)\rangle.$$

Perform a measurement on the first register. This returns, in a uniformly distributed manner, a random element of H^{\perp} .

Choosing $c + \lceil \log |\Sigma| \rceil$ elements of a group Σ will generate Σ , with probability bounded below by $1 - 2^{-c}$.

By sampling solutions of a system of equations, based on a supposed generating set of H^{\perp} , and using a diagonalization argument, we may determine generators of H with probability no less than

$$(1-2^{-c})(1-2^{-c'}),$$

where we run the algorithm $c + \lceil \log |G| \rceil$ times, sampling solutions to the system to get $c' + \lceil \log |G| \rceil$ samples of H.

Assigned reading: the last page of §3.5 of Lomont's review to work through the details of the sampling procedure and the time complexity.

https://arxiv.org/pdf/quant-ph/0411037.

$$1-|G|^{-1}.$$

It uses $O(\log |G|)$ calls of f, running in time polynomial in $\log |G|$ and the time to compute f, using a circuit of size

$$O(\log |G| \log \log |G|)$$
.

Simon's algorithm asks for the following:

GIVEN a function $f: (\mathbb{Z}/2)^n \to (\mathbb{Z}/2)^m$, where $m \ge n$, and so that there is a constant $s \in (\mathbb{Z}/2)^n$ such that f(x) = f(x') if and only if $x = x' \oplus s$.

FIND the constant $s \in (\mathbb{Z}/2)^n$.

Here, per usual, \oplus is componentwise, binary addition.

Then, our subgroup which is fixed by the black box function is $H = \{0, s\}$. Using the abelian HSP algorithm, we can find it efficiently.

On the other hand, the classical solution would involve calling the function O(|G|) times to find s!

RSA public key cryptography uses integer factorization, which is extraordinarily difficult to compute classically.

Shor's Algorithm

000000

Shor's factoring algorithm looks to factor some composite integer N > 0. It suffices to look for a nontrivial solution to $x^2 \equiv 1$ \pmod{N} , since then (x + 1) or (x - 1) factors into N.

The order of an integer x modulo N is the smallest power r such that $x^r \equiv 1 \pmod{N}$.

Shor's Algorithm

Randomly choosing an integer y such that gcd(y, N) = 1 is likely to yield y with even order, so one solution is $x = y^{r/2}$.

Besides computing order, we have efficient classic algorithms for the rest of the problem. Thus, we want our HSP to give us a way to efficiently compute r.

We set $f(a) \equiv x^a \pmod{N}$, so that f(a+r) = f(a) for all a. This is our black box function f.

Shor's Algorithm

Shor's Algorithm

The group is the cyclic group \mathbb{Z}/N , and using the cyclic HSP algorithm, we can efficiently find the generator r of the subgroup $\langle r \rangle = H$ in \mathbb{Z}/N .

Next time we will discuss

- (i) the dihedral group D_n .
- (ii) the general QFT.
- (iii) the dihedral hidden subgroup problem.

