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Today we will walk through the abelian nsp algorithm. We will
then look at Simon’s and Shor’s algorithms.
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Abelian HSP
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We use the same notation as from the previous lecture, where G
will be an abelian group (using additive notation).
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Abelian HSP
0000000000000

Begin with the computational O state [0) ® |0) on a pair of
registers.
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Abelian HSP
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Apply the abelian orr F on the first register:

1

ﬁZw)@m).

geG
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Abelian HSP
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Apply our black box function f which separates H -cosets:

1
Nl gZG lg) ® | f(g))
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Abelian HSP
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Let C = {c1,...,cm} be a set of coset representatives for the
subgroup H < G.

Using the fact that f is constant and is different for each H -coset,
we get

T Ll M L) = i el @ 1516
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Abelian HSP
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Applying Fg to the first register again, we get

ﬁ S Fore [H) ® |f(c).
ceC
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Abelian HSP
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Using the relation Fg 1, = ¢. Fg, and the fact that Fg takes |H) to
|HL), we simplify to

/— ZE‘% ) ® |f(c)).
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Abelian HSP
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Further, since |G| /|H| = |H*|, we know that |C| = |H1|, so we
have

L Yy 8 £,

\/ |HJ‘| ceC
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Abelian HSP
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Perform a measurement on the first register. This returns, in a
uniformly distributed manner, a random element of H .
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Abelian HSP
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Choosing ¢ + [log |X| ] elements of a group X will generate X,
with probability bounded below by 1 —27¢.
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Abelian HSP
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By sampling solutions of a system of equations, based on a
supposed generating set of H, and using a diagonalization
argument, we may determine generators of H with probability no
less than

1-2790 —=27¢),

where we run the algorithm ¢ + [log |G| | times, sampling
solutions to the system to get ¢’ 4 [log |G| ] samples of H.
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Abelian HSP
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Assigned reading: the last page of §3.5 of Lomont’s review to work
through the details of the sampling procedure and the time
complexity.

https://arxiv.org/pdf/quant-ph/0411037.
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Thus, there is a quantum algorithm which outputs a generating set
for the hidden subgroup H < G with probability no less than

-G .

It uses O(log |G| ) calls of f, running in time polynomial in log |G|
and the time to compute f, using a circuit of size

O(log |G| loglog |G|).
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Simon’s Algorithm
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Simon’s algorithm asks for the following:

Gwven a function f : (Z/2)" — (Z/2)™, where m > n, and so that
there is a constant s € (Z/2)" such that f(x) = f(x') if and
onlyif x = x' & s.

Finp the constant s € (Z/2)".
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Simon’s Algorithm
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Here, per usual, @ is componentwise, binary addition.
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Simon’s Algorithm
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Then, our subgroup which is fixed by the black box function is
H = {0, s}. Using the abelian usp algorithm, we can find it
efficiently.

On the other hand, the classical solution would involve calling the
function O(|G|) times to find s!
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Shor’s Algorithm
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RSA public key cryptography uses integer factorization, which is
extraordinarily difficult to compute classically.
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Shor’s Algorithm
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Shor’s factoring algorithm looks to factor some composite integer
N > 0. It suffices to look for a nontrivial solution to x2 = 1
(mod N), since then (x + 1) or (x — 1) factors into N.
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Shor’s Algorithm
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The order of an integer x modulo N is the smallest power r such
that x” =1 (mod N).
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Shor’s Algorithm
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Randomly choosing an integer y such that gcd(y, N) = 1 is likely
to yield y with even order, so one solution is x = y” /2,
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Shor’s Algorithm
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Besides computing order, we have efficient classic algorithms for
the rest of the problem. Thus, we want our HsP to give us a way to
efficiently compute r.
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Shor’s Algorithm

[e]e]e]e]e] o)

We set f(a) = x% (mod N),sothat f(a +r) = f(a) forall a.
This is our black box function f.
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Shor’s Algorithm
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The group is the cyclic group Z/N, and using the cyclic Hsp
algorithm, we can efficiently find the generator r of the subgroup
(r)y=HinZ/N.
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Next time we will discuss
(i) the dihedral group Dj,.
(ii) the general QFr.
(iii) the dihedral hidden subgroup problem.
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