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Today we will work through the essentials of the complex
representation theory of finite groups.

Representation theory is beautiful in its own right, but it is also
incredibly powerful in mathematical and physical applications. In
particular, it allows us to define a QFr for arbitrary finite groups G.
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I will be omitting proofs, as I did when discussing the rudiments
of groups and vector spaces, for the sake of time. I highly
recommend working through some of the claimed results on your
own time-most are just computational.
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Representations
©000000000

Let G be a finite group. Let 'V be a finite dimensional C-linear
space.
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Representations
0800000000

Denote by Aut('V) the group of all vector space isomorphisms
p: V>V,

We call such ¢ the automorphisms of V. When discussing
representation theory, it is a bit more common to write GL('V) for
the group Aut(V).
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Representations
000000000

A representation of G is a group homomorphism p : G — GL(V).
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Representations
0008000000

Since dim('V) = n is finite, we know that for all g € G, p(g) is
effectively a matrix in M, (C). We will take for granted that we can
choose our basis in such a way that p is a unitary matrix, i.e.,

p(g)Tp(g) = p(g)p(g) = 1.
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Representations
0000®00000

An isomorphism of representations p : G — GL('V) and
7 : G — GL('W) is a linear isomorphism ¢ : 'V — ‘W such that for
alge Gandv €V,

p(gv = t(g)e(v).
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Representations
00000®0000

An irreducible representation p : G — GL('V) is one for which
whenever a subspace W € V admits p(G)(W) € ‘W, we either
have W = Vor W = 0.
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Representations

0000008000

Given a nonzero, proper subspace W C 'V such that p(G)W € W,
then there exists a subspace W’ such that V = W @ W and
p(GYW C W,

We have restricted representations p; : G — GL('W) and
02 : G — GL(W’) such that

p = p1®D p2.

This can be continued until p = p1 @ --- @ px, where p; is
irreducible forall 1 < j <k.
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Representations
0000000800

The decomposition into irreducibles is unique up to representation
isomorphism and reordering.
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Representations
0000000080

Write d, = dim('V) for the dimension of a representation
0:G — GL(V).
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Representations
0000000008

Up to representation isomorphism, each finite group G has a finite
number of irreducible representations p. The set of all such p, up
to isomorphism, is denoted G. Note that the order

Gl =) d2.

peG
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Characters
©000000000000

A character of a representation p is a homomorphism

Xp: G — GL(C) = C* given by g — tr(p(g)).
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Characters
0®00000000000

Equivalently, we could define a character to be a general group
homomorphism y : G — C*.
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Characters
00®0000000000

Let x, y € G. We say x and y are conjugate if there existsa g € G

so that gxg~! = y.
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TS
00000000

The subset of G of all conjugates of an element x € G is called the
conjugacy class Cl(x) € G.
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Characters
0000@00000000

Observe that if y is a character, then y is fixed on the conjugacy
class Cl(x) for all x € G:

x(gxg™h) = x()x()x(g™" = x(x).
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Characters
0000080000000

Let f1, f> : G = C be two functions. Then, there is an “inner
product”

(f1. )G Z f1(2) f2(2)*.

| geG
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Characters
000000@000000

Let p : G — GL(V) be a representation. Let y, : G — C* be its
character. Likewise, let p’ be an irreducible representation with
character y,. Then, (xp, o) tells us the number of times p’ is in
the decomposition p = p1 @ -+ @ pi of irreducibles.
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Characters
0000000e00000

If p(g) and p’(g) are unitary for all g € G, then we have the nice
form

> xe@xp(e™h.

geG

(Xp’ Xp |G|
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Characters
0000000080000

Fix x € G. Then, x, is fixed on Cl(x), taking only the value y,(x).

Then, |G|
2 1xe()1* = s
pEG
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Characters
0000000008000

Consider a C-linear space 'V =~ CIG!. Fix an ordering
G =1{g1,....,8n}, so that we can write down a basis 8 of V given

by B ={eg,.....€g,}
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Characters
0000000000800

The regular representation pg : G — GL(V) is the
homomorphism given by g = (oG (g) : ep > egp).

That is, we are just G-permuting the basis.

[{ILLINOIS

D. E. Wicains Hippen Suscrours AND QuANTUM COMPUTATION



Characters
0000000000080

G = {p1,...,pr}, then

®d, &d,
pG =p; @ Dp, K.
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Characters
000000000000

The regular character, denoted x ¢, is the character y,.;, which is

0, gFe

XG(g)ZdeXp(g)Z G|, g=e.

peG
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Abelian Groups
©000000000000000

Let G be finite and abelian. Then, it is certainly finitely generated.
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Abelian Groups
0®00000000000000

Recall that by the fundamental theorem of finitely generated
abelian groups, we know that

GZ" ®Z/p1®--DZ/pk.

Further, since |G| is finite, we do not have any of the Z summands.
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Abelian Groups
00®0000000000000

Thus, we have a form

G~=Z/p1® - DZ/py.
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Abelian Groups
000®000000000000

Show that all irreducible representations of G are 1-dimensional.
That is, for all p € G, the dimension d, = 1.
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Abelian Groups
0O000e00000000000

Observe that for any character y,

h.
1O 10 =)
jth

forsome hj € {0,1,..., p; — 1}.
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Abelian Groups
00000®0000000000

Thus, any character y is precisely given by a tuple (A1, ..., hg), in
bijective correspondence with elements 7 € G.
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Abelian Groups
0000008000000000

For all g € G, define a character y; : G — C* by

k

gAhA

he TTa™.
Jj=1
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Abelian Groups
0000000®00000000

It is easy to see that forall g, h € G,

Xz (h) = xn(g)

and
1

—h) = ——.
Xg( ) Xg(h)
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Abelian Groups
0000000080000000

Write y(G) for the set of all such y,. This is a group, taking the
operation xg x5 = Yg+h- Theidentityis y : G — 1.

It is a brief check to show that y(G) ~ G.
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Abelian Groups
000000000e000000

Let X € G. Anelement g € G is orthogonal to X if yg(x) = 1 for
allx € X.
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Abelian Groups
0000000000e00000

Let H < G be a subgroup. Then, there is the orthogonal subgroup

HJ‘={geG:)(g(x)= 1 forall x € H}.
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Abelian Groups
00000000000e0000

If H is a normal subgroup, then G/H ~ H~. Also, (H+)* = H.
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Abelian Groups
000000000000e000

The abelian oFr is the operator

Fg = ﬁ > xg(h)|g)hl.

g,heG
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Abelian Groups
0000000000000e00

Of use will be the translation operator

= |h+g)g

geG

and the phase operator

on =Y xg(h)gXel.

geG

BYILLINOILS

D. E. WicGINs Hippen SuBcrours AND QuaNTUM COMPUTATION 41/ 44



Abelian Groups
00000000000000e0

By brute force, if we write

then Fg |H) = |H™L).
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Abelian Groups
000000000000000e

Finally, observe the following useful relation:

Fegty, = ¢pFe.
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Outlook
o

Next time we will discuss
(i) the finite abelian Hsp.
(ii) standard algorithm like those of Simon and Shor.

After this, we will take a glance at progress on the nonabelian Hsp.
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