HIDDEN SUBGROUPS AND QUANTUM COMPUTATION LECTURE 06

DHEERAN E. WIGGINS

Summer 2025
Illinois Mathematics and Science Academy

July 25, 2025

Overview

- 1 Representations
- 2 Characters
- 3 Abelian Groups
- 4 Outlook

Representation theory is beautiful in its own right, but it is also incredibly powerful in mathematical and physical applications. In particular, it allows us to define a QFT for arbitrary finite groups G.

I will be omitting proofs, as I did when discussing the rudiments of groups and vector spaces, for the sake of time. I highly recommend working through some of the claimed results on your own time—most are just computational.

Let G be a finite group. Let $\mathcal V$ be a finite dimensional $\mathbb C$ -linear space.

$$\varphi: \mathcal{V} \to \mathcal{V}$$
.

We call such φ the automorphisms of \mathcal{V} . When discussing representation theory, it is a bit more common to write GL(V) for the group Aut(V).

Representations o cononno

A representation of *G* is a group homomorphism $\rho : G \to GL(V)$.

Since $\dim(V) = n$ is finite, we know that for all $g \in G$, $\rho(g)$ is effectively a matrix in $M_n(\mathbb{C})$. We will take for granted that we can choose our basis in such a way that ρ is a unitary matrix, i.e.,

$$\rho(g)^{\dagger}\rho(g) = \rho(g)\rho(g)^{\dagger} = I.$$

An isomorphism of representations $\rho: G \to GL(V)$ and $\tau: G \to \operatorname{GL}(W)$ is a linear isomorphism $\varphi: \mathcal{V} \to W$ such that for all $g \in G$ and $v \in \mathcal{V}$,

$$\rho(g)v = \tau(g)\varphi(v).$$

An irreducible representation $\rho: G \to GL(V)$ is one for which whenever a subspace $W \subseteq V$ admits $\rho(G)(W) \subseteq W$, we either have W = V or W = 0.

We have restricted representations $\rho_1: G \to GL(W)$ and $\rho_2: G \to \mathrm{GL}(\mathcal{W}')$ such that

$$\rho = \rho_1 \oplus \rho_2.$$

This can be continued until $\rho = \rho_1 \oplus \cdots \oplus \rho_k$, where ρ_i is irreducible for all 1 < i < k.

The decomposition into irreducibles is unique up to representation isomorphism and reordering.

Write $d_{\rho} = \dim(\mathcal{V})$ for the dimension of a representation $\rho: G \to \mathrm{GL}(\mathcal{V}).$

$$|G| = \sum_{\rho \in \widehat{G}} d_{\rho}^2.$$

A character of a representation ρ is a homomorphism $\chi_{\rho}: G \to \mathrm{GL}(\mathbb{C}) = \mathbb{C}^{\times}$ given by $g \mapsto \mathrm{tr}(\rho(g))$.

Equivalently, we could define a character to be a general group homomorphism $\chi: G \to \mathbb{C}^{\times}$.

Let $x, y \in G$. We say x and y are conjugate if there exists a $g \in G$ so that $gxg^{-1} = y$.

The subset of G of all conjugates of an element $x \in G$ is called the conjugacy class $Cl(x) \subseteq G$.

Observe that if γ is a character, then γ is fixed on the conjugacy class Cl(x) for all $x \in G$:

$$\chi(gxg^{-1}) = \chi(g)\chi(x)\chi(g^{-1}) = \chi(x).$$

Let $f_1, f_2 : G \Rightarrow \mathbb{C}$ be two functions. Then, there is an "inner product"

$$\langle f_1, f_2 \rangle_G = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g)^*.$$

Let $\rho: G \to \operatorname{GL}(\mathcal{V})$ be a representation. Let $\chi_{\rho}: G \to \mathbb{C}^{\times}$ be its character. Likewise, let ρ' be an irreducible representation with character $\chi_{\rho'}$. Then, $\langle \chi_{\rho}, \chi_{\rho'} \rangle_G$ tells us the number of times ρ' is in the decomposition $\rho = \rho_1 \oplus \cdots \oplus \rho_k$ of irreducibles.

If $\rho(g)$ and $\rho'(g)$ are unitary for all $g \in G$, then we have the nice form

$$\langle \chi_{\rho}, \chi_{\rho'} \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \chi_{\rho'}(g^{-1}).$$

Fix $x \in G$. Then, χ_{ρ} is fixed on Cl(x), taking only the value $\chi_{\rho}(x)$. Then,

$$\sum_{\rho \in \widehat{G}} |\chi_{\rho}(x)|^2 = \frac{|G|}{|\mathrm{Cl}(x)|}.$$

Consider a \mathbb{C} -linear space $\mathcal{V} \simeq \mathbb{C}^{|G|}$. Fix an ordering $G = \{g_1, \dots, g_n\}$, so that we can write down a basis β of \mathcal{V} given by $\beta = \{e_{g_1}, \dots, e_{g_n}\}.$

That is, we are just *G*-permuting the basis.

If
$$\widehat{G} = \{\rho_1, \dots, \rho_k\}$$
, then

$$\rho_G = \rho_1^{\oplus d_{\rho_1}} \oplus \cdots \oplus \rho_k^{\oplus d_{\rho_k}}.$$

The regular character, denoted χ_G , is the character χ_{ρ_G} , which is

$$\chi_G(g) = \sum_{\rho \in \widehat{G}} d_\rho \chi_\rho(g) = \begin{cases} 0, & g \neq e \\ |G|, & g = e. \end{cases}$$

Let *G* be finite and abelian. Then, it is certainly finitely generated.

Recall that by the fundamental theorem of finitely generated abelian groups, we know that

$$G \simeq \mathbb{Z}^r \oplus \mathbb{Z}/p_1 \oplus \cdots \oplus \mathbb{Z}/p_k$$
.

Further, since |G| is finite, we do not have any of the \mathbb{Z} summands.

$$G \simeq \mathbb{Z}/p_1 \oplus \cdots \oplus \mathbb{Z}/p_k$$
.

Show that all irreducible representations of *G* are 1-dimensional. That is, for all $\rho \in \widehat{G}$, the dimension $d_{\rho} = 1$.

$$\chi(0,\ldots,1,\ldots,0)=\zeta_{p_j}^{h_j},$$

for some $h_i \in \{0, 1, \dots, p_i - 1\}$.

Thus, any character χ is precisely given by a tuple (h_1, \ldots, h_k) , in bijective correspondence with elements $h \in G$.

For all $g \in G$, define a character $\chi_g : G \to \mathbb{C}^{\times}$ by

$$h\mapsto \prod_{j=1}^k \zeta_{p_j}^{g_jh_j}.$$

$$\chi_g(h) = \chi_h(g)$$

and

$$\chi_g(-h) = \frac{1}{\chi_g(h)}.$$

Write $\chi(G)$ for the set of all such χ_g . This is a group, taking the operation $\chi_g \chi_h = \chi_{g+h}$. The identity is $\chi_e : G \mapsto 1$.

It is a brief check to show that $\chi(G) \simeq G$.

Let $X \subseteq G$. An element $g \in G$ is orthogonal to X if $\chi_g(x) = 1$ for all $x \in X$.

Let $H \leq G$ be a subgroup. Then, there is the orthogonal subgroup

$$H^{\perp} = \{ g \in G : \chi_g(x) = 1 \text{ for all } x \in H \}.$$

If H is a normal subgroup, then $G/H \simeq H^{\perp}$. Also, $(H^{\perp})^{\perp} = H$.

$$F_G = \frac{1}{\sqrt{|G|}} \sum_{g,h \in G} \chi_g(h) |g\rangle\langle h|.$$

$$\tau_h = \sum_{g \in G} |h + g\rangle\langle g|$$

and the phase operator

$$\varphi_h = \sum_{g \in G} \chi_g(h) |g\rangle\langle g|.$$

$$|H\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |h\rangle\,,$$

then
$$F_G |H\rangle = |H^{\perp}\rangle$$
.

Finally, observe the following useful relation:

$$F_G \tau_h = \varphi_h F_G$$
.

Next time we will discuss

- (i) the finite abelian нsр.
- (ii) standard algorithm like those of Simon and Shor.

After this, we will take a glance at progress on the nonabelian HSP.

