HIDDEN SUBGROUPS AND QUANTUM COMPUTATION Lecture 05

DHEERAN E. WIGGINS

Summer 2025
Illinois Mathematics and Science Academy

July 18, 2025

Overview

- 1 Cyclic Quantum Fourier Transform
- 2 Efficient Computation of the QFT
- 3 Cyclic Hidden Subgroup Problem
- 4 Outlook

Today we will define the quantum Fourier transform (QFT) on \mathbb{Z}/n . Then, we will talk about the cyclic case of the HSP.

Say Q is a register of size n. Let S and T be subregisters so that $S \cup T = Q$. Then, we write $|\eta \zeta\rangle = |\eta\rangle \otimes |\zeta\rangle$ to mean that S is in the state $|\eta\rangle$ and T is in the state $|\zeta\rangle$.

Recall that we use the notation $|0\rangle, \dots, |N-1\rangle$ for the "computational" basis vectors of a space $\mathcal{H} \simeq \mathbb{C}^N$.

Let N > 1 be an integer. Let R be a qubit register of size $n \ge \log N$. Then, the cyclic quantum fourier transform is

$$F_N = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} \sum_{k=0}^{N-1} e^{\frac{2\pi i \ell k}{N}} |\ell\rangle\langle k|.$$

The factor of $N^{-1/2}$ ensures that F_N is unitary on the state space, and thus fits in our circuit model.

Our goal, per the statement of the HSP, is to find a set X such that $\langle X \rangle = H$, assuming we have full capability to compute

$$f: |x\rangle \otimes |y\rangle \mapsto |x\rangle \otimes |f(x) \oplus y\rangle$$
.

Note that we *do not* have access to the values |H|, h, or H itself.

Write $\Phi: G \to \mathcal{H}$ for the map taking each $g \in G = \mathbb{Z}/n$ to the computational basis vector $|g\rangle \in \mathcal{H}$.

Since H is a (cyclic) subgroup, we can write $H = \langle h \rangle$ for some $h \in H$. Then,

$$\Phi(H) = \{|0\rangle, |h\rangle, |2h\rangle, \dots, |(|H| - 1)h\rangle\} \subseteq \mathcal{H}.$$

$$\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} |\ell\rangle \otimes |0\rangle.$$

Then, apply the black box function f:

$$\frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} |\ell\rangle \otimes |f(\ell)\rangle.$$

$$\frac{1}{\sqrt{|H|}} \sum_{\varphi \in \Phi(H)} |\ell_m + \varphi\rangle = \frac{1}{\sqrt{|H|}} \sum_{s=0}^{|H|-1} |\ell_m + sh\rangle,$$

where the second expression comes from the fact that $H = \langle h \rangle$.

$$\frac{1}{\sqrt{|H|}} \sum_{s=0}^{|H|-1} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i (\ell_m + sh)k}{N}} |k\rangle.$$

Simplifying gives

$$\frac{1}{\sqrt{|H|N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i \ell_{mk}}{N}} |k\rangle \sum_{s=0}^{|H|-1} e^{\frac{2\pi i shk}{N}}.$$

$$\sum_{s=0}^{|H|-1} e^{\frac{2\pi i s h k}{N}} = \begin{cases} 0, & |H| \nmid k \\ |H|, & |H| \mid k. \end{cases}$$

$$|\psi_f\rangle = \frac{1}{\sqrt{h}} \sum_{t=0}^{h-1} e^{\frac{2\pi i \ell_m t |H|}{N}} |t|H|\rangle.$$

If $\mathfrak{U}=\{\mathcal{U}_i\}_{i\in I}$ is a set of quantum circuits which compute the QFT over a set of groups $\{G_i:|G_i|<\infty$ for all $i\}_{i\in I}$, then we call \mathfrak{U} efficient if for all $i\in I$, the size of \mathcal{U}_i is polynomial in $\log |G_i|$.

https://arxiv.org/pdf/quant-ph/0411037.

Measuring $|\psi_f\rangle$ returns a scaling $\lambda |H|$ for $\lambda \in \{0, ..., h-1\}$, where there value of λ is uniformly distributed.

Cyclic Hidden Subgroup Problem

•0000000

Applying the measurement several times gives a collection of scalings $\mathcal{C} = \{\lambda_{\alpha} | H | \}_{\alpha}$. Taking the GCD of \mathcal{C} yields | H | with high probability.

Cyclic Hidden Subgroup Problem

The computation of $gcd(\mathcal{C})$ can be done via the Euclidean algorithm with complexity $O(\log^2(N))$, where $\log(N)$ is the number of digits in N.

Cyclic Hidden Subgroup Problem

$$\mathcal{C} = \{\lambda_1 | H |, \dots, \lambda_k | H | \}.$$

Cyclic Hidden Subgroup Problem

Lemma

Suppose we have $k \geq 2$ uniformly random samples $\lambda_1, \ldots, \lambda_k$ from the set $\{0, 1, ..., h-1\}$, where h > 2. Then,

$$\mathbb{P}(\gcd(\lambda_1,\ldots,\lambda_k)=1)\geq 1-2^{-k/2}.$$

Cyclic Hidden Subgroup Problem

Let G be a cyclic group generated by g with |G| = n. Then,

- (i) for all $H \leq G$, $H = \langle h \rangle$ for some h.
- (ii) for all $H \leq G$, $|H| \mid n$.
- (iii) for all (positive) divisors $d \mid n$, there is precisely one subgroup $H \leq G$ such that |H| = d. Further, $H = \langle g^{N/d} \rangle$.

Cyclic Hidden Subgroup Problem

If we can ascertain |H| with high probability from our procedure, then we can easily recover H, and thus, a generating set $X = \{g^{N/d}\}$ of H.

Cyclic Hidden Subgroup Problem

Therefore, running the described process a reasonable enough k-times determines H with high probability, no matter the choices of N and h.

Cyclic Hidden Subgroup Problem

Next time we will discuss

- (i) character theory of finite abelian groups.
- (ii) the general, finite abelian нsp.
- (iii) Simon's and Shor's algorithms.

After this, we will be prepared to delve into a bit more representation theory and progress on the nonabelian HSP.

