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Today we will look at a restriction of the notion of an abelian group

called a vector space. In particular, we will focus our attention to

C-linear spaces, developing the language of inner products and

Dirac’s bra-ket notation.
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Quantum mechanics is traditionally framed in the language of

Hilbert spaces. Since quantum computation considers finite

dimensional systems with n physical qubits, we may restrict

ourselves to the theory of finite dimensional Hilbert spaces.

Luckily for us, finite dimensional Hilbert spaces are only a slightly

enriched version of finite dimensional vector spaces. This brings us

to our discussion of linear algebra.

D. E. Wiggins Hidden Subgroups and Quantum Computation 4 / 34



Vector Spaces Inner Products Dirac Notation Outlook

A complex vector space is a triple .V ;C; �/, where

.�/C .�/ W V2 ! V is an operation and .�/.�/ W C�V ! V is an

action C Õ V .

In particular, .V ;C/must form an abelian group, and the action is

a way to multiply vectors in V by scalars in C. We require that

(i) for all v 2 V , 1v D v.

(ii) for all ˛1; ˛2 2 C and v 2 V , .˛1˛2/v D ˛1.˛2v/.

(iii) for all ˛1; ˛2 2 C and v 2 V , .˛1 C ˛2/v D ˛1v C ˛2v.

(iv) for all ˛ 2 C and v1; v2 2 V , ˛.v1 C v2/ D ˛v1 C ˛v2.
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An element v 2 V of the form

v D ˛1v1 C ˛2v2 C � � �˛nvn D

nX
iD1

˛ivi ;

where vi 2 V and ˛i 2 C, is called a linear combination.
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A subset S � V is linearly independent if there does not exist an

s 2 S so that s is a linear combination of elements in S .
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A subspace W � V is a nonempty subset which is closed under

addition and scalar multiplication.
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Let S � V be a subset. Then,

spanS D

(
nX

iD1

˛ivi W ˛i 2 C and vi 2 V

)
:

That is, spanS is the subspace of all linear combinations of

elements in S . In fact, this is the smallest subspace of V containing

S , so we could call it the subspace generated by S , as we did with

subgroups.
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A basis ˇ of a vector space V is a linearly independent, minimal

(with respect to cardinality) spanning set of V .
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Assuming the axiom of choice, we get the following.
1

Theorem

Every vector space has a basis.

Without choice, we are restricted to “finite dimensional” spaces,

though then we would have to define a finite dimensional vector

space as one which is finitely generated, as opposed to the

basis-dependent definition which follows.

1
Andreas Blass showed (1984) that the existence of bases

implies the axiom of choice, so the statements are, in fact,

equivalent.
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The dimension of a vector space V is the cardinality of any basis ˇ

of V . We write dim V D jˇj.
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A vector space homomorphism (linear transformation) is an

abelian group homomorphism ' W V1 ! V2 such that for all ˛ 2 C
and v 2 V ,

'.˛v/ D ˛'.v/:

That is, a linear transformation is a function which preserves the

additive and scalar multiplicative structure.
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As before, a bĳective linear transformation ' W V ! W is called an

isomorphism. When such a ' exists, we write V ' W .
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Theorem

Every finite dimensional (complex) vector space with dim V D n admits
an isomorphism V ' Cn.
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For instance, the space of matrices Mm�n.C/ is of dimensionmn,

so there is an isomorphism

' WMm�n.C/! Cnm:
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Denote by HomC.V1;V2/ the set of vector space homomorphisms

from V1 toV2.

Then, HomC.V1;V2/ is a C-linear space.
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An inner product on H is a map

.�;�/ W H �H ! C

satisfying, for all v1; v2 2 H ,

(i) .v1; v2/ D .v2; v1/
�
.

(ii) linearity in the second argument.

(iii) .v1; v1/ � 0, where equality holds if and only if v1 D 0.
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An inner product space is a pair .H ; .�;�// consisting of a vector

space and an inner product.

D. E. Wiggins Hidden Subgroups and Quantum Computation 19 / 34



Vector Spaces Inner Products Dirac Notation Outlook

For our purposes, a Hilbert space will be any finite dimensional

inner product space.
2

2
The more analytic definition you may have seen

arises when considering infinite dimensional spaces.
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Let .H ; .�;�// be a (finite dimensional) Hilbert space; let

' W H ! H be a linear transformation. Then, the adjoint of ' is a

transformation '� W H ! H such that

.'v1; v2/ D .v1; '
�v2/; v1; v2 2 H :
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When dim H D n <1, we have that '�
corresponds to taking the

conjugate transpose of the matrix representing '.
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Given a space H , the dual space H� is the space HomC.H ;C/.

It is common to call such a homomorphism H ! C a linear

functional.
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Given an element v 2 H , there is an induced functional v� 2 H�

which, in finite dimension n, corresponds to taking0B@v1
:::

vn

1CA
�

D
�
v�1 � � � v�n

�
:
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The usual inner product on Cn
is given by

.v1; v2/ D v
�
1v2 D

nX
iD1

v�1i
v2i
:
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In 1939, Paul Dirac introduced the bra-ket notation for doing linear

algebra in the context of quantum mechanics.

While it remains unused (and often, unknown) by many

mathematicians, it is ubiquitous in quantum.
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Given a Hilbert space H associated to our quantum system, we call

the vectors in H kets, denoting them by

j i 2 H :
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The elements of H� are called bras, denoting the functional

associated to a ket j i 2 H by

h j 2 H�:
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We define the inner product (or braket) of j i and j'i in H by

j i� j'i D h j'i :
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The outer product (or ketbra) of j i and j'i in H is given by

j i j'i� D j ih'j :
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The braket h�j�i W H �H ! C is precisely the standard inner

product, whereas the ketbra j�ih�j W H �H ! HomC.H ;H /

corresponds, in finite dimension n, to the product0B@v1
:::

vn

1CA
0B@w1
:::

wn

1CA
�

D

0B@v1
:::

vn

1CA�w�1 � � � w�n
�
;

which is a matrix in Mn.C/ ' HomC.C
n;Cn/.
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The standard basis for Cn
, usually denoted by0BBB@

1

0
:::

0

1CCCA ;
0BBB@
0

1
:::

0

1CCCA ; : : : ;
0BBB@
0

0
:::

1

1CCCA ;
is instead written j1i ; j2i ; : : : ; jni.
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It is worth noting, however, that for C2
we usually write

j0i D

�
1

0

�
and j1i D

�
0

1

�
:
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Next time we will discuss

(i) tensor products H ˝K .

(ii) group representations � W G ! Aut.V/.
Then, we can begin discussing the postulates of quantum

mechanics and rudiments of quantum computation.
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