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Today we will cover some preliminaries which should mostly be
review. Exercises will cover the basics of sets and groups.
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Many of the quintessential quantum algorithms can be
reinterpreted as instances of the hidden subgroup problem (asp).

To develop the language of the Hsp, we must first be comfortable
with the rudimentary properties of an algebraic structure known
as a group.
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Naive Set Theory
©0000

In mathematics, we like collecting things. For all relevant
purposes, we call a collection of any mathematical objects a set.

We say the objects in a set are its elements. If S is a set, then we
write x € § to say that x is an element of S.
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Naive Set Theory
0@000

(i) To combine sets, we use the union: S U T is all of S and all of
T in a single set.

(ii) To restrict sets, we use the intersection: S N T is the smallest
subset contained in both § and 7.

(iii) To subtract sets, we use the set difference: S \ T is the subset
of S containing only those elements which are notin 7'.
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Naive Set Theory

[e]e] le]e}

Some standard sets include
(i) N=1{0,1,2,...}.
(i) Z=4{...,—-2,-1,0,1,2...} = —=NUN.
(i) @ ={p/q : p.q € Zand q # 0}.
(iv) R, C, My(C), ...
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Naive Set Theory
000@0

A function f : S — T from S to T is a rule which assigns
uniquely to each s € S an element f(s) € T

If f: S — T is both injective and surjective, it is called a bijection
(or, isomorphism of sets). We write S >~ T'.
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Naive Set Theory
0000®

The (Cartesian) product of two sets S x T is the set
{(s,t):s € Sandt € T}.
If S = T, we will often write S x S = S2, and likewise for

S x--ex §=8"

N— —
n times
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Group Theory
000000

Collections of objects are useful in their own right, but often we
need a way to systematically combine the objects.

A group is a pair (G, ), where G isasetand (—) - (—) : G — G is
a binary operation, satisfying associativity, the existence of an
identity, and the existence of inverses.
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Group Theory
000000

Some standard groups are
(i) Z, Q, R, or C with addition.
(i) Z/n ={0,...,n — 1} with addition modulo #.

(iii) the invertible n x n complex matrices GL,(C) € M, (C) with
multiplication.

(iv) the dihedral group D,.

(v) the (direct) product of groups G x H with componentwise
operations.
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Group Theory
000000

Since every group (G, -) has, in particular, an underlying set G, we
can talk about functions ¢ : G — H between groups.

However, we want the image ¢(G) € H to be a group as well. A
(group) homomorphism is a function ¢ : G — H between groups
such that for all g1, g» € G, we have

p(g1-g2) = v(g1) - ¢(g2).

A bijective homomorphism is called an isomorphism of groups, in
which case we write G >~ H.
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Group Theory
000800

Oftentimes, we will care about whether a subgroup H < G is
invariant under conjugation. This warrants some jargon.

A subgroup H < G is called normal if forall g € G, the set gHg ™!
is contained in H. We write H <1 G.
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Group Theory
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In fact, normal subgroups actually give us a way to build new
groups from old. If H <1 G is a normal subgroup, then define the
quotient G/H by

G/H ={gH : g € G}

with operation
(g1H) - (g2H) = g182H.
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Group Theory
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The most useful (for our purposes) example of a quotient group
willbe Z/nZ. Check that nZ = {nk : k € Z} is a subgroup of Z.
Then, the quotient is exactly

tk+nZ:k eZj.
Further, the quotient operation tells us that
(k+nZ)y+ (L +nZ)=k+{+nZ,

so we can identify k +nZ € Z/nZ with k (mod n) inZ/n.

D. E. Wicains Hippen SusGrours AND QuUANTUM COMPUTATION



Finitely Generated Abeliar
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We have seen some examples of groups, how to define
structure-preserving functions between them, and how to form
quotients.

We now focus in on the class of groups which are finitely generated
and abelian.
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Finitely Generated Abeliar
080000

A group G is called abelian if for all g1, g2 € G, we have

8182 = 8241-

That is, an abelian group is one in which the operation is
commutative.
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Finitely Generated Abelian Groups
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If S C G is a subset of group elements, we write (S) for the
smallest subgroup of G which contains all the elements in §.
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Finitely Generated Abeliar
000800

If H < G is given by (S), where S is a finite set {g1,...,gn} € G,
then we say H is finitely generated.
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Finitely Generated Abeliar
000000

Unlike with the general theory of groups, groups which are both
finitely generated and abelian have a clean classification.
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Finitely Generated Abelian Groups

O0000e

Theorem

Every finitely generated abelian group G is isomorphic to
Z" XZ/py X+ XZ]pn,

where r > 0 is called the rank, and each of the py, for 1 <k <mn,isa
power of a prime.
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Outlook
o

Next time we will introduce some additional structure:
(i) (finite-dimensional) C-linear spaces V.
(ii) Dirac notation for linear algebra.
(iii) inner products (—|—):V xV — C.
Once we have built up groups and C-linear spaces, we can talk
about group representations p : G — Aut('V).
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