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Q: Why should we be interested in computing the commutant of
the Clifford group?

A: The image of Clifford twirling is contained in the commutant.
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Paur1 Grour

The Pauli matrices are

01 0 —i 1 0
x=(1 o) v=(0 ) e z=(3 %)

In U, they generate the 1-qubit Pauli group P;. Taking all n-fold
tensor products

01R02® - ®oy, o€ Py

we obtain the n-qubit Pauli group.
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Paur1 Grour

Quotienting by phases (il) yields a group
Po=A{L,X,Y,Z}*".

Denote all m-tuples of operators in P, by P,
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StaBiLiZER CODES

The fixed subspace of abelian subgroups (without —I®") of the
n-qubit Pauli group give rise to stabilizer codes—-the quintessential
sort of error-correcting code.
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CrirrOrRD GROUP

The Clifford group C, is the subgroup of U» given by

C,= {C € Uopn - CoCl e Py forallo € Py, up to phases} .
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RanpboM CrLirrorD GATES

To study the effects of applying random Clifford gates to a system,
we characterize averaging over the Clifford group using k-fold
twirling.

The Haar measure allows us to define k-fold twirling for any
subgroup G C Uy:. We focus on Cy,.
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Let k be a number, G C Uy be a subgroup, and K be k copies of an
n-qubit Hilbert space (i.e., of dimension 2%).

ILLINOIS

N. SuesHko & D. E. Wicains CommuTaNT OF THE CLIFFORD GROUP 9/ 38



Preliminaries and Motivation
000000080000

COMMUTANT

The k-fold commutant of G is the C-algebra

Com(G®F) = {p eB(K) : U pu® = pforall U e G} :
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CLIFFORD TWIRLING

The Clifford twirling (super)operator is

q)(k) C®k T®k_
Cl | n| c%c:
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CLIFFORD TWIRLING

Lemma

Let U € C, be an arbitrary Clifford operator. Then, for all X € B(K)

k k
il U = o) (x).

That is, the image ol )( B(K)) € Com(CZF).
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CLIFFORD TWIRLING

Proof.

For any Clifford operator C € C,,
UT®kc®kxctek @k — (UTC)®kX(UTC)T®k.

Left multiplication UT x — : C, — C, is a bijection, so we have just
reindexed the twirling sum. O
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TwWIRLING

In fact, the same holds for twirling (via the Haar measure) over any
group G C Uon. Just use the invariance properties.
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If we can find a nice basis for Com(C®*), we can then write down
any averaged Clifford operator in terms of this basis.
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In [GNW21], a basis is found when k < n + 1. This basis is built
from operators of the form

n(T)= > |l

(x,y)ET

where T C FX & I is a stochastic Lagrangian subspace with respect
to a symplectic form (see later on Robust Hudson Theorem).
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DiMmENSsION

This construction tells us

k=2

dim (Com(C,?k)> =[[@ +v.

j=0

That is, when k < n + 1, the dimension is independent of #.
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ADJACENCY MATRIX

LetI' = (V, E) be a finite graph with m vertices vy, . . ., Uy,.
The adjacency matrix .A(I") is an operator in M, (F,) defined by

1, (vi,v;) €E
0, otherwise.

A)ij =
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ANTICOMMUTATION GRAPH

Let P = (P, Py, ...,Py) € P)'. The anticommutation graph of P
has

(i) m vertices Py, ..., Py,.
(ii) edges between anticommuting pairs (P;, P;).

Write A(P) for the adjacency matrix of the above graph.
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Now, a useful fact:

Lemma ([BELT25], Lemma 17

Let P € P) be algebraically independent. Let Q € £P)" be algebraically
independent with signs. Then, there exists a Clifford C € C, such that

Ccpct = Q.

if and only if
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When m = 2n, the Clifford operator is given by

C(X) = % R (pgx> O,

a€clFy
where .
P, = pr‘f, acFy
=1
and likewise for Q. O
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Idea, continued.

If m < 2n, we can complete both P and Q with 2n — m algebraically
independent Pauli operators while keeping the adjacency matrices
agreeing.

That we can do this relies on the canonical graph form of any
anticommutation graph. O]
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INDEPENDENT GRAPH-BASED PAULI MONOMIALS

Definition

Let G € Sym,(F3 ") be a symmetric binary matrix, and
V € Even(FX*™). We define independent graph-based Pauli
monomials as

Ui([V,G]) = > Hp®”f
pep;m j=1
A(P)=G

P alg ind.

|5[Vc]|

i.e., the sum runs over the set of algebraically independent Pauli
operators P = (Py,...,Py).
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ORrTHOGONAL Basis oF THE COMMUTANT

Theorem

The set of independent graph-based Pauli monomials
{O1([V, G])}veEven(ng’"),G €Sym, (F1™) forms an orthogonal basis of the

commutant Com(CZ¥).

Proof Sketch. The commutant is precisely the image of the twirling
map

k 1
ol (P) = r

> c¥kpciek,
CGCn

Now it can be shown that V and G are invariant under the action of
C, so we can combine the monomials with equivalent V and G

together. m
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PauLt MoNOMIALS

Let M € Sym,(F3*™), and V € Even(F5*™). The Pauli monomial,
denoted by 2(V, M) is defined as

1
QV.M) = o 3 PRSP | T (e )M |

PeP i,j€[m]
i<j
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GrarHIicAaL CALCULUS
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Figure: Adding first column to the

Figure: Graphical representation second
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GRAPH-BASED PPAULI MONOMIALS

Let G € Sym,(F5*™), and V € Even(IF5*™). The graph-based
Pauli monomials is defined as

B(V,G) :=dlm 3 ﬁPj@””,

PEPn ]:1
A(P)=G

where A(P) denotes the adjacency matrix of the

anticommmutation graph associated with the set {Py, ..., Py}
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Connection Between Different Bases

Pauli monomials 2(V, M) and graph-based Pauli monomials
U(V, G) are related via a linear Fourier transform:

Q.M = > (-)ZMISIBY,G).
GeSym,(F3 ")

Also there is a bijection between graph-based Pauli monomials and
independent graph-based Pauli monomials.

Corollary

The sets {QU(V, M)}y m, {O(V,G)}y g, and {U1(V, G) }y g generate
the same vector space.
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CLIFFORD-WEINGARTEN CALCULUS

Let q)(ckl) (O) be the k-fold twirling operator O € B(KC) and let P be the set
of (reduced) Pauli monomials. Then it reads

ol0)= Y W e tr(0Q)
0,0 eP

where we call the coefficients (W ™1)q o Clifford-Weingarten functions,
which can be obtained as the (pseudo-)inverse of the Gram-Schmidt
matrix Wa o = tr(Q1Q).
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CLIFFORD-WEINGARTEN CALCULUS

Theorem

Let W the Gram-Schmidt matrix, and let W™ be its inverse. Let
n > k? — 3k + 7. Then the properties

_ 1| _ 6|P)?
1

‘(W )0 = | <

_ 5P|

W gl < TPE

hold true.
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DE FINETTI THEOREM FOR STABILIZER SYMMETRIES

Recall the regular de Finetti theorem:

Theorem

Let p be a quantum state on (C*)®* that commutes with all permutations.

Then, there exists a probability measure (v on the space of mixed states on

C¥ such that .

2

P / dpi(c)o®

S
<2072
1 k
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DE FINETTI THEOREM FOR STABILIZER SYMMETRIES

Let’s add symmetries. For qudits with d being prime, consider the
additional group of symmetries Ok(d) consisting of k x k- matrices
with entries in Z; which are orthogonal and such that the sum of
elements in each row is equal to 1 (mod d). We call this group
stochastic orthogonal group.

Theorem

Let d be a prime and p a quantum state on ((C%)®") € that commutes
with the action of O(d). Then, there exists a probability distribution p on
the (finite) set of mixed stabilizer states of n qudits, such that

< Zd% (2n+2)2d— % (k—s) ]

Pl.s — ZP(JS)O—?S
os

1
2
1
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RoBust HubsoN THEOREM

Let x = (p,q) € Z*". Define the Wey! operator
W, = _T*P'@(Zlﬂleh) QR R (ZPann)_

Consider a symplectic form on Z*' by [x,x'| =p-q’' —q-p'. Then
for any operator B on (C?)®" one can define the Wigner function
wWg: Zﬁ” — Cby

wp(x) =d~ "> w F¥r(WIB)
y

where w = 27/,
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RoBust HubsoN THEOREM

For odd d, the Wigner function of a quantum state is real and
—d™" < wy(x) < d7". Furthermore the Wigner function is a
quasi-probability distribution, i.e., > wy(x) = 1.
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RoBust HubsoN THEOREM

Theorem

A pure state |1)) is a stabilizer state if and only if it has a nonnegative
Wigner function.

For a quantitative version, define sum-negativity of 1 to be

sn(¥) = Y lwy()].

W,y (x)<0
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RoBust HubsoN THEOREM

Let d be odd and 1) a pure quantum state of n qudits. Then there exists a
stabilizer state |S), such that |(S|1h)|*> > 1 — 9d?sn(¢))
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