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Q: Why should we be interested in computing the commutant of

the Clifford group?

A: The image of Clifford twirling is contained in the commutant.
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Pauli Group

The Pauli matrices are

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0

0 −1

)
.

In U2, they generate the 1-qubit Pauli group P1. Taking all n-fold

tensor products

σ1 ⊗ σ2 ⊗ · · · ⊗ σn, σj ∈ P1,

we obtain the n-qubit Pauli group.
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Pauli Group

Quotienting by phases ⟨iI⟩ yields a group

Pn = {I,X,Y,Z}⊗n.

Denote all m-tuples of operators in Pn by Pm
n .
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Stabilizer Codes

The fixed subspace of abelian subgroups (without −I⊗n
) of the

n-qubit Pauli group give rise to stabilizer codes–the quintessential

sort of error-correcting code.
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Clifford Group

The Clifford group Cn is the subgroup of U2
n given by

Cn =
{

C ∈ U2
n : CσC† ∈ Pn for all σ ∈ Pn, up to phases

}
.
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Random Clifford Gates

To study the effects of applying random Clifford gates to a system,

we characterize averaging over the Clifford group using k-fold

twirling.

The Haar measure allows us to define k-fold twirling for any

subgroup G ⊆ U2
n . We focus on Cn.
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Let k be a number, G ⊆ U2
n be a subgroup, and K be k copies of an

n-qubit Hilbert space (i.e., of dimension 2
nk

).
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Commutant

The k-fold commutant of G is the C-algebra

Com(G⊗k) =
{
ρ ∈ B (K) : U†⊗kρU⊗k = ρ for all U ∈ G

}
.
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Clifford Twirling

The Clifford twirling (super)operator is

Φ
(k)
Cl (−) =

1

|Cn|
∑
C∈Cn

C⊗k(−)C†⊗k.
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Clifford Twirling

Lemma

Let U ∈ Cn be an arbitrary Clifford operator. Then, for all X ∈ B(K)

U†⊗kΦ
(k)
Cl (X)U⊗k = Φ

(k)
Cl (X).

That is, the image Φ(k)
Cl (B(K)) ⊆ Com(C⊗k

n ).
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Clifford Twirling

Proof.

For any Clifford operator C ∈ Cn,

U†⊗kC⊗kXC†⊗kU⊗k = (U†C)⊗kX(U†C)†⊗k.

Left multiplication U† ×− : Cn → Cn is a bĳection, so we have just

reindexed the twirling sum.
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Twirling

In fact, the same holds for twirling (via the Haar measure) over any

group G ⊆ U2
n . Just use the invariance properties.
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Basis

If we can find a nice basis for Com(C⊗k
n ), we can then write down

any averaged Clifford operator in terms of this basis.
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Basis

In [GNW21], a basis is found when k ≤ n + 1. This basis is built

from operators of the form

r(T) =
∑

(x,y)∈T

|x⟩⟨y| ,

where T ⊆ Fk
2
⊕ Fk

2
is a stochastic Lagrangian subspace with respect

to a symplectic form (see later on Robust Hudson Theorem).
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Dimension

This construction tells us

dim
(
Com(C⊗k

n )
)
=

k−2∏
j=0

(2j + 1).

That is, when k ≤ n + 1, the dimension is independent of n.
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Adjacency Matrix

Let Γ = (V,E) be a finite graph with m vertices v1, . . . , vm.

The adjacency matrix A(Γ) is an operator in Mm(F2) defined by

A(Γ)i,j =

{
1, (vi, vj) ∈ E
0, otherwise.
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Anticommutation Graph

Let P = (P1,P2, . . . ,Pm) ∈ Pm
n . The anticommutation graph of P

has

(i) m vertices P1, . . . ,Pm.

(ii) edges between anticommuting pairs (Pi,Pj).

Write A(P) for the adjacency matrix of the above graph.
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Now, a useful fact:

Lemma ([BEL
+

25], Lemma 17)

Let P ∈ Pm
n be algebraically independent. Let Q ∈ ±Pm

n be algebraically
independent with signs. Then, there exists a Clifford C ∈ Cn such that

CPC† = Q.

if and only if
A(P) = A(Q).
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Idea.

When m = 2n, the Clifford operator is given by

C(X) =
1

2

∑
α∈Fm

2

tr
(

P†
αX

)
Qα,

where

Pα =

m∏
j=1

Pαj
j , α ∈ Fm

2

and likewise for Qα.
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Idea, continued.

If m < 2n, we can complete both P and Q with 2n − m algebraically

independent Pauli operators while keeping the adjacency matrices

agreeing.

That we can do this relies on the canonical graph form of any

anticommutation graph.
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Independent Graph-based Pauli Monomials

Definition

Let G ∈ Sym
0
(Fm×m

2
) be a symmetric binary matrix, and

V ∈ Even(Fk×m
2

). We define independent graph-based Pauli

monomials as

℧I([V,G]) =
1

|S[V,G]|
∑

P∈P×m
n

A(P)=G,
P alg ind.

m∏
j=1

P⊗vj
j

i.e., the sum runs over the set of algebraically independent Pauli

operators P = (P1, . . . ,Pm).
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Orthogonal Basis of the Commutant

Theorem

The set of independent graph-based Pauli monomials
{℧I([V,G])}V∈Even(Fk×m

2
),G∈Sym

0
(Fm×m

2
) forms an orthogonal basis of the

commutant Com(C⊗k
n ).

Proof Sketch. The commutant is precisely the image of the twirling

map

Φ
(k)
Cl (P) =

1

|Cn|
∑
C∈Cn

C⊗kPC†⊗k.

Now it can be shown that V and G are invariant under the action of

C, so we can combine the monomials with equivalent V and G
together.
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Pauli Monomials

Definition

Let M ∈ Sym
0
(Fm×m

2
), and V ∈ Even(Fk×m

2
). The Pauli monomial,

denoted by Ω(V,M) is defined as

Ω(V,M) :=
1

dm

∑
P∈Pm

n

P⊗v1

1
P⊗v2

2
· · ·P⊗vm

m ×

 ∏
i,j∈[m]

i<j

χ(Pi,Pj)
Mi,j

 ,
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Graphical Calculus

Figure: Graphical representation

Figure: Adding first column to the

second
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Graph-based Pauli Monomials

Definition

Let G ∈ Sym
0
(Fm×m

2
), and V ∈ Even(Fk×m

2
). The graph-based

Pauli monomials is defined as

℧(V,G) :=
1

dm

∑
P∈Pn

A(P)=G

m∏
j=1

P⊗vj
j ,

where A(P) denotes the adjacency matrix of the

anticommmutation graph associated with the set {P1, . . . ,Pm}.
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Connection Between Different Bases

Pauli monomials Ω(V,M) and graph-based Pauli monomials

℧(V,G) are related via a linear Fourier transform:

Ω(V,M) =
∑

G∈Sym
0
(Fm×m

2
)

(−1)
∑

i<j Mi,jGi,j℧(V,G).

Also there is a bĳection between graph-based Pauli monomials and

independent graph-based Pauli monomials.

Corollary

The sets {Ω(V,M)}V,M, {℧(V,G)}V,G, and {℧I(V,G)}V,G generate
the same vector space.

N. Sheshko & D. E. Wiggins Commutant of the Clifford Group 28 / 38



Preliminaries and Motivation Computing the Commutant Applications References

Clifford-Weingarten Calculus

Theorem

Let Φ(k)
Cl (O) be the k-fold twirling operator O ∈ B(K) and let P be the set

of (reduced) Pauli monomials. Then it reads

Φ
(k)
Cl (O) =

∑
Ω,Ω′∈P

(W−1)Ω,Ω′ tr(OΩ)Ω′

where we call the coefficients (W−1)Ω,Ω′ Clifford-Weingarten functions,
which can be obtained as the (pseudo-)inverse of the Gram-Schmidt
matrix WΩ,Ω′ := tr

(
Ω†Ω′).
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Clifford-Weingarten Calculus

Theorem

Let W the Gram-Schmidt matrix, and let W−1 be its inverse. Let
n ≥ k2 − 3k + 7. Then the properties∣∣∣∣(W−1)Ω,Ω − 1

dk

∣∣∣∣ ≤ 6|P|2

dk+1

,

|(W−1)Ω,Ω′ | ≤ 5|P|2

dk+1

,

hold true.
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De Finetti Theorem for Stabilizer Symmetries

Recall the regular de Finetti theorem:

Theorem

Let ρ be a quantum state on (Cℓ)⊗k that commutes with all permutations.
Then, there exists a probability measure µ on the space of mixed states on
Cℓ such that

1

2

∥∥∥∥ρ1...s −
∫

dµ(σ)σ⊗s
∥∥∥∥

1

≤ 2ℓ2
s
k
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De Finetti Theorem for Stabilizer Symmetries

Let’s add symmetries. For qudits with d being prime, consider the

additional group of symmetries Ok(d) consisting of k × k- matrices

with entries in Zd which are orthogonal and such that the sum of

elements in each row is equal to 1 (mod d). We call this group

stochastic orthogonal group.

Theorem

Let d be a prime and ρ a quantum state on ((Cd)⊗n)⊗k that commutes
with the action of Ok(d). Then, there exists a probability distribution p on
the (finite) set of mixed stabilizer states of n qudits, such that

1

2

∥∥∥∥∥ρ1...s −
∑
σS

p(σS)σ
⊗s
S

∥∥∥∥∥
1

≤ 2d
1

2
(2n+2)2

d−
1

2
(k−s).
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Robust Hudson Theorem

Let x = (p, q) ∈ Z2n
. Define the Weyl operator

Wx = −τ−p·q(Zp1Xq1)⊗ · · · ⊗ (ZpnXqn).

Consider a symplectic form on Z2n
by [x, x′] = p · q′ − q · p′. Then

for any operator B on (Cd)⊗n
one can define the Wigner function

wB : Z2n
d → C by

wB(x) = d−2n
∑

y
ω−[x,y]

tr(W†
yB)

where ω = e2πi/d
.
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Robust Hudson Theorem

For odd d, the Wigner function of a quantum state is real and

−d−n ≤ wψ(x) ≤ d−n
. Furthermore the Wigner function is a

quasi-probability distribution, i.e.,

∑
x wψ(x) = 1.
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Robust Hudson Theorem

Theorem

A pure state |ψ⟩ is a stabilizer state if and only if it has a nonnegative
Wigner function.

For a quantitative version, define sum-negativity of ψ to be

sn(ψ) =
∑

wψ(x)<0

|wψ(x)|.
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Robust Hudson Theorem

Theorem

Let d be odd and ψ a pure quantum state of n qudits. Then there exists a
stabilizer state |S⟩, such that |⟨S|ψ⟩|2 ≥ 1 − 9d2

sn(ψ)
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