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Looking at history, math originated, in some sense, via the so-called natural
numbers N´ f1; 2; 3; 4; : : : g. Similarly, we can form the integers Z, the
rationals Q, the reals R, and the complex numbers C. It is worthwhile,
then, to consider counting multiple copies of the same object. Thus, we have
the vague sense of mathematical counting.

Then, algebraic concepts originate from the visual pieces of mathematics
geometry and topology.1 Starting from geometric objects, we may form 1: If counting consists of numbers,

geometry and topology deal with objects
which are “visualizable.”

algebraic objects like groups or modules, which in turn, lead to (co)homology.
Homological algebra is a branch of algebra, studying how we can compute
(co)homology.

We can divide mathematics further, gleaning algebraic geometry: the study
of solutions to polynomial equations. Let p be a polynomial in RŒx�. Then,
it leads to the set V ´ fx W p.x/ D 0g. If R D C, then V � C. This set can
visualized in the complex plane, and thus, is “geometric.” More generally,
we could take a polynomial of several variables p 2 RŒx1; : : : ; xn�. Then,
the corresponding zero-set

V D f.x1; : : : ; xn/ W p.x1; : : : ; xn/ D 0g � Cn

is realizable geometrically, too.

Another instance of geometry inspiring algebra is in geometric group theory.
Starting from a group, in the traditional sense, we can develop pictures
(like a Cayley graph), which are geometric,2 to study the group. 2: In some sense, geometry is perhaps

more fundamental, as our intuitions for
visualization can rederive any ideas in
algebra.

Category theory goes one step further, generalizing our notions of algebra,
geometry, topology, and more. The language of categories and functoriality
can be immensely worthwhile while translating between different classes
of objects. Still, for understanding modules or groups, precisely, the general
language of categories can be less than useful.

1.1 Review of Basic Structures

A group is a pair .G; �/, where G is a set and � is an operation satisfying
associativity, identity, and inverse. In turn, a ring is a triple .R;C; �/, where
R is a set, C makes R an abelian group, and � is associative with unity.
Finally, a field is a triple .F ;C; �/ which is a ring such that � is commutative
and has inverses for nonzero elements of F .

Definition 1.1.1 (Vector Space) A vector space Vover a field F consists of

two operations:

(i) C W V2 ! V

(ii) � W F � V! V,

whereC makes Van abelian group and � is an action by the field of scalars, in

the traditional sense.
3 3: That is, 1Fv D v for all v 2 V.

Also, c.u C v/ D cu C cv. Finally,
.c1Cc2/v D c1vCc2v and c1.c2v/ D
.c1c2/v.
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Definition 1.1.2 (Left R-Module) A (left) R-module M is a triple

.M;R;C; �/, defined the same way as a vector space, except R is an arbitrary

ring.
44: If the ring action comes from the right

side, we call it a rightR-module.

Certainly, every ring can be thought of as a module over itself.

Definition 1.1.3 (Finite Direct Sum) Let A;B be R-modules. The direct sum

A˚ B of A and B is the module

A˚ B ´ f.a; b/ W a 2 A; b 2 Bg D A � B;

where the operations are defined componentwise.
55: In particular, r.a; b/ D .ra; rb/,

which we call a diagonal action.

Definition 1.1.4 (Module Homomorphism) A homomorphism f W A! A0

between R-modules is a group homomorphism with respect toC and f .ca/ D

cf .a/ for all c 2 R.

That is, f must satisfy the commutative square

A A0

A A0

 

!
f

 

!�r

 

! �r

 

!
f

Define the set of all R-module homomorphisms as the set

HomR.A;B/´

�
all R-module

homomorphisms A! B

�
:

What structure could we put on this set? Well, we let f; g W A� B . Then,
define f C g W A ! B by .f C g/.a/ ´ f .a/C g.a/. Furthermore, we
cold define a scalar multiplication on HomR.A;B/ by r � f W A ! B by
.r � f /.a/ D rf .a/. We certainly have that this set forms an abelian group
under the addition. However, the scalar multiplication admits

.rr 0f /.a/ D .r 0r/f .a/

which violates our (left) R-module axioms, as long as R is not

commutative.6 Note that we have the commutative diagram6: That is, the collection of pairwise R-
module homomorphisms is anR-module
ifR is commutative.

A

A˚ B N

B

 
-

!

˛  

!

f

 

!
�

9Š

 -

!

ˇ

 

!
g

The existence of � comes from defining � by �.a; b/ ´ f .a/ C g.b/.
Uniqueness comes via the standard method for such a proof, using
commutativity and the formula for � , � is the only choice.
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This says that the module A˚ B together ˛ and ˇ satisfies the so-called
universal property. In this case, we may say that the coproduct of modules
A and B is the module A

`
B ´ A˚ B with the inclusions ˛; ˇ.

Using the standard trick of duality, reverse the arrows of the coproduct
diagram to glean the product diagram:

A

A � B N

B

� p !

 

f

!

 
�

9Š

�

 

q

!  
g

We call A � B the product of the modules. This product exists in our
category LModR of R-modules7 Namely, the module has the underlying 7: We use the language, though we have

not formally defined a category yet.set A � B . The function � is given by

�.n/´ .f .n/; g.n//:

Remark 1.1.1 In this finite case, the coproduct and product module
coincide.

It is worthwhile to note that the coproduct allows us to construct maps out

of our module A˚ B , whereas the product allows us to construct maps
into our module A � B .

We now wish to construct infinite versions of the coproduct and product of
R-modules. Let fAi W i 2 I g be a family ofR-modules. Then, the coproduct`
I Ai of the Ai is given by the following universal property diagram:

Ai

a
i2I

Ai N

 
-

!

˛  

!

f

 

!
�

9Š

which must commute for all i 2 I .

Does it exist? Thankfully, the answer is yes. The (general) direct sum of the
Ais satisfies this universal property.

Definition 1.1.5 (Direct Sum) We define the direct sum of the Ai to be

M
i2I

Ai ´

(
a W I !

[
i2I

Ai W
a.i/ 2 Ai and

jfi 2 I W a.i/ ¤ 0gj <1

)
:

Define addition pointwise, and likewise for scalar multiplication.

Check that
L
I Ai satisfies the universal property of the coproduct

`
I Ai .

The product of a family fAi W i 2 I g satisfies the universal property given
by the following commutative diagram:
which must commute for all i 2 I .
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Ai

Y
i2I

Ai N

� p !

 

f

!

 
�

9Š

As you may expect, the “categorical” product exists in LModR in the form
of the Cartesian product of the R-modules.

Definition 1.1.6 (Cartesian Product) The Cartesian product of the Ai is the

module Y
i2I

Ai D

�
a W I !

[
i2I

AI W a.i/ 2 Ai
�
;

where operations are given in the pointwise way you would expect.

Again, the projectionspi .a/ are just given bya.i/. For checking the universal
property, we may define � by

�.n/.i/´ fi .n/:

1.2 Categorical Constructions

We now develop a convenient language for discussing structures.

Definition 1.2.1 (Category) A category C consists of the following data:

(i) a collection ob C of objects.
88: Oftentimes this collection is not a set.

We will not pay too much attention to the
foundations here, but NBG would be a
reasonable system to make of use proper
classes, here.

(ii) for any two objects X; Y 2 ob C, a set HomC.X; Y / of morphisms,

written ' W X ! Y or X
'
�! Y .

(iii) for any objects X; Y;Z 2 ob C, a composition operation

ı W HomC.Y;Z/ �HomC.X; Y /! HomC.X;Z/

which is associative.

(iv) for any object X 2 ob C, an identity 1X 2 HomC.X;X/ which satisfies

1X' D ' D  1X for all ' 2 HomC.Y;X/ and  2 HomC.X; Y /.

Example 1.2.1 Some standard examples of categories include

(i) Set of sets and functions.
(ii) Grp of groups and homomorphisms.

(iii) Ab of abelian groups and homomorphisms.
(iv) Ring of rings and homomorphisms.
(v) SetG of G-sets and action-preserving functions.

(vi) LModR of R-modules and homomorphisms.
(vii) Top of (topological) spaces and continuous maps.

(viii) hTop of spaces and homotopy classes of continuous maps.
(ix) � of totally ordered sets and order-preserving functions.
(x) sSet of simplicial sets (Set-valued presheaves on �) and natural

transformations.
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Alternative notations for the direct sum is to write
L
I Ai as the set of sumsP

i2I ai with compact support. We could also write a1 C a2 C � � � C ak ,
where we have some aj 2 Ai.j/ .

Definition 1.2.2 (Free R-Module) A free R-module M is an R-module

isomorphic to a direct sum of the form

M '
M
i2I

R:

A basis forM over R, in the standard sense, is just a subset of M such that
any element ofM can be expressed uniquely as an R-linear combination of
bi with coefficients in R.

Proposition 1.2.1 Every free R-module admits a standard basis.
9 9: We mean fbi g, where bi D 1R in the

i th copy ofR.

Corollary 1.2.2 Every vector space admits a basis.

Example 1.2.2 Consider Z=3 ´ Z=3Z as a Z-module. Then, the
singleton f1g � Z=3 can be used to express 2 D 5 � 1 D 8 � 1 D 2,
so f1g is not a basis. Thus, Z=3 is not free.

Exercise 1.2.1 An R-module is free if and only if it has a basis.

Let I be any set and R a ring. Then, define

RŒI �´
M
i2I

R:

Every element in RŒI � is a finite linear combination

a1b1 C a2b2 C � � � C akbk D
X
i2I

aibi :

Theorem 1.2.3 Any R-module is isomorphic to a quotient of a free module.

Proof. Let M be an R-module. Let S � M be any subset that generates
M .10 We have a set inclusion S ,!M . We claim that this extends uniquely 10: This is generation in the traditional

sense of a substructure.to a surjective R-homomorphism RŒS��M :

M
s2S

R ' RŒS�

S M

 

!
9Š

g

 - !
f

 
-

!

s 7!bs

Define the homomorphism g W RŒS��M explicitly by11 11: That is, define it by extending it R-
linearly.
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g

�X
s2S

as � s
�
´

X
s2S

asf .s/:

The proof of uniqueness follows in the standard way. By the first
isomorphism theorem we get an isomorphism RŒS�= kerg ��!M .

Note that we could have taken f to be any function, rather than the
inclusion. This gives us the universal property of free modules:1212: Here, we call F the free module and

B the basis.

Figure 1.1: The tripleB
�
�! F satisfies the

universal property if for any R-module
M and function f W B !M , there is a
unique g making the diagram commute.

F

B M

 

!
9Š

g

 

!
f

 
-

!

�

Metamathematically, we have made the transition

set theory categories

elements and sets objects and morphisms

 

!

Just to emphasize that not every category is a collection of enriched sets
and functions, consider the category Œ1� given by the picture

�1 �1

 !

10

 

!
f

 !

10

In any category formed of enriched sets, we can form the free object F

which comes with a set function � W B� F so that the following diagram
commutes for any function f 2 HomSet.B;M/.

F

B M

 

!
9Š

g

 

!
f

 
-

!

�

Proposition 1.2.4 The free object in Grp of a set B is the free group F.B/.

Proof. Use the standard construction of the free group as reduced words.
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Proposition 1.2.5 If � W B ! F is not assumed to be injective, the universal

property implies it.

Definition 1.2.3 (Isomorphism) Let C be a category. A morphism f 2

HomC.A;B/ is an isomorphism if there exists g 2 HomC.B;A/ so that

fg D 1B and gf D 1A.
13 13: WriteA ' B .

Definition 1.2.4 (Initial) An initial object in a category C is an object I 2 ob C
such that for any A 2 ob C, there exists a unique morphism f W I ! A.

14 14: That is,

HomC.I;A/ D ff g:

Just looking at the definition, we have no guarantee that such an object
exists. In fact, they often will not.

Lemma 1.2.6 If an initial object exists, it is unique.

Proof. Suppose I and I 0 are initial in C. Then, there exists a unique
morphism f W I ! I 0. Similarly, there is a unique morphism g W I 0 ! I .
Then, gf W I ! I must be 1I . Likewise, fg D 1I 0 . Thus, I ' I 0.

Definition 1.2.5 (Terminal) A terminal object in a category C is an object

T 2 ob C such that for any A 2 ob C, there exists a unique morphism

f W A! T .
15 15: Again, this means

HomC.A;T / D ff g:

Lemma 1.2.7 Terminal objects are up to isomorphism.

Proof. Proceed via duality.

FixA;B 2 ob C. Define a new category A.A;B/, where objects are diagrams
A!M  B and morphisms are commutative squares

A

M M 0

B

 

!

 

!

 

!
'

 

!

 

!

Then, the existence of the coproductA
`
B exists in C if and only if A.A;B/

admits an initial object.16 16: We cuold do this for a family of objects.

This is the general format for any universal property.

Consider a sequence of inclusions in, say, Set or LModR:

A1
'1
2

,�! A2
'2
3

,�! A3 ,! � � � ,! An ,! � � �
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We could take the coproduct of all An and then quotient via the canonical
injection identification. This would give us an analogy for the union of a
finite chain of this sort. The construction of this limiting module is a special
case of the direct limit.

What should the inverse limit be? Well, suppose we have a chain

A1
 2
1
 �� A2

 3
2
 �� A3  � � �  An  � � �

In some sense, we should consider all possible “compatible” sequences,
with respect to the  ji morphisms.

Our goal will be to define the direct and inverse limit in the case of any
indexing set.

Definition 1.2.6 (Direct System) A direct system in C consists of a poset

.I;�/, a family fAi W i 2 I g of C-objects, and morphisms 'ij 2 HomC.Ai ; Aj /

for i � j in I .

Definition 1.2.7 (Direct Limit) The direct limit of a direct system is defined

by the following universal property.

Figure 1.2: Universal property of the
inverse limit

Mi

Mj

lim
�!

Mi X

 

!

'i
j

 

!

 

!
9Š

�

!

 

!

 

!

 

The direct limit is the same thing as a colimit of a diagram/indexing functor
F W CI ! D, where I is our indexing set of the direct system.

Remark 1.2.1 Let I be a set with the discrete order relation: that is, i � i
for all i 2 I and i — j for any distinct i ¤ j 2 I . Then, the colimit of
the direct system is precisely the coproduct.

Definition 1.2.8 (Inverse Limit) The inverse limit of a direct system is defined

by the given universal property, flipping all arrows in the definition of the

colimit.

Again, the inverse limit is the same thing as a limit of the diagram F W

CI ! D, where I is our indexing set.

Remark 1.2.2 Mirroring the dual case before, the discrete case yields
the universal property of the product.



1.2 Categorical Constructions 11

Mi

Mj

lim
 �

Mi X

!

 

 
j

i

!

 

!

 
9Š

�

 

!

 

!

 

!

Figure 1.3: Universal property of the direct
limit

Does this limit exist in LModR?

Theorem 1.2.8 The limit exists for any inverse system of R-modules

M1

 2
1
 ��M2

 3
2
 �� A3  � � �  Mn  � � � :

Proof. Pick a sequence .mi /i2I . This is just a map

m W I !
[
j2I

Aj ;

which is an element of the Cartesian product. Define17 17: This is our candidate for

lim
 �
Mi :

L´ f.mi /i2I W  
j
i .mj / D mi for all i � j g �

Y
i2I

Mi :

Define ˛i W L ! Mi for each i 2 I by ˛i ..mk/k2I / ´ mi .18 We wish 18: This is essentially the projection
restricted toL, keeping compatability.to check that for all i; j 2 I , for all x 2 L, . ji ı j̨ /.x/ D ˛i .x/. Write

x D .mk/k2I : �
 
j
i ı j̨

�
.mk/ D  

j
i .mj / D mi D ˛i .mk/:

as x 2 L. Suppose fi W X ! Mi and fj are chosen so that for all i � j ,
 
j
i ı fj D fi . Define � W X ! L by

�.x/´ .fk.x//k2I :

We wish to check ˛i ı � D fi :

.˛i ı �/.x/ D ˛i ..fk.x//k2I / D fi .x/;

for all x 2 X . Suppose � 0 W X ! L is another morphism making satisfying
the same universal property. That is,˛iı� 0 D fi . Look at the pieces �.x/ 2 L,
which is of the form .mk/k2I , and fi .x/ D mi . Similarly, � 0.x/ D .m0

k
/k2I ,

and fi .x/ D m0i D mi . Thus, � and � 0 agree in terms of assignment for all
i 2 I , so � D � 0. Thus, lim

 �
Mi D L is the desired inverse limit.
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Theorem 1.2.9 The colimit exists for any direct system of R-modules

A1
'1
2
�! A2

'2
3
�! A3 ! � � � ! An ! � � � :

Left as an Exercise. The construction follows by taking the coproduct of the
modules, then taking the quotient by where the modules agree.

1.3 Functors and Exactness

Recall that the kernel of a homomorphism ' W A! B is the fiber over zero,
written ker'. We now define the dual notion.1919: In categorical language, the kernel

and cokernel can be defined up to
isomorphism via a universal property.
Though, the category needs a zero object
(both initial and terminal).

Definition 1.3.1 (Cokernel) Given a homomorphism ' W A! B , the cokernel

is given by

coker' ´ B='.A/:

Recall that HomR.A;B/ D HomLModR.A;B/ admits that structure of a
Z-module, or abelian group. We could view this process as “functoral:”

B 7! HomR.A;B/ or A 7! HomR.A;B/:

Definition 1.3.2 (Functor) A (covariant) functor is a rule F W C! D with

the following data:

(i) for all c 2 C, an object F.c/ 2 D.

(ii) for all f W c ! c0 2 C, a morphism F.f /µ f� W F.c/! F.c0/ 2 D.

(iii) if g and f are composable in C, then F.gf / D F.g/F.f /.2020: In the star notation, we have

.g ı f /� D g� ı f�:
(iv) for all c 2 C, F.idc/ D idF.c/ 2 HomD.F.c/; F.c//.

Definition 1.3.3 (Contravariant Functor) A contravariant functor G W C!
D has the same data as a covariant functor, except for any f W C! C0, we have

G.f /µ f � W G.c0/! G.c/;

so composition admits G.gf / D G.f /G.g/.2121: In the star notation, this becomes

.g ı f /� D f � ı g�:
We define a covariant functor:

LModR LModZ D Ab

A HomR.X;A/

B HomR.X;B/

 

!
HomR.X;�/

 
!

f

 �

!

 

!

f�W˛ 7!f ı˛

 �

!

 �

!
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That is, f�.˛/ is given by post-composition with f . Let f W A ! B and
g W B ! C . We want to show that .g ı f /� D g� ı f�:

.g ı f /�.˛ W X ! A/ D .g ı f / ı ˛

D g ı .f ı ˛/

D g ı .f�.˛//

D g�.f�.˛//

D .g� ı f�/.˛/:

Checking the other axioms is quick. Thus, HomR.X;�/ is a (covariant)
functor. As you might expect, we now define a contravariant functor:

LModR LModZ D Ab

A HomR.A; Y /

B HomR.B; Y /

 

!
HomR.�;Y /

 

!

f

 �

!

 �

!

 �

!

 

!

f �Wˇ 7!ˇıf

That is, f �.ˇ/ is given by pre-composition with f .22 Again, check the 22: We call these new covariant and
contravariant functors Hom functors, or
the representable functors.

functoriality axioms.

Definition 1.3.4 (Exact Sequence) A sequence of modules Ai 2 LModR with

morphisms between given by
23 23: More generally, a bi-infinite sequence

where kernels are contained in images,
rather than equality, is called a chain

complex.� � � ! A1
@1
��! A2

@2
��! A3 ! � � �

is called exact if for all i , ker @i D im @i�1.

Definition 1.3.5 (Short Exact Sequence) In LModR, a short exact sequence

is one of the form

0! A! B ! C ! 0:

Consider the covariant Hom functor F . Run a sequence of modules
through:

� � � ! F.A1/
@1�
���! F.A2/

@2�
���! F.A3/! � � � :

Naturally, we may ask the following: if our sequence of modules is exact, is
the new sequence of abelian groups exact. The answer is no.24 Instead, try 24: This is a very good thing, which yields

nontrivial homology.applying the functor to a short exact sequence

0! A
i
�! B

p
��! C ! 0;

yielding

0! HomR.X;A/
i�
��! HomR.X;B/

p�
��! HomR.X; C /! 0
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Certainly, our setup ensures that i and p are injective and surjective,
respectively. Excluding the final term of the sequence ! 0, the new
sequence will be exact. We call this sort of condition, excluding the right
hand zero, left exactness.

Lemma 1.3.1 The functor HomR.X;�/ is left exact.
2525: That is, given a short exact sequence,

the resulting sequence after applying the
functor, will be left exact.

Proof. We want to check that i� is injective. Let f W X ! A be a
homomorphism of R-modules be so that i�.f / D i ı f D 0. That is, for all
x 2 X , .i ı f /.x/ D 0B . Since i is an injection, this forces f .x/ D 0, so
f D 0 2 HomR.X;A/, meaning ker i� D 0, as desired.

Now, we want i�.Hom.X;A// � kerp�. Given i.A/ � kerB , we can
equivalently write p ı i D 0 2 HomR.A; C /. Then, our original statement
is equivalent to

p� ı i� D 0 W HomAb .HomR.X;A/;HomR.X; C //

Well, p ı i D 0 implies that p� ı i� D 0� D 0.

Finally, we want kerp� � i�.Hom.X;A//. Let g 2 kerp�. Then, g W X ! B

is such that p�.g/ D 0, so p ı g D 0. For all x 2 X , .p ı g/.x/ D 0, so
p.g.x// D 0, meaning g.x/ 2 kerp � i.A/. Yet, i W A� B is an injection.
We claim there exists a lift

A B C

X

�

!
i  

!
p

 

!

h

9

 

!

g

 

!

0

defined by h.x/´ a, where a is the unique element in A such that g.x/ D
i.a/.26 Certainly, i.h.x// D g.x/. Thus, g D i ıh D i�.h/ 2 i�.Hom.X;A//,26: Uniqueness comes from the fact that

i is injective. the image.

Remark 1.3.1 Every functor F W C ! D, in particular, gives rise to a
function

HomC.c; c
0/! HomD.F.c/; F.c

0//:

Some of the properties of the Hom functors are actually true of any so-called
additive functor.

Definition 1.3.6 (Additive Category) An additive category is a category C in

which each HomC.c; c
0/ has a structure of an abelian group. Also, composition

must be a bilinear operation on C, and C must admit all finitary biproducts.
2727: It is a consequence of the first two

axioms that the finitary products and
coproducts agree.

Example 1.3.1 It should be clear that LModR is an additive category, from
what we have done so far.

Definition 1.3.7 (Additive Functor) A functor F W C! D between additive
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categories C and D if each function

HomC.c; c
0/! HomD.F.c/; F.c

0//

is a group homomorphism.

Example 1.3.2 The reason we care about noncommutativeR is as follows.
LetG ´ �1.X; x0/, the fundamental group of a space. Certainly,G could
be nonabelian. In this case, the group ring ZG with integral coefficients
is noncommutative.

Definition 1.3.8 (Contravariant Left Exact) A contravariant additive functor

G W C! D is left exact if the truncated exact sequence
28 28: The implied 0! can be removed–it

is equivalent.
.0!/A! B ! C ! 0 2 C

yields an exact sequence
29 29: Note that if we realize a contravariant

functor as a functor Cop ! D, then the
notions of left exactness agree.0! Hom.C; Y /! Hom.B; Y /! Hom.A; Y / 2 D:

Lemma 1.3.2 The functor HomR.�; Y / is left exact.

Proof. Complete as an exercise.

1.4 Tensor Products

We will define the notion of a tensor product of two modules, written
A ˝R B . Note that if A is a right R-module, we will write AR. Based
on the notion of the tensor product, we can guess that A 2 RModR and
B 2 LModR.

Given right and left R-modules A and B , consider the following universal
property.

A � B A˝R B

G

 

!

f

 

!
.�/˝.�/

 

!

9Š

f 0 Figure 1.4: Preview of tensor product
universal property

Before we continue, it is worth noting that if we have the triangle

A B

C

 �˛

 

!ˇ  

!




9
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then it is equivalent to saying ker˛ � kerˇ. We say ˇ “factors through”
˛.

Remark 1.4.1 (Motivation) The goal and intuition behind our
construction of A ˝R B to be an abelian group together with formal
elements a˝b. Furthermore, we want these to generate any other element
of the abelian group. Plus, we need the following properties:3030: Also, while taking the direct sum

yields additive dimensions for vector
spaces, we want the tensor product to
yield multiplicative dimensions.

(i)
ar ˝ b D a˝ rb:

(ii)
.aC a0/˝ b D a˝ b C a0 ˝ b:

(iii)
a˝ .b C b0/ D a˝ b C a˝ b0:

In particular, if R � R0 as a subring, then

R˝R R
0
'Ab R

0:

The terminal goal of this, in turn, is to be able to change coefficients.

Definition 1.4.1 (Universal Property of Tensor Product) The tensor product

of A 2 RModR and B 2 LModR is an abelian group C D A˝R B together

with an R-biadditive function

.�/˝ .�/ W A � B ! A˝R B

satisfying the universal property that for anyR-biadditive map f W A�B ! G

to G 2 Ab, there exists a unique homomorphism f 0 W A˝R B ! G such tha

the corresponding diagram commutes.

Definition 1.4.2 (R-Biadditive) A function f W A � B ! G between two

modules and a group G is called R-biadditive if:
3131: We avoid sayingR-bilinear, as we take

G 2 Ab, not LModR .
(i) f .ar; b/ D f .a; rb/.

(ii) f .aC a0; b/ D f .a; b/C f .a0; b/.

(iii) f .a; b C b0/ D f .a; b/C f .a; b0/.

Theorem 1.4.1 (Existence of Tensor Product) The tensor product A˝R B

exists in LModR.

Proof. First, let F ´ ZŒA �B�. Then, define a map A �B ,! ZŒA �B� by
.a; b/ 7! 1 � .a; b/. Define the subgroup K � ZŒA � B� generated by

K ´

*
.ar; b/ � .a; rb/;

.aC a0; b/ � .a; b/ � .a0; b/;

.a; b C b0/ � .a; b/ � .a; b0/

+
:

Define the quotient map ZŒA � B�� ZŒA � B�=K. We now have a map
.�/˝ .�/ from A � B to ZŒA � B�=K via the composition. Then, certainly
our construction forces˝ to be biadditive. Now, our goal is to satisfy the
universal property. Consider the following diagram.
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A � B A˝R B

ZŒA � B�

G

 

!

f

8

 

!
.�/˝.�/

 
-

!
i

 

!

9Š

f 0

 

�
�

 

! '

We know ' exists by extending f linearly against the inclusion i W A�B ,!

ZŒA � B�. Then, K D ker� � ker', as f is an R-biadditive map. Thus,
f 0 exists, per our extension question from before. All that remains is
uniqueness, which follows by our generation of A˝R B via the a˝ b.

Corollary 1.4.2 From the construction,

fa˝ b W a 2 A; b 2 Bg � A˝R B

generates A˝R B .
32 32: As before, we can consider functoral

mapsA 7! A˝R B andB 7! A˝R B .

Lemma 1.4.3 Given homomorphisms f W A! A0 2 RModR and g W B !

B 0 2 LModR, they induce a homomorphism of abelian groups

f ˝ g W A˝R B ! A0 ˝R B
0:

Proof. See the diagram33 33: Define '.a; b/ D f .a/˝ g.b/. We
get '0 via the universal property:

'0.a˝ b/´ '.a; b/

on generators.
A � B A˝R B

A0 ˝R B
0

 

!
.�/˝.�/

 

!'
 !

'0

Call f ˝ g´ '0.

We define a covariant functor

LModR LModZ D Ab

B A˝R B

B 0 A˝R B
0

 

!
A˝R.�/

 

!

g

 �

!

 

!

idA˝g

 �

!

 �

!

Likewise, define .�/˝R B W RModR ! Ab in the intuitive way.
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Proposition 1.4.4 (Tensor Distribution) We have an isomorphism�M
i2I

Ai
�
˝R B '

M
i2I

.Ai ˝R B/:

Proof. The generators of the left-hand side could be mapped to .ai /˝ b 7!
.ai ˝ b/. First, define�M

i2I

Ai
�
� B

'
������!

M
i2I

.Ai ˝R B/

..ai /; b/ 7������! .ai ˝ b/;

which is biadditive. We have a '0 by the universal property. Moreover,
'0 W .ai / ˝ b 7! .ai ˝ b/ on simple tensors. Fix j . We want to define
 W aj ˝ b 7! . j̨ .aj //˝ b, where j̨ W Aj ,!

L
Ai .3434: Check that '0 and  0 are inverses.

Remark 1.4.2 That is,˝ commutes with˚.

Proposition 1.4.5 We have R˝R R ' R.

For free modules, we have

RŒX�˝R RŒY � '
M
x2X

R˝R
M
y2Y

R '
M
x2X

M
y2Y

R ' RŒX � Y �:

Thus, if R D F , a field, then dim.V˝F W/ D dim.V/dim.W/.

Proposition 1.4.6 We have

HomR

�M
i2I

Ai ; B
�
'

Y
i2I

HomR.A;B/:

Proof. The forward map is f 7! .fi /i2I .

Proposition 1.4.7 We have

HomR

�
A;
Y
i2I

Bi
�
'

Y
i2I

HomR.A;Bi /:

Proof. The forward map is f 7! �if .

1.5 Tensor-Hom Adjunction and Naturality

We want a way to define the hom-set from a tensor product A˝R B to an
object C . We need the structures to agree.
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Definition 1.5.1 (.R; S/-Bimodule) Let R and S be rings. An .R; S/-

bimodule is anM in LModR and RModS such that

.rm/s D r.ms/:

Let C be a right S -module. Consider the symbol

Hom�S .A˝R B;C /:

Then, we would have to force B to be an .R; S/-bimodule, so that A˝R B
is a right S module. In particular, we can define on the basis elements35 35: Verify that this is well-defined using

the coset construction of the tensor
product..a˝ b/s´ a˝ .bs/:

We may now state the adjoint isomorphism lemma.

Lemma 1.5.1 There is an isomorphism

�ABC W Hom�S .A˝R B;C / ��! Hom�R.A;Hom�S .B; C // 2 Ab:

Sketch of Proof. Begin by noting that B induces a right R-module structure
on Hom�S .B; C /:

.gr/.b/´ g.rb/:

Take any f 2 Hom�S .A ˝R B;C /. We will send it to an
f 0 2 Hom�R.A;Hom�S .B; C // given by

f 0.a/.b/´ f .a˝ b/ 2 C:

The following must be checked:

(i) Show that f 0 is a right R module homomorphism.
(ii) Define �ABC .f /´ f 0. Show that �ABC is a homomorphism in Ab.

(iii) Show that �ABC is a bĳection.

Corollary 1.5.2 If F is a field and A;B are in VectF , then

L.A˝B; F / ' L.A;B�/:

Definition 1.5.2 (Natural Transformation) Given two functors F;G W C�
D, a natural transformation � W F ) G is a class of morphisms

f�c W F.c/! G.c/ 2 D W c 2 Cg

such that for any morphism f W c ! c0 2 C, we have F.f /�c0 D G.f /�c .

Definition 1.5.3 (Natural Isomorphism) A natural isomorphism is a natural

transformation � W F ) G such that for all c 2 C, �c W F.c/! G.c/ is an

isomorphism.
36 36: You will also hear this referred to as

an equivalence.
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Figure 1.5: The commutative diagram of
a natural transformation � W F ) G

F.c/ F.c0/

G.c/ G.c0/

 

!�c

 

!
Ff

 

! �c0

 

!
Gf

Proposition 1.5.3 The �ABC can be viewed as a natural isomorphism in A and

in C . That is,

(i) if we fix B;C , then

Hom�S .�˝R B;C /
��BC
HHHH) Hom�R.�;Hom�S .B; C //

is a natural isomorphism.

(ii) if we fix A;B , then

Hom�S .A˝R B;�/
�AB�
HHHH) Hom�R.A;Hom�S .B;�//

is a natural isomorphism.

Proof. Complete the proof as an exercise.

Definition 1.5.4 (Adjoint) A pair of functors F W C! D and G W D! C
are adjoint if there exists a natural isomorphism

3737: We then say that there is an adjunction

between C and D.
HomD.F.c/; d/ ' HomC.c; G.d//:

Remark 1.5.1 (Adjoint Pair) Then, we say G is left adjoint to F , and F is
right adjoint to G. An adjoint pair is often written .G; F /.

Proposition 1.5.4 Consider functors

F ´ .�/˝R B W RModR ! RModS

and

G ´ Hom�S .B;�/ W RModS ! RModR:

Then, .G; F / is an adjoint pair.
3838: This follows formally after the adjoint

isomorphism lemma and the proposition
of naturality are shown.

Example 1.5.1 Note that if we consider R as an .R;R/-bimodule, then
R ˝R R is an .R;R/-bimodule, which is isomorphic to R. In turn, we
may conclude that R ' R˝R R in Ring.

Lemma 1.5.5 The functor A˝R .�/ W RModR ! Ab is right exact.

That is, for any exactB 0 ! B ! B 00 ! 0 the induced sequenceA˝RB 0 !
A˝R B ! A˝R B

00 ! 0 is exact. This can be shown directly, or indirectly
via the tensor-Hom adjunction.
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In topology, we study the related geometric notions of simplicial complexes,
cell complexes, and topological spaces. These geometric constructions can
provide useful motivation for our algebraic tools.

2.1 (Co)Homology of (Co)Chain Complexes

Definition 2.1.1 (n-Simplex) The standard n-simplex �n is the convex hull

of nC 1 points in Euclidean n-space.
1 1: That is, the 0-simplex is a point,

whereas the 3-simplex is the standard
tetrahedron.

Suppose we are working with a simplicial complex with 11 edges. We
could define the boundary homomorphisms,

0! Z4 @2
��! Z11 @1

��! Z7
! 0;

where each @i has a domain of i -dimensional simplices. Since the Zi ' Z˚i

is free, it suffices to define on the basis @1.e1/´ v2�v1, where e1 connects
the vertices v1  v2. Then, define @2.f / to be the sum of the edge.
For cell complexes, we could generalize to disks and define boundary
homomorphisms, and likewise for topological spaces, we could work with
the so-called singular chains.

Definition 2.1.2 (Chain Complex) A chain complex is a sequence .C�; @�/ of

R-modules and R-module homomorphisms

� � � ! C2
@2
��! C1

@1
��! C0

@0
��! C�1

@�1
���! C�2 ! � � �

such that for all i 2 Z, @i ı @iC1 D 0.
2 2: That is, Im @iC1 � ker @i .

Remark 2.1.1 Often, as seen in the definition above, we suppress the
indices and write C� to mean Ci , or

L
i2Z Ci .

Definition 2.1.3 (Homology) The homology of a chain complex C� is a

sequence of R-modules

Hi .C�/´ ker @i
ı

Im @iC1:

Then, if two objects in Simp, the category of simplicial complexes, are
isomorphic, then they yield identical chain complexes. The same holds
going from Top to chain complexes. Thus, chain complexes are a topological
invariant.3 3: In turn, so is homology.

Proposition 2.1.1 If C� is exact, thenHi .C�/ D 0 for all i .
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Remark 2.1.2 We will suppress notation further, writingH�.C�/.44: The � means two different things in
either case.

Definition 2.1.4 (Cochain Complex) Built out of duality, a cochain complex

of R-modules is a sequence .C �; ı�/

� � �  C 2
ı1

 �� C 1
ı0

 �� C 0
ı�1

 ��� C�1  � � �

such that for all i , Im ıi�1 � ker ıi .

Definition 2.1.5 (Cohomology) The cohomology of a cochain complex is the

sequenceH �.C �/ of R-modules

H i .C �/´ ker ıi
ı

Im ıi�1:

Formally, there is not much difference between homology of chain
complexes and cohomology of cochain complexes.

Definition 2.1.6 (Exact) An additive functor F W LModR ! Ab is exact if for

any short exact sequence in LModR, the induced sequence is short exact.
55: That is, it is one which is left and right

exact.

Example 2.1.1 The non-exactness of the tensor functor happens in the
“left part” of the sequence. Thus, the tensor product does not preserve
the injectivity. Note that since .�/˝R B is right exact, so is A˝R .�/.
On the other hand, we saw that both Hom functors are left exact.66: Again, this means Hom does not

preserve surjectivity.

Informally, the Hom functors changes coefficients. Our goal is to use
the non-exactness of the tensor and Hom functors to produce nontrivial
homology. Note that the contravariant Hom functor HomR.�; B/ takes
chain complexes to cochain complexes.

2.2 Resolutions

A common construction is to take a R-moduleM , and then form

� � � ! C2 ! C1 ! C0 !M ! 0! � � �

which is exact at every index. IfM is a module, can one construct an exact
sequence as above such that each Ci is free?

Definition 2.2.1 (Free Resolution) A free resolution of M 2 LModR is an

exact sequence F� of the form

� � � ! F2 ! F1 ! F0 !M ! 0! � � � ;

where the F� are all free.

Lemma 2.2.1 For any moduleM , there is a free resolution.
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Proof. Proceed by induction on n, for Fn. Construct F0 and a surjective
˛0 W F0�M , using the universal property. We wish to build

F1 F0 M 0

ker˛0

 

�˛0
1

 

!
˛1  

!
˛0  

!

 
-

!

�0

Repeat the process.7 7: Picking our Fn is not unique, so free
resolutions are certainly not, either.

Let F be a free module and

B
p
��! C ! 0

be exact. Further, suppose f W F ! C is an arbitrary homomorphism.
Then, there is a g so that the following diagram commutes:

F

B C 0

 

! f
 

!

g

9

 �
p

 

! Figure 2.1: Lifting property for R-
modules

Theorem 2.2.2 The lifting property holds for free modules.
8 8: We abbreviate the statement using the

diagram above.

Proof. We have F ' RŒX� for some X . Define g on the basis X :

g.x/´ b 2 p�1.f .x//;

where we pick b arbitrarily, using that p is a surjection. Extend g by
linearity.

Definition 2.2.2 (Projective Module) A module P 2 LModR is projective if

it satisfies the above lifting property.

We saw that free implies projective. Let P be projective and let

0! A! B ! C.! 0/

be a short exact sequence. Consider the functor HomR.P;�/, yielding an
exact sequence

0! HomR.P;A/! HomR.P;B/! HomR.P; C /:

Well, the f of the lifting property is in HomR.P; C /. Since P is projective,
there is a g 2 HomR.P;B/ so that p� W g 7! f D p ıg. Thus, the existence
of lifting for 0! A! B ! C is equivalent to the surjectivity of p�.
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Lemma 2.2.3 A left R-module P is projective if and only if the functor

HomR.P;�/ is exact.

Definition 2.2.3 (Split Exact Sequence) A short exact sequence

0! A
i
�! B

p
��! C ! 0

is split
99: Or, there exists a splitting. if there exists a homomorphism s W C ! B such that ps D idc .

Figure 2.2: Diagram of a split exact
sequence. We call s a section.

0 A B C 0

 

!

�

!
i

 �p
 

!

s

 

!

Proposition 2.2.4 If a short exact sequence, as above, splits, then B ' A˚C .

Lemma 2.2.5 Let P be a left R-module. Then, the following are equivalent.

(i) P is projective.

(ii) Any short exact sequence of the form

0! A! B ! P ! 0

splits.

(iii) P is isomorphic to a direct summand of some free module.

Proof. The direction (i)) (ii) is easy via

P

0 A B P 0

(

( idP
 

!

g

 

!

�

!
i  �p  

!

We know there is a g W P ! B such that pg D idP .10 Now, for (ii)) (iii),10: This is exactly (ii).
let P be given, and let F be a free module such that there exists a surjective
homomorphism p W F � P .11 We can turn this into11: Again, we are guaranteed that one

such module and homomorphism exists.

0! kerp ,! F
p
��! P ! 0:

Then, (ii) tells us that p admits a section s W P � F such that ps D idP .
Then, we get a decomposition F ' P ˚ kerp.12 Finally for (iii)) (i), we12: That is, P is a direct summand of F .
know P is a direct summand of some free module F D P ˚Q. Then,

Figure 2.3: By the lifting property for F ,
there is a g so that pg D fq. Define
h´ gj . Check that h solves the lifting
problem.

P ˚Q ' P �Q F P

B C 0

!

!
'

 �q

!

 -
j

 

!

g

 

! h

 

! f

 �
p

 

!
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Example 2.2.1 Not all projective modules are free. Consider Z=6 in the
form of equivalence classes, as a Z=6-module. We could consider hŒ2�i and
hŒ3�i, the former of which is isomorphic to Z=3, and the latter of which
is isomorphic to Z=2, in LModZ=6. We certainly have an isomorphism

Z=6 ' Z=3˚Z=2;

so Z=3 is projective.13 13: It is a summand.Yet, 3 is prime, so it is not free over Z=6.

Definition 2.2.4 (Projective Resolution) A projective resolution of an R-

module A is an exact sequence

� � �
@2
��! P1

@1
��! P0

@0D"
���! A! 0! � � � ;

such that P� is projective.

Definition 2.2.5 (Truncated Resolution) A deleted (or truncated) resolution

PA D P� of an R-module A is a sequence

� � �
@2
��! P1

@1
��! P0

0
�! 0:

2.3 Tor and Ext

We now wish to glean homology from these resolutions. Yet, these
resolutions are exact, so we should apply a functor of some sort.14 This 14: Certainly, an exact chain complex

admits trivial homology.naturally brings us to our first definition of Tor.

Definition 2.3.1 (Tor I) Let A be a right R-module and B be a left R-module.

Pick a projective resolution PA� A, then apply .�/˝R B to the truncated

sequence PA:

� � � ! P1 ˝R B
@1˝idB
������! P0 ˝R B ! 0:

Then, we define

TorRn .A;B/´ Hn.PA ˝R B/ D ker.@n ˝ idB/
ı

Im.@nC1 ˝ idB/:

Immediately, we give a second definition of Tor.15 15: You should have two questions after
seeing these defintions. Notably, is Tor
resolution independent? And, do our
definitions coincide.Definition 2.3.2 (Tor II) Pick a projective resolutionQB � B . Then, apply

A˝R .�/ to the truncated sequenceQB . Define

TorRn .A;B/´ Hn.A˝R QB/ D ker.idA˝@n/
ı

Im.idA˝@nC1/:

In the interest of dualizing, we will move on to the notion of injective
modules and Ext.
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Definition 2.3.3 (Injective Module) A module I is called injective if it

satisfies that for all exact sequences B  A  0, and for any f W A ! I ,

there is a g W B ! I so that I satisfies the extension property.

Figure 2.4: The extension property for the
injective module I

I

B A 0

 

!g

9

�!

i

 

!

f

 

!

Note that if we have a sequence B
p
��! C ! 0, we can fill in

0! kerp ! B ! C ! 0:

Likewise, if we have a sequence 0! A
i
�! B , we can fill in1616: Recall that

coker i ´ B=i.A/
0! A! B ! coker i ! 0:

Definition 2.3.4 (Injective Resolution) An injective resolution of a module

B is an exact sequence of the form

� � �
ı1

 �� I 1
ı0

 �� I 0  B  0;

where I � is injective.

Theorem 2.3.1 For any module B , there exists an injective resolution.

Proof. See Rotman for the proof.

We can now state our definitions of Ext.

Definition 2.3.5 (Ext I) Let A be a left R-module and B be a left R-module.

Pick a projective resolution PA� A, and then apply HomR.�; B/ to PA:

� � �  HomR.P1; B/
@�
1
 �� HomR.P0; B/ 0:

Then, we define

ExtnR.A;B/´ Hn.HomR.PA; B// D ker.@�nC1/
ı

Im.@�1/:

Alternatively, we could use injective resolutions.

Definition 2.3.6 (Ext II) Pick an injective resolution B� IB . Then, apply

the HomR.A;�/ functor, and define

ExtnR.A;B/´ Hn.HomR.A; I
B// D ker.ın�/

ı
Im.ın�1� /:

Note that there are functors

TorR� .�; B/ W RModR ! ChMod
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and
Ext�R.�; B/ W LModR ! CoMod:

2.4 (Co)Homology of Groups

Given a group G and the ring Z, we can form the group ring ZG of G over
Z.17 The underlying set is given by ZG ´ ZŒG�. 17: If you like, we could takeRG, for an

arbitrary ringR.
Then, addition is defined�X

g2G

agg
�
C

�X
g2G

bgg
�
D

X
g2G

.ag C bg/g:

Multiplication, being careful, you must write18 18: Reduce modulo when products
g1g2 D g

0
1g
0
2 agree.�X

g12G

agg1
��X

g22G

bgg2
�
D

X
g1

X
g2

.ag1bg2/.g1g2/:

Pick a left R-module B , where R´ ZG. Then, we define the homology of

G with coefficients in B by

Hn.G;B/´ TorZG
N .Z; B/:

Explicitly, first pick a free (or projective) resolution of Z over ZG. That
is, let Z be a right ZG-module, taking the trivial right G-action. That is,
1 � g´ 1.

We have a sequence

� � � ! F2 ! F1 ! F0 ! Z! 0

in RModZG . Truncated, we have

� � � ! F2 ! F2 ! F0 ! 0:

We apply .�/˝ZG B . Then, take the homology.

Similarly, pick B 2 LModZG . Then, we define the cohomology of G with

coefficients in B by
Hn.G;B/´ ExtnZG.Z; B/:

Explicitly take a resolution as before, but consisting of ZG-modules. Apply
HomZ.�; B/, and then take cohomology.

Remark 2.4.1 (Alternative Convention for Topology) Sometimes, we
wish to defineHn.G;B/whereHn.G;B/´ TorRn .B;Z/. This is useful
when we want G ' �1.X; x0/, of some nice space .X; x0/ 2 Top�.

This was, in sense, a topologically motivated construction of the
(co)homology of groups. What about an algebraic approach?

Let G be a group. Denote

Fn´ ZŒGnC1� D ZŒG � � � � �G™
nC1

�:
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An element of GnC1 is a tuple .g0; : : : ; gn/, where gi 2 G. Define
homomorphisms

� � � ! F2
@2
��! F1

@1
��! F0 ! Z:

We may consider Fn as a free Z-module.19 On basis elements, define19: We will move on to consideringFn as
a ZG-module.

@n.g0; g1; : : : ; gn/´

nX
iD0

.�i/i .g0; : : : ; Ogi ; : : : ; gn/ W Fn ! Fn�1:

Check that @n�1 ı @n D 0. This is exact because there exists a contracting
chain homotopy20 in LModZ. Further, we can place a left ZG-module20: We will describe what the chain

homotopy equivalence is later. structure on Fn D ZŒGnC1�:

g � .g0; g1; : : : ; gn/´ .gg0; gg1; : : : ; ggn/:

What must be checked is that @n is a homomorphism of ZG-modules.2121: It whould commute with the aciton.
Note that

@0 D " W F0 ! Z

is the augmentation map. We sent�X
g2G

agg
�
7!

X
g2G

ag :

The contracting chain homotopy here is given by

Fn
hn

������! FnC1

.g0; : : : ; gn/ 7������! .1; g0; g1; : : : ; gn/:

The standard (or homogeneous) bar resolution of a group is our resolution

� � � ! F2 ! F1 ! F0 ! Z:

Let F 0n´ ZGŒGn�. As notation, we write elements as

Œg1jg2j � � � jgn� 2 G
n;

which is precisely the basis of F 0n over ZG.2222: This is a basis as a free ZG-module.
Note that the bar notation is where the
resolution gets its name.

Theorem 2.4.1 We claim Fn ' F
0
n over ZG.

Sketch of Proof. The map F 0n ��! Fn is given by

Œg1jg2j � � � jgn� 7! .1; g1; : : : ; gn/;

which is a basis of Fn over ZG.

We now have two isomorphic resolutions:
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� � � F2 F1 F0 Z 0

� � � F 02 F 01 F 00 Z 0

 

!

 

!
@2  

!
@1  

!
"  

!

 

!

 

!

'

 

!
@0
2

 

!

'

 

!
@0
1

 

!

'

 

!
@0
0

 

!

(

(
(

(

Figure 2.5: The homogeneous bar
resolution (top) and bar resolution
(bottom) of a groupG

Then, given the boundary map

@n.g0; g2; : : : ; gn/´

nX
iD0

.�i/i .g0; : : : ; Ogi ; gn/;

we can define @0n W ZGŒGn�! ZGŒGn�1� by

@0nŒg1jg2j � � � jgn�´ x1Œx2j � � � jxn�

C

n�1X
iD1

.�1/i Œx1j � � � jxixiC1j � � � jxn�

C .�1/nŒx1j � � � jxn�1�:

2.5 Comparison Theorem and Chain Homotopies

Definition 2.5.1 (Chain Map) Given a chain complex C�, a chain map

f� W C� ! C 0� is a sequence of homomorphisms fn W Cn ! C 0n such that the

natural diagram commutes.

That is, we need a commutative lattice

� � � C2 C1 C0 � � �

� � � C 02 C 01 C 00 � � �

 

!

 

!
@2  

!
@1  

!

 

!

!

 

f2

 

!
@0
2

!

 

f1

 

!
@0
1

!

 

f0

 

!

Figure 2.6: The homogeneous bar
resolution (top) and bar resolution
(bottom) of a groupG

Remark 2.5.1 (Notation) If we have a chain complex

CiC1
@iC1
����! Ci

@i
��! Ci�1;

then we define the cycles Zi ´ ker @i and the boundaries Bi ´ Im @iC1.
Then, homology is given byHn.C�/´ Zn=Bn. Likewise, we have cocycles

Zi ´ ker ıi and coboundaries B i ´ Im ıi�1 of a cochain complex, so
cohomology isHn.C �/´ Zn=Bn.

Lemma 2.5.1 Each chain map f� W C� ! C 0� induces a homomorphism
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fn� W Hn.C�/! Hn.C
0
�/ given by

fn�.x C Im @nC1/´ fn.x/C Im @0nC1

Proof. The diagram chase is trivial.

Given two chain maps f�; g� W C�� C 0�, a chain homotopy between f� and
g� is a sequence of homomorphisms hn W Cn ! C 0nC1 such that for all n,
fn � gn D @

0
nC1 ı hn C hn�1 ı @n:

Figure 2.7: Chain homotopy h�

CnC1 Cn Cn�1

C 0nC1 C 0n C 0n�1

 

!
@nC1

 

!

hn

 

!
@n

 

!

hn�1

!

 

fnC1

!
 

gnC1

 

!
@0
nC1

!

 

fn

!

 

gn

 

!
@0n

!

 

fn�1

!

 

gn�1

Lemma 2.5.2 If there is a chain homotopy between f� and g�, then the induced

maps agree on homology.

Proof. This is formal:

.fn� � gn�/.x C Im @nC1/ D .fn � gn/.x/C Im @0nC1

D .@0nC1 ı hn C hn�1 ı @n/.x/C Im @0nC1

D Im @0nC1

D 0 2 Hn.C
0
�/:

Thus, fn� � gn� D 0 2 Hn.C 0�/.

Theorem 2.5.3 (Comparison Theorem) Suppose A� !M and A0� !M 0

are chain complexes over modulesM andM 0:

� � � ! A2 ! A1 ! A0 !M ! 0

and

� � � ! A02 ! A01 ! A00 !M 0 ! 0;

whereA� is projective andA0� is exact. Then, any homomorphism f WM !M 0

extends to a chain map f� between the two chain complexes. Furthermore, any

two such extensions f� and g� are chain homotopic.

Proof. Consider the given initial square.



2.5 Comparison Theorem and Chain Homotopies 31

A0 M

A00 M 0 0

 

!

 

!f0

 

! f

 

!

 

!

We get f0 via the definition of projective module. Now, if we try the same
for the next step, we see that

A1 A0

A01 A00 0

 

!

 

!‹

 

! f1

 

!

 

!
‹

does not work.23 Instead, we could take 23: Whereas in the first case we have
exactness, this is not automatic in the next
step.

A1

A01 ker @00 0

 

!

f1@1

 

!

 

!

checking that Im.f1@1/ � ker @00:

@00f1@1 D f @0@1 D 0:

Thus, there is a lift

A1

A01 ker @00 0

 

!f2

 

!

f1@1

 

!

 

!

Continue inductively, yielding a chain map f� W C� ! C 0�. What about
uniqueness, up to chain homotopy? Suppose f� and g� W C�� C 0� are two
such extension chain maps of f D g W M ! M 0. Let h�1 W MÜ A00 be
the zero map. Next, find h0 so that f1�g1 D @00C@01h0. This is equivalent
to saying h0 is a lift, so we want to solve

A0

A01 ker @00 0

 

!

9

h0

 

! f1�g1

 

!

 

!

Notably, we need to check that f1 � g1 takes place in the kernel. Well,
.@00.f1�g1//.x/ D .f @0/.x/� .f @0/.x/ D 0. Inductively, suppose we have
hn so thatfn�gn D @0nC1hnChn�1@n, we want to findhnC1 W AnC1 ! A0nC2
so that

fnC1 � gnC1 D @
0
nC2hnC1 C hn@nC1:
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That is, we equivalently want to find hnC1 so that

@0nC2hnC1 D hn@nC1 � fnC1 C gnC1�
R

:

Then, we want to have the diagram,

AnC1 An

A0nC2 A0nC1

 

!

hnC1

 

!
@nC1

 

! hn

 

!
@0
nC2

but to have exactness we instead seek to solve

AnC1

A0nC2 ker @0nC1 0

 

! R

 

!

 

!

In order to be in a situation of this sort, we need to check that ImR �

ker @0nC1. We have

@nC1R D @
0
nC1.hn@nC1 � fnC1 C gnC1/

D @0nC1hn@nC1 � @
0
nC1.fnC1 � gnC1/

� .fn � gn � hn�1@n/@nC1 � @
0
nC1.fnC1 D gnC1/

D 0;

using the commutativity of the diagram and that A� is a chain complex.
Therefore, there is a homotopy hnC1 W AnC1Ü A0nC2. Completing our
induction, f� ' g� are chain homotopic.2424: That is, we can construct a chain

homotopy h� between them.

Corollary 2.5.4 If P� !M andQ� !M are two projective resolutions of a

moduleM , then there is a chain map f� W P� ! Q� that extends id WM !M .

Also, there is a chain map g� W Q� ! P� that extends id WM !M .

Theorem 2.5.5 Tor is resolution invariant.

Proof. Apply the functor .�/ ˝R B to both resolutions, as above. Then,
f� ˝ idB W P� ˝R B ! Q� ˝R B is an induced chain map.25 Let fn� W25: The same holds for g� ˝ idB .
Hn.P� ˝R B/! Hn.Q� ˝R B/ be the induced map on homology. Do the
same for gn�. Then, gn�fn� W Hn.P�˝R B/! Hn.P�˝R B/ is induced by
the composite of the chain maps g�f� W P� ! P�. Let id� be the identity
chain map on P�. Then, id� ' g�f� via chain homotopy, by the comparison
theorem. Then, the induced maps idn� D gn�fn�, strictly. Well, idn� D id
as a homomorphism on homology. Interchange the roles of f and g, and
this tells us that gn�fn� D idn� D fn�gn�, so fn� D gn�, meaning fn� is
an isomorphism on homology.2626: Thus, Tor is independent of the choice

of resolution.
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We briefly describe some terminology you will hear.

Definition 2.5.2 (Derived Functors) Let A be a module and F be an additive

functor. Take a projective resolutions PA ! A. Then, the left derived functor is

a sequence .L�F /.A/ defined pointwise by

.LnF /.A/´ Hn.F.PA//:

Likewise, the right derived functor, given an injective resolution A! IA, is a

sequence .R�F /.A/ defined pointwise by

.RnF /.A/´ Hn.F.IA//:

Remark 2.5.2 Thus, Tor and Ext can be realized as the left derived
functor of the tensor product and the right derived functor of the Hom
functor, respectively.

Proposition 2.5.6 By the comparison theorem, the left and right derived

functors are, in fact, resolution invariant.
27 27: It is worthwhile to check that the

derived functors are functors.

Analogous to the notion of homotopies and homotopy equivalences from
topology, we now define chain homotopies between chain complexes.

Definition 2.5.3 (Chain Homotopy Equivalence) A chain homotopy

equivalence between chain complexes C� and C 0� is a chain map '� W C� ! C 0�
such that there is a chain map  � W C

0
� ! C� so that  �'� ' id� and

'� � ' id0�.

If there is a chain homotopy equivalence, as above, then the induced map

. �'�/n D .id�/n W Hn.C�/! Hn.C�/

on homology is the identity homomorphism. Well, this implies

. �'�/n D  �n'�n D idHn.C�/;

and likewise in the opposite direction.28 Then, if C� ' C 0�, thenHn.C�/ ' 28: That is,

'�n WHn.C�/
��!Hn.C

0
�/:

Hn.C
0
�/ 2 LModR. Consider the special case id�; 0� W C�� C�.

Definition 2.5.4 (Contracting Chain Homotopy) A contracting chain

homotopy is a chain homotopy between id� and 0�.

Let us break this down: id��0� D @�h� C h�@�, suppressing indices. That
is, for all x 2 Cn,

x D @nC1 ı hn.x/C hn�1@n.x/:

Then, if '� D 0 W 0� ,! C�, '� is a chain homotopy equivalence, so the
induced maps gives us Hn.C�/ ��! Hn.0�/ D 0n, so Hn.C�/ Š 0. Thus,
ker @n D Im @nC1, so C� is exact.
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Given a simplicial complex, it may be a generally difficult problem to
compute the homology of the whole complex. Instead, it may worthwhile
to determine the homology of subcomplexes of the complex, forming an
increasing sequence to study.

3.1 Filtrations

The notion of increasing sequences of modules leads us naturally into the
definition of a filtration, which will eventually point us toward spectral
sequences.

Definition 3.1.1 (Filtration) A filtration of a module M is a sequence of

submodules

M0 �M1 �M2 � � � � � � � � �M

such that [
i

Mi DM:

A related characteristic, the grading of a filtration, yields

Grn´Mn=Mn�1:

Remark 3.1.1 (Flag) In the case of finite dimensional vector spaces,
consider a filtration, which is called a flag in this setting:

V0 � V1 � V2 � � � � � � � � � V:

Then V is entirely determined by the grading.1 1: This is not true of modules, generally.

We write FpM for a filtration ofM , instead ofMp .

Definition 3.1.2 (Chain Filtration) Similarly, given a chain complex C�, a

filtration FpC� is a sequence
2 2: That is, the inclusions hold generally

for all n–every term of the chain complex.
F0C� � F1C� � F2C� � � � � � � � � � C�:

More generally, we could take a filtration of a chain complex C� so that

� � � � F0C� � F1C� � � � � � C�

Note that the filtration is infinite on both sides. We require that FpC� is a
chian complex for all p, along with the natural containment requirement.
That is, @n.FpCn/ � FpCn�1; i.e., a sub-chain complex of C�.3 We will, 3: We need [

p2Z

FpCn D Cn

and \
p2Z

FpCn D 0:

more often than not, be interested in filtrations which are “bounded.”
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In this context, we define again the grading

Grp Cn´ FpCn=Fp�1Cn:

3.2 Homological Type and Bigrading

We will concentrate on spectral sequence of a homological type, relating to
chain complexes. As you would expect, there are spectral sequences of
a cohomological type, relating to cochain complexes. These are dual in a
natural sense, so we focus on the former.

Now, to visualize the notion of ascending chain complex filtrations, we
place the filtration diagonally: the filtration of Cn is placed on the nth
diagonal. That is, we let q´ n � p.

We now change the grading notation:44: Keeping track of indices can be a hassle,
and is often not discussed in introductory
texts. Grp CpCq ´ FpCpCq=Fp�1CpCq :

The position of the term FpCn is .p; n � p/.

Such a picture is called the “page” D0 D .Dpq/p;q .

Definition 3.2.1 (Graded Module) A graded module is a family of modules

fMngn2Z � LModR.

Definition 3.2.2 (Bigraded Module) A bigraded module is a family of

modules fMpq W p; q 2 Z2g � LModR.

If .C�; @�/ is a chain complex, then the boundary map @� can be thought of
as a differential of degree�1. Similarly, we can define maps @�� WM�� !M��
of bidegree .a; b/ 2 Z2.

Remark 3.2.1 By “a page,” we will precisely mean a “bigraded module.”

Now, we could place the grading into our filtration into the same sort of
page.

We call the above pageE0 D .E0pq/p;q the 0th page of the spectral sequence,
where

E0pq ´ Grp CpCq D FpCpCq=Fp�1CpCq :

Note that there are “boundary maps” d0 of bidegree .0;�1/.55: The maps arise from the boundary
maps associated to the numerator and
denominator of the grading quotients.
Well-definedness is a simple check. Definition 3.2.3 (Spectral Sequence) A spectral sequence is a sequence of

bigraded modules,

Er � .Erpq/.p;q/2Z2 ;

called pages, together with a sequence

@r � .@rpq/.p;q/2Z2 ;
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called differentials, such that
6 6: The lower indices depend precisely on

the bidgree.
@r ı @r D 0;

and so that

ErC1pq ' HpCq.E
r ; @r / 2 LModR:

Now, associated to a chain complex C�, we have cycles Z� D ker @� and
boundaries B� D Im @�.7 7: These are actual chain complexes, in

their own right.

Definition 3.2.4 (Bounded) A filtration is called bounded if for all n, there are

p0; p00 2 Z such that for all p � p0, we have FpCn D 0, and for all p � p00,

FpCn D Cn.

We will write Zrpq ´ FpCpCq \ @
�1Fp�rCpCq�1, where the position of

the left half is .p; q/ and the position of the right half is .p � r; q C r � 1/.
Explicitly, this is fx 2 FpCpCq W @x 2 Fp�rCpCq�1g. After taking the
preimage, we need to be in .p; q/. Then, rewrite @ as a “morphism” @rpq W
FpCpCq  Fp�rCpCq�1.8 Note that fZrpqg is a decreasing sequence in r . If 8: This is a partial function. It is of

bidegree .�r; r�1/on the proper domain
Zrpq .

r is very large, Zrpq stabilizes. Denote Z1pq to be the module at which the
sequence stabilizes. Explicitly, this is

Z1pq ´ FpCpCq \ @
�1.0/:

Consider the case when r D 0:

Z0pq D FpCpCq \ @
�1FpCpCq�1

D FpCpCq :

Thus, we have
Z1pq � � � � � Z

2
pq � Z

1
pq � Z

0
pq :

Similarly, denote

Brpq ´ FpCpCq \ @FpCr�1CpCqC1:

The left is at .p; q/, the right is at .p C r � 1; q � r C 2/. Interpret @ W
FpCrCpCqC1 FpCpCq of bidegree .1� r; r � 2/. If we look at the term r ,
then this @r corresponds to @r�1 from before. The sequence fBrpqg increases
with respect to r . For very large r , Brpq stabilizes, due to its boundedness,
at the limiting term

B1pq ´ FpCpCq \ @CpCqC1

Thus, we have
B0pq � B

1
pq � B

2
pq � � � � � B

1
pq :

In fact, we can combine

FpCpCq \ @Fp�1CpCqC1 D B
0
pq � � � �B

1
pq � Z

1
pq � � � � � Z

0
pq D FpCpCq :

Recall that a spectral sequence is a pair .Erpq; d rpq/ of bigraded modules
and bigraded differentials with bidegree .�r; r � 1/.



40 3 The Standard Sequence

Definition 3.2.5 (Partial Function) A partial function C  C 0 is a function

@ W X ! X 0, where X � C 0 and X 0 � C 0 are subsets.

Given a function @ W C ! C 0 and a some subsetsM � C andM 0 � C 0, we
can form a canonical partial function99: We will sometiems also use a dashed-

arrow notation for partial functions.
@MM 0 W C  C 0;

which is the full function1010: This is the restriction of @.

@ #MM 0 W .M \ @
�1M 0/! .@M \M 0/:

In fact, @ #MM 0 is a surjection. Then, the approximate cycles and boundaries
above take the form of the domain and range of this partial function. That
is, we can reformulate our discussion above into the following:

(i) Zrpq is defined to be the domain of the canonical partial function @n.
(ii) Brpq is defined to be the range of the canonical partial function @n.

We denote
Erpq ´ Zrpq

.
Brpq CZ

r�1
p�1;qC1

We claim that this is the same as

Zrpq

.
@Zr�1pCr�1;q�rC2 CZ

r�1
p�1;qC1:

Proposition 3.2.1 That is, we want to show that

Brpq D @Z
r�1
pCr�1;q�rC2:

Proof. We unravel the claimed inequality into the form

FpCpCq \ @FpCr�1CpCqC1 D @
�
FpCr�1CpCqC1 \ @

�1FpCpCq
�
:

Since @ #MM 0 is epic,

M 0 \ @M D @.M \ @�1M 0/;

so we are done, takingM to be FpCr�1CpCqC1.

Via this reformulation, we may deduce that

E0pq D FpCpCq

.
Fp�1CpCq;

our original definition of the 0th page of the spectral sequence. This is a page
.E0; d0/ of bidegree .0;�1/. We want to check that taking the homology
of E0 yields E1 in our new definition. In general, we take Er to be defined
by Erpq with bidegree-.�r; r � 1/ morphisms d rpq W Erpq ! Erp�r;qCr�1. We
prescribe these by taking the quotient map induced by @. That is, we have
formed a sequence of pages .Er��; d r��/ D .Er ; d r /. For now, we omit the
fact that we are taking successive homologies.
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3.3 Convergence of Spectral Sequences

What does it mean for a spectral sequence to “compute” the homology of a
chain complex .C�; @�/? Notaionally, we denote such “convergence” of a
spectral sequence by writing Er ) H.C�/.11 Similarly, we could explicitly 11: More often, the literature will write

E0)H.C�/ orE1)H.C�/.write the pages Er��) H�.C�/.

Definition 3.3.1 (Convergence/Computation) We say a spectral sequence

converges Er ) H.C�/ (or computes the homology) if there exists a filtration

ofH�.C�/ called p̂.H�.C�// � H�.C�/.
12 12: More precisely,

ˆp.Hn.C�// �Hn.C�/:

We require that

p̂Hn.C�/
.

p̂�1Hn.C�/ ' E
1
pq :

Now, what is E1? Well, we are clearly, in some sense, looking at the limit
of the Er formula. First recall that we could write

Erpq D Z
r
pq

.
Brpq CZ

r�1
p�1;q�1:

Then, we glean
E1pq D Z

1
.
B1pq CZ

1
p�1;q�1:

This allows us to compute homology up to extensions in the filtration.

Lemma 3.3.1 Let A;B;C be submodules of some ambient module. If A � C ,

then

C \ .AC B/ D AC .C \ B/:

Theorem 3.3.2 The spectral sequence obtained from a filtration F�C� of a chain

complex .C�; @�/ converges to the homology Er ) H.C�/.

Proof. Define the filtration13 13: Per usual, n D pC q.

p̂Hn.C�/´ Im.HpCq.FpC�/! HpCq.C�//;

where the map is the induced map of the inclusion on homology. We can
write

p̂HpCq.C�/ D FpCpCq \ZpCq C BpCq

.
BpCq

' Z1pq C BpCq

.
BpCq :

Then,

GrpHpCq.C�/ D
�
Z1pq C BpCq

ı
BpCq

�.�
Z1p�1;q�1 C BpCq

ı
BpCq

�
;

which “cancels” to

Z1pq C BpCq

.
Z1p�1;qC1 C BpCq

' Z1pq C
�
Z1p�1;q�1 C BpCq

�.
Z1p�1;qC1 C BpCq :
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This is precisely

Z1pq

.
Z1pq \

�
Z1p�1;qC1 C BpCq

�
;

which, by the lemma, is

Z1pq

.
Z1p�1;qC1 CZ

1
pq \ Bpq :

Finally, we can write

Z1pq

.
Z1p�1;qC1 C FpCpCq \ BpCq D E

1
pq :

3.4 Bicomplexes and Tor’s Equivalence

We consider some uses of spectral sequences. Notably, we pursue the
special case of a bicomplex.

Definition 3.4.1 (Bicomplex) A bicomplex is a triple .M��; d
0; d 00/, where

M�� D .Mpq/p;q2Z is a bigraded module, d 0 is a bigraded homomorphism

M�� !M�� of bidegree .�1; 0/, and d 00 is a bigraded homomorphismM�� !

M�� of bidegree .0;�1/. Further, d 0 ı d 0 D 0, d 00 ı d 00 D 0, and the following

square anticommutes: d 00 ı d 0 C d 0 ı d 00 D 0.

Figure 3.1: Diagram of bicomplex with
the two boundary maps

� � �.p;q/

� �

�

 

!d 0

 

! d
00

 

!d 0

 

! d
00

 

! d
00

 

!

d 0

The total complex corresponding to a bicomplexM�� is defined as

Totn.M��/´
M
p;q2Z

Mpq; n D p C q:

Then, there is an induced map

d ´ d 0 C d 00 W Totn.M��/! Totn�1.M��/:

Check that d ı d D 0, so .Tot�; d�/ is a chain complex. Fix p0 on the p-axis
of a pq-plot of the total complex, where n is the diagonal. Define

Fp Totn.M��/´
M
i�p0

Mi;n�i � Totn.M��/:

It should be clear that this is a filtration for the total complex. Consider
D0. At .p; q/ for p C q D n, we have exactly Fp Totn.M��/. From there,
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construct the E0 page by taking the grading:

E0pq D Fp TotpCq.M��/
.
Fp�1 TotpCq.M��/ 'Mpq :

Moreover, we have the classic d0 D d 00 maps induced on the quotients.14 14: That is, we have returned to our
bicomplex, except with only d 00.Why do we care about bicomplexes? Well, given to chain complex .P�; @0�/

and .Q�; @00�/, we may consider the bicomplex given by

Pp�1 ˝Qq Pp ˝Qq

Pp ˝Qq�1

 

!d
0´@0˝idq

 

! d
00´idp˝@00

Then, define P� ˝Q� to be the total complex of the tensored bicomplex
above.

Remark 3.4.1 Consider two resolutions PA � A and QB � B .
Truncating, we can look at PA ˝ QB .15 15: Here, we are talking about the total

complex defined above.
In particular, this is a chain

complex. Moreover, this arises as a bicomplex of the two resolutions.
Considering the filtration and given spectral sequence construction for
total complexes, we can reconstruct E0. Using homology with respect to
the d0, we could get the E1 page with d1. Taking the homology of the
leftward d1, we could get the next page. It can then be shown that the
homology

Hn.PA ˝QB/ D Hn.A˝QB/:

It is worth noting, that the tensor bicomplex structure constructed above is
not a bicomplex, as it fails the anticommutativity. However, multiplying
d 00 � .�1/p gives the desired behavior.

Definition 3.4.2 (Flat) A moduleM 2 LModR is called flat if .�/˝R M W

RModR ! Ab is exact.

Remember, for a functor to be exact, it was must preserve exactness of short
exact sequences.16 16: We know the tensor functor is already

right exact. This definition just gives us
the rest of the exactness.

Example 3.4.1 (Base Ring) Consider R 2 LModR. This is flat:

A˝R R ' A 2 RModR:

Example 3.4.2 (Free Module) Any free module F 2 LModR is flat. Our
functor is

.�/˝
M
i2I

R W RModR ! Ab:

Since tensors commute with direct sums, we get

A˝R
M
i2I

R '
M
i2I

.A˝R R/ '
M
i2I

A 2 RModR:

Thus, since direct sums preserve kernels and images, we get exactness.
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We now classify, more generally, when direct sums of modules are flat.

Proposition 3.4.1 (Flat Sum) The coproduct of modules fMj W j 2 J gM
j2J

Mj is flat

if and only if each of theMj are flat.

Proof. We are looking at two functors:

.�/˝R
M
j2J

Mj and .�/˝R Mj :

Consider a morphism ' W A! B . Then, we get an induced square:1717: Check that the square commutes.

A˝R
M
j2J

Mj B˝R
M
j2J

Mj

M
j2J

.A˝R Mj /
M
j2J

.B ˝R Mj /

 

!'

 

!
'˝id˚

 

! '

 

!
˚.'˝idMj /

Corollary 3.4.2 (Projective Module) Every projective module is flat.

Proof. LetP be projective. Using the equivalent condition, that means there
is exists a free F and some moduleQ so that F ' P ˚Q.

Let PA� A! 0 andQB � B ! 0 be resolutions. We can then form the
chain (total) complex

.PA ˝QB/n´ Totn.Pp ˝R Qq/.p;q/2Z2 D

M
p2Z

Pp ˝Qn�p:

The associated boundary map d 0C d 00 forms the chain ..PA˝QB/�; d�/.

Theorem 3.4.3 The following series of isomorphisms exists:

Hn.PA ˝R B/ ' Hn.PA ˝QB/ ' Hn.A˝R QB/

meaning the two definitions of TorRn .A;B/ are equivalent.

Proof. We will only show the first isomorphism, as the other argument
is symmetric. Consider the chain complex C� ´ PA ˝ QB . We need a
filtration. Define

FpCn � Fp.PA ˝QB/n´
M
i�p

.Pi ˝Qn�i /:
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We claim that FpC� is a subcomplex of C�. Thus, F�C� is a filtration of C�.
Our D0 page arises by putting FpCn on the n D p C q diagonal. Take the
quotients/gradings to yield the quotient

FpCpCq

.
Fp�1CpCq ' Pp ˝Qq

on the nth diagonal of the E0 page. Well, E0 is the same as the bicomplex
Pp ˝Qq for all .p; q/.18 We wish to compute 18: Essentially, the downward map inE0

is solely produced by d 00, as the d 0 all
cancel out.E1pq ´ ker d0pq= Im d0p;qC1:

We have the chain complex

Pp ˝Qq Qq

::: Pp ˝ .�/
:::

Pp ˝Q1 Q1

Pp ˝Q0 Q0

0 0

 

!

 

!

 !  !

 

!

 

!

 

!

(

)

 

!

which is Pp ˝ QB . If we instead included B on the left chain, we get
Pp ˝ .Qq ! � � � ! B ! 0/, and since Pp is flat, the homology of the latter
sequence is trivial.19 That is, 19: The only difference inHn is forn D 0.

Hn.Pp ˝QB/ D

(
Pp ˝ B; n D 0

0; otherwise:

Our d1 then must be induced by d 0.20 Taking the “horizontal” homology 20: This requires some checking. We leave
it as an exercise.of this E1 page (which only has a single row), we should get E2. Yet, this

is exactly
Hn.Pn ˝ B/ ' E

2
n0;

where E2pq D 0 if q ¤ 0. On the page E2, we need a differential d2 of
bidegree .�2; 1/. The only nonzero terms in E2 are in the 0th row. Thus,
d2 D 0. Trivially, we have that E2 ' E3 ' E4 ' � � � ' E1. In the E1
page, since only the bottom row is filled, and since our filtration comes on
the diagonals, the only possible nonzero quotient yields

TorRn .A;B/´ Hn.PA ˝ B/ ' E
2
' E1n0 ' Hn.PA ˝QB/:

There are two ways for the other isomorphism for the equivalence of the
definitions. One way is to interchange the two coordinates .p; q/ 7! .q; p/

in the page D0 for the other result, and we are done. Alternatively, change
the first filtration, which we have been using, to the second filtration. Forming
this amounts to considering i � q diagonal sums in the filtration, rather
than i � p sums. Certainly, this is equivalent to switching coordinates.
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3.5 A Remark on Cohomological Type

Thus far, we have looked at spectral sequences of homological type. How
could we “dualize” this tool so that it applies to cohomology, rather than
homology?

Definition 3.5.1 (Cohomological Type) A spectral sequence of cohomological

type is a sequence of pages .Er ; dr /, where Er D .E
pq
r /.p;q/2Z2 is a bigraded

module and dr is a bigraded homomorphism of bidegree .r; 1 � r/2121: Since we are dualizing, multiply the
original bidegree by �1.

so that

dr ı dr D 0. Further, we require

ErC1 ' H
�.Er ; dr /:

Now, the question is, does a spectral sequence of cohomological type exist?
By observation of the pattern of the bigraded homomorphisms, you can
get the cohomological morphisms from the homological morphisms by
flipping the arrows. Thus, any spectral sequence of cohomological type
can be equivalently interpreted as a spectral sequence of homological type
by setting Erpq ´ E

�p;�q
r , or vice-versa.

A natural question is if whether we can use spectral sequences of
cohomological type to prove the equivalence of our two definitions of Ext.
To this end, let PA� A be projective and IB � B be injective.

We can now consider HomR.Pp; I
q/, using the contravariant and covariant

aspects of our Hom functor, a bi(co)complex with the induced maps d 00
and d 0. Then, define a cochain complex structure�

Hom.PA; IB/
�n
´

M
pCqDn

HomR.Pp; I
q/;

with the induced map is d ´ d 0 C d 00.

Define the first (descending) filtration of the cochain complex C � in the
same way as before, this time going to the right on the D0 page:

F pC �´
M
i�p

HomR.Pi ; I
n�i /:

Then, proceed as before.

Remark 3.5.1 Following our earlier remark of how to work with spectral
sequences of cohomological type, we could flip the coordinates .p; q/ 7!
.�p;�q/, so our bicomplex of cohomological type, focused in the first
quadrant, would yield a bicomplex of homologial type, focused in the
third quadrant.

3.6 Exact Couples

Spectral sequences can be produced from exact couples, rather than via the
aforementioned technique.
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Definition 3.6.1 (Exact Couple) An exact couple is a tuple .D; E; ˛; ˇ; 
/

such that the D and E are bigraded modules and ˛; ˇ; 
 are bigraded

homomorphisms which form the diagram

D D

E

 

!
˛

 

! ˇ 

!




and such that this diagram is exact at every term.

Suppose22 22: Each arrow is a morphism in ChModR .
That is, they are chain maps.

0! C 0�
��
��! C�

p�
��! C 00� ! 0

is a short exact sequence of chain complexes. That is, we have a grid of the
pictured form.

0 0 0

C 0nC1 C 0n C 0n�1

CnC1 Cn Cn�1

C 00nC1 C 00n C 00n�1

0 0 0

 

!

 

!

 

!

 

!

 

! �nC1

 

!

 

!
@0n

 

!

 

!

 

!

 
!

 
!

 

! pnC1

 
!

@n

 

!

 
!

 

!

 

!

 

!

 

!

 

!
@00n

 

!

 

!

 

!

Figure 3.2: Short exact sequence in
ChModR

Then, such a short exact sequence of chain complexes leads to a long exact
sequence

Hn.C
0
�/ Hn.C�/ Hn.C

00
� /

Hn�1.C
0
�/ Hn�1.C�/ Hn�1.C

00
� /

 

!
��n  

!
p�n

 

!

connecting morphism induced by @n

 

!
��n�1  

!
p�n�1 Figure 3.3: Long exact sequence, induced

on homology

Theorem 3.6.1 Any filtration of a chain complex leads to an exact couple.

Sketch of Proof. Suppose F�C� is a filtration of a chain complex C�. Then,
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there is a natural short exact sequence

0! Fp�1Cn ,! FpCn� FpCn

.
Fp�1C� ! 0:

Take the sum over all p.23 By notation, take23: This is the same as taking the sum
over all p � 1.

0! F�C� ! F� ! C�� sum over p ! 0:

For each fixed n, we get short exact sequences of chain complexes. Then,
using the above construction, we get a long exact sequence of homology.
Then, form D1 by looking at the long exact sequence, and using the
homology of the grading, we get the exact couple with E1.

Theorem 3.6.2 Any exact couple

D1 D1

E1

 

!
˛1

 

! ˇ1 

!


1

gives rise to another one

D2 D2

E2
 

!
˛2

 

! ˇ2 

!


2

by a particular algorithm.

Proof. See Rotman’s book.2424: The proof is both perfetly precise and
entirely unrevealing.

We are not going to explicitly use exact couples, but forming a sequence
of exact couples from the E0 ! D0 ! D0 ! E0 couple does follow from
taking homology.25 However, we are not working with ˇ0 ı ˇ0, as this is25: At least, we have theE�.
trivial by exactness. Define d0´ ˇ ı 
 W E0 ! E0, in the “wrong order.”
Certainly, d0 ıd0 D 0. Then, define the homologyE1´ H.E0; d0/.
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We now diverge from our discussion of homology and ways to compute
homology, moving on to some more classically algebraic notions. We will
begin by describing how tensor products can be used to generate some
neat algebras.

4.1 Promoting Modules to Algebras

Informally speaking, an algebra is an algebraic-structural combination of an
R-module and a ring.

Definition 4.1.1 (Algebra) An algebra over a commutative R is a tuple

.R Õ A;C; �/ so that .R Õ A;C/ is an R-module, .A;C; �/ is a ring, and

the ring-action R Õ A is compatible with the multiplication of the algebra.
1 1: That is, for all r 2 R and a; b 2 A,

r.a � b/ D .ra/ � b D a � .rb/:

Equivalently, r.�/ W A! A and a �.�/ W
A ! A are commutative, as are r.�/
and .�/ � b W A! A.

Example 4.1.1 Let R be a commutative ring.

(a) The ring of polynomials RŒx1; : : : ; xn� is an algebra, where the
scalar action comes from multiplication by R-elements.

(b) A group ring RG, as a set, is RŒG�. That is,

RG D

�X
g2G

ag � g W ag 2 R and
ˇ̌
fg W ag ¤ 0g

ˇ̌
<1

�
:

The addition is, for g 2 G,X
agg C

X
bgg D

X
.ag C bg/g:

The multiplication is, for g; h 2 G,�X
g2G

agg
��X

h2G

bhh
�
D

X
g2G

X
h2G

.agbh/.gh/;

collecting like terms to yield2 2: Let k D gh.X
k2G

�X
g

.agbg�1k/
�
k:

Further, add a scalar action by the usual action on the freely
generated module RŒG� '

L
G R.

Remark 4.1.1 (Unity) For our purposes, we will tend to assume that
algebras are unital. However, major examples in practice, like Banach
algebras, or more specifically, C �-algebras, are often not unital.
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Given an R-module M 2 ModR, how could we promote M to an algebra?
Let m1; m2 2M . It can be done, but we will need to extend our space. The
rough idea will be to start with M , form M ˝R M , in some reasonable
sense, and then continue to get M˝3, and so on. However, our previous
construction of the tensor product pushedM ˝R M 2 Ab, but on the way
to getM ˝R M 2 AlgR, we need to stop in ModR.

Remark 4.1.2 Recall that if R is commutative, then any R-module A has
an .R;R/-bimodule structure on it.33: This is done in the obvious way. Further, ifA has an .S;R/-bimodule
structure and B is a left R-module, then A ˝R B can be given a left
S -module structure.

Proof. Fix s 2 S . Then, s � .�/˝ idB W A˝R B ! A˝R B is a well-defined
map which does what we want. Ranging over all of s, we get an action
S � A˝R B ! A˝R B .44: Check the axioms.

If we have A;B 2 ModR, then both can viewed as .R;R/-bimodules, so we
can form A˝R B 2 ModR.

Definition 4.1.2 (Bilinear) A map h W A � B ! C 2 ModR is R-bilinear if

it is R-biadditive and the scalar factors pull out of the product.

We can then define the universal property of the ModR tensor product:55: Rotman calls this object theR-bilinear
product ofA and B .

Figure 4.1: Here, ˝ is the associated
bilinear map,

A � B A˝0R B

C

 

!

8

f

 
!

.�/˝.�/

 

!

9Š ef

Theorem 4.1.1 The tensor product in ModR exists.

Proof. Let F ´ RŒA � B�. Let S 0 � F be the R-submodule generated by0BB@
.aC a0; b/ � .a; b/ � .a0; b/

.a; b C b0/ � .a; b/ � .a; b0/

.ra; b/ � r � .a; b/

.a; rb/ � r � .a; b/

1CCA :
Then, fill in the diagram, as we did for the abelian group case.

Proposition 4.1.2 The tensor products A˝R B ' A˝
0
R B .

Proof. See the lemma.66: We are using the uniquness clause of
the universal property to make the leap.

Lemma 4.1.3 The structure A˝R B is also an R-bilinear product.
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Proof. Explicitly, a ˝ b ´ .a; b/ C S , where S � F is the biadditive
relations-generated subgroup. Then, .ra/˝ b D r.a˝ b/, by the definition
of the R-module structure on A˝R B . Thus, our tensor map .�/˝ .�/ W
A � B ! A˝R B is, in fact, R-bilinear.7 Let f W A � B ! C 2 ModR be a 7: This is the map composing the

inclusion into the free abelian group on
the product with the surjection onto the
tensor quotient.

bilinear R-homomorphism. Considering the underlying biadditive maps
and groups, there exists a group homomorphism ef W A˝R B ! C 2 Ab
so that f D ˝ ı ef . It will suffice to check on the elementary tensors. Let
r 2 R and a˝ b 2 A˝R B . Then,ef .r.a˝ b// D ef .ra˝ b/ D f .ra; b/ D rf .a; b/ D ref .a˝ b/;
so ef W A˝R B ! C 2 ModR, as desired.

Thus, A˝R B ' A˝0R B , so we will just write A˝R B . Now, we want
to promote A ˝R B 2 ModR to an algebra A ˝R B 2 AlgR. Let R be a
commutative ring and let M be an R-module. We saw that our desire to
force a product onM is to work with

R˚M ˚ .M ˝M/˚ .M ˝M ˝M/˚ � � � :

If p � 1, then some classical notations are
Np

M DM˝p . If p D 0, thenO
0M DM˝0´ R:

Remark 4.1.3 We should note that there are two ways to interpret the
object M ˝ � � � ˝M . One way is to proceed by induction on .M ˝R
M/˝R M , and so forth.8 8: In order for this to be canonical, in

some sense, we would have to prove
the associativity (up to isomorphism) of
tensor products.

Alternatively, you could proceed by the same
construction as before, but with the free module

R

"
pY
iD1

Mi

#
�M˝p;

which, after quotienting, satisfies the universal property

M1 � � � � �Mp M1 ˝ � � � ˝Mp

C

 

!f

 

!
.�/˝���˝.�/

 

! ef

Use R-multilinear maps, here.

Denote by T .M/ the direct sums of such tensor products:

T .M/´
M
p�0

M˝p:

Lemma 4.1.4 The module T .M/ has a natural R-algebra structure.

Proof. The R-module structure is given by9 9: Check that this is, in fact, well-defined.

r � .m1 ˝ � � � ˝mp/´ .rm1/˝m2 ˝ � � � ˝mp:
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The product is given by

.y1 ˝ � � � ˝ yp/ � .y1 ˝ � � � ˝ yq/´ x1 ˝ � � � ˝ xp ˝ y1 ˝ � � � ˝ yq :

Again, check the multilinearity so that this definition is well-defined.
Further, check that multiplying by r 2 R commutes with the algebra
product.

4.2 The Tensor Algebra

We now discuss some theory regarding T .M/.

Definition 4.2.1 (Graded Algebra) A graded R-algebra (for commutative

R) is an algebra A such that there exist R-subalgebras Ap � A, one for each

p � 0, such that, tautologically,

A D
M
p�0

Ap:

Further, Ap � Aq � ApCq .

In particular, T .M/ is a graded R-algebra. We could form a category
GrAlgR by letting the objects be graded modules. The morphisms are given
by graded homomorphisms.

Definition 4.2.2 (Graded Homomorphism) A graded homomorphism is a

homomorphism ' WM ! N which satisfies '.Mp/ � N p
.
1010: We write M D

L
pM

p and N DL
pN

p .

Importantly, when R D k 2 Field, every k-module is free. Everything
reduces to a discussion about bases. LetM D V2 ModR be free with basis
X . Then, T .V/ has a nice, more explicit description. Recall

T .V/´
M
p�0

V˝p D R˚ V˚ .V˝ V/˚ .V˝ V˝ V/˚ � � � :

Well, V '
L
x2X R. Substituting, and using the associativity and

distributivity of tensors and coproducts we previously deduced, we getM
x2X

R˝
M
y2X

R '
M
x2X

M
y2X

.R˝R/ '
M
x2X

M
y2X

R:

In this case, each kth tensor’s dimension corresponds to a kth power of the
dimension. Recall that free modules F 2 ModR have the property

F

X M

 

!
9Š

e'

 

!

�

 

!
8

'

We could give the same diagram for Grp, or for AlgR.1111: Certainly, free groups exist. Note
that the morphisms in AlgR are R-
module homomorphisms which are also
R-homomorphisms (as a ring).
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Definition 4.2.3 (Free Algebra) A free R-algebra F 2 AlgR with basis X is

one which satisfies the universal property, as above.

The question is, per usual, does such a free algebra F exist?12 12: As we would hope, it does.

Lemma 4.2.1 For each X 2 Set, let V´
L
x2X R. The algebra T .V/ 2

AlgR satisfies the universal property for a free R-algebra.

Proof. Complete as an exercise.

Remark 4.2.1 The tensor algebra T .V/ of a free module of rank
k corresponds to the algebra of polynomials over k noncommuting
variables in X .

Remark 4.2.2 Let † be a Riemannian manifold. We could form the
tangent space V at each point of †, and then collect these into the
tangent bundle. The bundle can be promoted to one consisting of T .V/.

4.3 Quotients in AlgR, GrAlgR, and CAlgR

If our goal is to build new algebras out of T .V/, then we must first deduce
what quotients mean for R-algebras.13 Let A be an R-algebra. Let I be an 13: In Grp, we use normality, in ModR , we

use submodules, in Ring, we use ideals.ideal in A. We have the injectionR� A given by r 7! r �1. By our definition
of algebra, for all r 2 R and a 2 A, we have r � a D .r � 1/ � a. The same
holds for when we restrict attention to r 2 I , so r � a D .r � 1/ � a 2 AI � I .
Thus, any ideal I � A is a submodule.

Thus, we can always form a quotient A=I 2 AlgR, using the inherited
quotient ring and module structures.

Let Vbe a free R-module. What do ideals in T .V/ look like? Let I be the
ideal in T .V/ generated by

v ˝ v0 � v0 ˝ v›
in V˝V

; v; v0 2 V:

What does this explicitly mean? Let S � A. Recall that the submodule
generated by S is the set of all finite, formal R-linear combinations of
s 2 S .14 Also, recall that a cyclic module is one with a singleton generating 14: Equivalently, it is just the smallest

submodule of A containing S .subset. The ideal generated by S � A is given by

hSi D
\
I�S

I D ASA;

the same as an ideal generated in a ring.15 15: We could instad consider CAlgR , the
category of commutative algebras.

Definition 4.3.1 (Graded Ideal) A graded ideal in a graded R-algebra
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A 2 GrAlgR is an ideal I � A such that

I D
M
p�0

IP ;

where Ip ´ I \ Ap .

Lemma 4.3.1 An ideal I in a graded R-algebra A is graded if and only if it is

generated by homogeneous elements.

Definition 4.3.2 (Homogeneous Element) An element a 2 A 2 GrAlgR is

called homogeneous if there exists p � 0 such that a 2 Ap .

We now return to our desire to enforce commutativity on a quotient of the
tensor algebra T .M/, for some M 2 ModR. Our plan was to quotient by
the ideal I defined by

hv ˝m0 �m0 ˝m W m;m0 2M i � T .M/:

What kind of structure does T .M/=I have? Certainly, it lies in AlgR.
Observe that I � T .M/ is homogeneous.16 By our lemma, proven on the16: The generators live inM˝2, so they

are homogeneous for p D 2. homework, this is equivalent to I being graded.

Proposition 4.3.2 The category GrAlgR is closed under taking quotients by

graded ideals.

Proof. The proof is also left as an exercise for the homework. The
multiplication on

A=I D
M
p�0

Ap
.M
p�0

Ip

is read from the quotient A=I :

.aC I /.b C I / D ab C I:

The natural guess for the grading on A=I is

.A=I /p ´ .AP C I /
.
I:

Check that

A=I D

internalM
p�0

.Ap C I /
.
I:

Alternatively, check that1717: Rotman uses the second isomorphism
theorem in ModR to deduce this. This is
not illuminating.

A=I '
M
p�0

Ap=Ip:
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Definition 4.3.3 (Symmetric Algebra) Let I � T .M/ be an ideal. Denote

S.M/´ T .M/
.
I

for the symmetric algebra onM 2 ModR.

Example 4.3.1 Consider the term M˝2=I 2 D M ˝M=I 2 in S.M/. In
the quotient, m˝m0 D m0 ˝m.18 18: Hence the naming.

Remark 4.3.1 (Dimension of Symmetric Algebra) Note that, for example,
in the free case of degree 2 V˝2, in the quotient S.V/ we have that the
dimension follows

jX j.jX j C 1/

2
;

where X �X is the basis of V˝ V.

Exercise 4.3.1 When V2 ModR is free with basis X , then S.V/ satisfies
the university property

S.V/

X A

 

!

9Š
 
-

!

 
!

for free objects in CAlgR, the category of commutative R-algebras.

Recall that the ring of polynomials RŒX� 2 CAlgR satisfies an identical
universal property.

Corollary 4.3.3 We have that S.V/ ' RŒX� 2 CAlgR.
19 19: In words, the symmetric algebra is the

same as the ring of polynomials.

Another ideal in T .M/ is J , the ideal generated by m˝m for all m 2M .
This J is graded, asm˝m 2M˝2 are homogeneous. We will denote by^

M ´ T .M/
.
J 2 GrAlgR

the exterior algebra onM .20 20: This is the classic terminology.

Exercise 4.3.2 Check that J 2 D .M ˝M/ \ J D hm˝m W m 2M i as
an R-submodule ofM˝2.

Using our grading notation, we write^
M D

M
p�0

^p
M:

According to the exercise,
V2

M 'M˝2=J 2. The elements of the exterior
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algebra are denoted by

m˝m0 C J ´ m ^m0:

Lemma 4.3.4 We have that m ^m0 D �m0 ^m 2
V
M .

Proof. This is just a computation:

����������:0

.mCm0/ ^ .mCm0/ D����:0
m ^mCm ^m0 Cm0 ^mC����:0

m0 ^m0:

It is because of this behavior that you will also hear
V
M called the

alternating algebra onM .

Remark 4.3.2 (Notation) We have been mixing some notational choices.
Let X 2 Set, let R 2 Ring, and let

V´ RŒX� D
M
x2X

R:

We will write
R hXi ´ T .V/;

the tensor algebra on the set X . Rotman chooses to write

RŒX�´ S.V/;

the symmetric algebra on X .2121: To distinguish, we will writeRŒX�alg
for S.V/.

4.4 A Remark on Forms and de Rham

Cohomology

For arbitrary u 2
Vp

V and v 2
Vp

V, can we relate u ^ v with v ^ u?
First, write this in the case of elementary wedges:

u1 ^ u2 ^ � � � ^ upœ
u2
Vp

V

^ v1 ^ v2 ^ � � � ^ vqœ
v2
Vq

V

:

Then, via the associativity of the tensor product, we can rearrange as we
wish:

u1 ^ � � � ^ .up ^ v1/ ^ v2 ^ � � � ^ vq;

interchanging with the �1 term. This yields

.�1/pv1 ^ .u1 ^ u2 ^ � � � ^ up/ ^ v2 ^ � � � ^ vq :

Doing the same for the vj terms, we get

.�1/pqv ^ u:
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Thus, for basic wedges of degree p and q, we get (anti)commutation up to
a pqth power of �1. Using bilinearity, write the us and vs in terms of some
xij 2 X , the basic elements:22 22: For this discussion, suppose X is of

size n.
xi1 ˝ xi2 ˝ � � � ˝ xip ; xij 2 X;

the basis in V˝p , so the dimension (say, if R is a field), is np . Consider the
element

xi1 ^ xi2 ^ � � � ^ xip

in the quotient. The question becomes combinatorial: count the subset of
all tuples .i1; i2; : : : ; ip/ such that in the wedge,

Vp
jD1 xij 2

Vp
V forms a

basis.

Lemma 4.4.1 (Binomial Theorem) The setn
xi1 ^ xi2 ^ � � � ^ xip W ij 2 Œn� and i1 < i2 < � � � < ip �

^p
V

o
is an R-basis for

Vp
V.

Proof. The proof is left as an exercise.

Corollary 4.4.2 If V2 ModR D Vectk, then

dimR

^p
VD dimk

^p
VD

 
n

p

!
:

Example 4.4.1 (Degree 2) We have

dimR

^2
VD

 
n

2

!
D
n.n � 1/

2
:

Example 4.4.2 (Degree n) We have

dimR

^n
VD

 
n

n

!
D 1:

Notably, the basis of
Vn

V is

fx1 ^ x2 ^ � � � ^ xng;

so
Vn

V' R. Given dim VD n, an element v1 ^ � � � ^ vn for vi 2 V

can be written as an R-multiple of x1 ^ � � � ^ xn. Then, the coefficient of
the basic element should be called the determinant of the list of vectors.23 23: We are identifying the list of vectors

with the matrix0@ j j j

v1 v2 � � � vn
j j j

1A :Exercise 4.4.1 Check that the usual notion of determinant coincides with
this description.



58 4 Multilinear Algebra

Remark 4.4.1 Let † be a Riemannian manifold.2424: For intuition, consider †1 ,! R3,
taking the tangent plane at any point x 2
†1 on the torus.

The tangent space
Tx† for x 2 † we call V 2 VectR. The collection of all these spaces
is called the tangent bundle. Replace each V with T .V/, which has
dim T .V/ D 1 over R. Instead, we could take the quotient and getV

V. All of these operations are functorial on the fibers of the bundle.

Let U � Rn be open.25 Consider C1.U / � Map.U;R/, the collection of25: Here, U can be replaced with a
smooth Riemannian manifold with a bit
of extra work.,

smooth functions U ! R. Certainly, C1.U / 2 AlgR under the natural
operations. Formally, consider

A.U /n � C1.U /n´

nM
iD1

C1.U / 2 ModC1.U /:

Then, A.U /n has a basis which we may denote dx1 ; : : : ;dxn. We could
consider the tensor algebra T .A.U /n/, and then we may form

V
A.U /n as

the quotient.

Definition 4.4.1 (p-Form) A p-form on U is an element of

Vp A.U /n.

The basis of
Vp A.U /n over C1.U / is given byn

dxi1 ^ dxi2 ^ � � � ^ dxip W ij 2 Œn� and i1 < i2 < � � � < ip �
^p

A.U /n
o
:

Then, every such element is of the formX
fi1;:::;ip dxi1 ^ � � � ^ dxip D

X�
fi1;:::;ip dxi1

�
^ dxi2 ^ � � � ^ dxip :

We write�p.U / for the set of all p-forms on U . There exists a differential
map�p.U /

dp

���! �pC1.U /. We get a cochain complex .��.U /; d �/ so that
dpdp�1 D 0. In turn, the cohomologyH �.��.U /; d �/ is called the de Rham

cohomology of U .

This description can be reformulated in terms of vector bundles, as
heuristically described before.
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To close, we will now discuss some topics related to modules and
representations which are often omitted in other courses, despite being
rather useful. This may, at least in part, be review of familiar material.

5.1 Dimension, Rank, and Invariant Basis

Number

Assume the axiom of choice. Then, every vector space Vover k has a basis.
Generally, there are two cases:

(i) If Vhas a finite basis ˇ, then take any two bases ˇ; ˇ0 � V. Using
reduction of the change-of-basis transformation to REF, we get that
jˇj D jˇ0j <1.1 1: This follows from the kernel being

trivial.(ii) Let ˇ; ˇ0 � Vbe infinite bases. We want to show that jˇj D jˇ0j. Each
b0 2 ˇ0 can be written as a finite linear combination

b0 D

finiteX
b2ˇ

rbb; b 2 ˇ:

That is, we have a function

˛ W ˇ0 ! Fin.ˇ/;

the set of finite subsets in ˇ. Each b0 2 span.supp.b0//. By linear
independence, for allC 2 Fin.ˇ/, there are finitely many b0 2 ˇ0 such
that b 2 span.C /. Via some logic, jFin.ˇ/j D jˇj. Then, ˛ is finite-to-1.
Thus, the domain of ˛ has cardinality no greater than jFin.ˇ/j D jˇj.
Do the same in the opposite direction to yield jˇj � jˇ0j. Via the
Schröder-Bernstein theorem, jˇj D jˇ0j, so we are done.

Thus, for Vectk, the dimension of a vector space Vcan be defined as the
cardinality of any basis of V.

Let R 2 CRing. Consider a freeM 2 ModR. Then,M '
L
x2X R. Suppose

further thatM '
L
y2Y R. AssumeR ¤ 0, by independence. Let I � R be

a maximal ideal inR. By Zorn’s lemma, this is unique and nonempty. Then,
IM is a submodule of M . Considering M=IM , we get an R=I -module,
which is a vector space. Then, the argument reduces to the vector space
case above.2 2: There is a slight difficult with checking

that the coproduct structure is preserved.
As such, every free module over a commutative ring has a well-defined
notion of dimension.

Remark 5.1.1 (Rank of Free Group) Let Fn be the free group on n

generators. Likewise, consider Fm. Suppose Fn ' Fm. Then, it can be
shown in various ways that n D m. That is, rank is an isomorphism
invariant for free groups.3 3: One sanity check is that the wedge

of n circles is not homotopy equivalent
to the wedge of m circles, unless n D
m. Though, this fact is usually defended
using that rank is isomorphism invariant.
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Our next goal is to define a reasonable notion of “rank” for R-modules.

Theorem 5.1.1 LetM 2 LModR. The following are equivalent:

(i) M satisfies the ascending chain condition (acc).

(ii) For any nonempty family of submodules F´ fSi �M W i 2 I g, there

exists a maximal element of Fwith respect to inclusion.

(iii) Any submodule ofM is finitely generated.

Proof. We begin with (i)) (ii). Suppose there is a nonempty family F

without a maximal element. Take any S0 2 F. Then, S0 is not maximal in
F, so there exists S1 2 Fsuch that S0 ¨ S1. Similarly, construct S1 ¨ S2.
We get an ascending chain

S0 ¨ S1 ¨ S2 ¨ � � � ;

which is a contradiction to (i). Now, we work on (ii)) (iii). Let S be any
submodule of M . Let Fbe the family of finitely generated submodules
of S . Generally, we have no reason to believe S 2 F. By (ii) there exists a
maximal submodule Smax 2 F. We claim that Smax D S . Suppose there
exists an x 2 S n Smax.4 Consider4: We argue by contradiction.

hSmax; xi D Smax CRx ¤ Smax:

Then, hSmax; xi 2 F, but Smax ¨ hSmax; xi, a contradiction to the
maximality of Smax, so S D Smax, as desired. Finally, we show (iii)) (i).
Take any ascending chain

S0 � S1 � S2 � � � � inM:

Let

S ´

1[
kD0

Sk �M:

We know S is finitely generated. Thus, we can write

S D hx1; x2; : : : ; xni �M:

Then, by definition fx1; x2; : : : ; xng � S , so x1 2 Si for some i 2 N, and
likewise for all xk . There exists some index k0 2 N such that x1; : : : ; xn 2
Sk0 . Thus,

S � Sk0 � Sk0C1 � Sk0C2 � � � � � S;

so Sk0 D Sk0C1 D � � � , giving us the desired stabilization.55: That is,M satisfies the acc.

The same properties are equivalent for a ring R 2 Ring. Just consider the
module R 2 LModR.

Corollary 5.1.2 The following are equivalent:

(i) R satisfies the acc for left ideals.

(ii) For any family of left ideals F in R, there is a maximal left ideal in F.

(iii) Any left ideal in R is finitely generated.
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Definition 5.1.1 (Left Noetherian Ring) If R 2 Ring satisfies any of the

above properties, it is called left noetherian.

Theorem 5.1.3 Let R be left noetherian. Then, any submodule of a finitely

generatedM 2 LModR is finitely generated.

Proof. LetM 2 LModR be generated by

fx1; x2; : : : ; xng:

We proceed by induction on n. If n D 1, thenM D Rx1 is cyclic. Take any
submodule S � Rx1. There is the standard characterization

R
.

Ann.x1/ 'M D Rx1:

We have that J ´ .r � .�//�1.S/ is a left ideal in R. Clearly, Ann.x1/ � J .
Since R is left noetherian, J is finitely generated. Call ˛´ r � .�/. Then,
the restriction ˛ W J � S is a surjection. Thus, S is finitely generated.6 6: This completes the base.

Let S �M be a general submodule, and let us argue n 7! nC 1, i.e., write
M D hx1; : : : ; xnC1iM all distinct. Let M 0 ´ hx1; : : : ; xniM � M . Form
the quotientM 00´M=M 0 so that the following short sequence is exact:

0!M 0 ,!M �M 00 ! 0:

Further, we can explicitly writeM 00 ' RxnC1. We have thatM 0 is generated
by at most n elements andM 00 is generated by at most 1 element. Consider
S \M 0 ,! S . We can extend this to a short exact sequence

0! S \M 0 ,! S � S=.S \M 0/! 0:

By induction, S \M 0 is finitely generated by, say, f˛igi . Further, we can
write

S=.S \M 0/ ' .S CM 0/=M 0 �M=M 0 DM 00;

so S=.S \ M 0/ is finitely generated by, say, f ǰ g. Then, if � W S �
S=.S \M 0/ is the quotient map, we have

S ' h˛i ; �
�1. ǰ /iM ;

taking any choice in the preimage of the generators.

Corollary 5.1.4 If R is left noetherian andM 2 LModR is finitely generated,

thenM satisfies the acc.
7 7: This just runs through the equivalence

of being left noetherian for modules.

We now define the invariant basis number (ibn) for rings.

Definition 5.1.2 (Invariant Basis Number) A ring R satisfies the ibn if for

all m; n � 0,

.Rm ' Rn/ H) .m D n/:
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Theorem 5.1.5 If R ¤ 0 is left noetherian, then R satisfies the ibn.

Before we prove theorem, let us consider some natural examples.

Example 5.1.1 Let R be a principal ideal domain. Trivially, R is (left)
noetherian,88: We can suppress the “left,” since

domains are commutative.
so it satisfies the ibn.

Lemma 5.1.6 Let R be a principal ideal domain and M 2 ModR is finitely

generated by at most n elements, then any submodule of M can be generated by

at most n elements.

Proof. LetM D hx1; : : : ; xniM . In the base,M D Rx1, consider˛ W R!M .
It follows that J ´ ˛�1.S/ is an ideal, so J is generated by at most one
element. Recycle the inductive argument from before. Then, S \M 0 is
generated by at most n elements, but S=.S \M 0/ is generated by at most 1
element, so S is generated by at most nC 1 elements.

Proof of Theorem. Assume A ´ Rm ' Rn. Without loss of generality,
assume that m � n. Let ' be the composite endomorphism

A
'
��! Rm� Rn

'
��! A;

where Rm � Rn is the standard projection.9 The kernel ker' ' Rm�n.9: Realize Rn as a submodule of Rm
along the standard inclusion. We simply need to show that ' is an injection, forcing m D n. Thus, we are

done, modulo the following lemma.

Lemma 5.1.7 Let R be left noetherian and let ' W A � A be a

surjective homomorphism, where A 2 LModR is finitely generated. Then,

' 2 AutLModR.A/.

Proof. Consider the sequence '; '2; '3; : : : . DenoteKi ´ ker'i . Certainly,
Ki � KiC1 for all i . Thus, we have a chain

K1 � K2 � K3 � � � � � Ki � � � � :

Then, fKigi2N stabilizes.10 Thus, there is an i0 2 N such that Ki0 D Ki0Cj10: Use the corollary from earlier to
deduce that Asatisfies the acc. for all j 2 N[f0g. We want to show that for sufficiently large i ,Ki D KiC1

implies Ki�1 D Ki . We always have Ki�1 � Ki . Take any x 2 Ki D KiC1.
This means 'i .x/ D 0, but we need 'i�1.x/ D 0. Since ' is epic, there is
y 2 Asuch that '.y/ D x. Then,

'i .x/ D 'iC1.y/ D 0;

so y 2 KiC1 D Ki . Then, since y 2 Ki , we get that 'i .y/ D 0. Splitting
again, this means

'i�1 ı '.y/ D 'i�1.x/ D 0;

so x 2 Ki1 , giving the desired inclusion. Keep applying this process
inductively, starting from i0. Then, we obtain

K1 D � � � D Ki0 D KiC1 D � � � :
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Extend the sequence on the left by K0, where K0 D ker'0 D ker id D 0.
Applying the argument one more term, we get that the whole sequence
stabilizes at K0, thus completing the argument.

That is, we can talk about invariant basis number for nontrivial, left
noetherian rings.

Example 5.1.2 (Fields) Of course, since principal ideal domains are left
noetherian, so are fields.

Example 5.1.3 (Matrix Algebras) Let k be a field and let R ´ Mn.k/.
Then,R is a k-algebra in the usual way. We claim thatR is left noetherian.11 11: We will use the acc for left ideals.
Of course, in particular, R 2 Vectk. Moreover, dimR < 1. Then, any
flag F in R must stabilize, due to the finiteness, so R satisfies the acc.

We now give a classical, rich source of examples of left noetherian rings.
Though, we will likely omit the proof.

Theorem 5.1.8 (Hilbert Basis Theorem) If R is a left noetherian ring, then

the ring of polynomials RŒx1; : : : ; xn� is also left noetherian.

5.2 Group Representations

Let k 2 Field be a field and let V2 Vectk be a k-module. Denote by GL.V/
be the set of all linear maps with an inverse. That is, we simply defined the
general linear group GL.V/ D AutVectk.V/.12 12: The operation is composition.

Definition 5.2.1 (Representation) A G-representation of a group G 2 Grp
is any homomorphism

� W G ! GL.V/;

for some V2 Vectk over a field k.

Remark 5.2.1 Equivalently, if BG denotes the delooping groupoid
associated to G, then a G-representation is a functor

† W BG ! Vectk:

This form of the definition generalizes other, similar notions like G-sets
BG ! Set and G-spaces BG ! Top.

There is a nice relation between such representations and the theory of
modules. For any group G and field k, let R ´ kG denote the group
algebra over k.

Lemma 5.2.1 Each G-representation � W G ! GL.V/ gives rise to a kG-

module V� . Conversely, any kG-module leads to a G-representation.
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Proof. Given � 2 HomGrp.G;GL.V//, our natural candidate for V� is V

with a kG-module structure:
�

finiteX
g2G

agg

�
v´

finiteX
g2G

ag.�.g/.v//; v 2 V� :

Check that the defined map kG � V ! V satisfies the axioms for a
kG-module.13 Conversely, let Vbe a kG-module. Define13: This bit is left as an exercise.

G
�

������! GL.V/

g 7������! .v 7! .1g/v/:

Again, we should check that � is a homomorphism, which is trivial by the
definition of a kG-module.

Remark 5.2.2 The correspondence above can be encoded into an
equivalence

RepGk ' LModkG

between the category of representations of G over k and the category of
k-modules.

5.3 (Semi)Simplicity

Definition 5.3.1 (Simple Module) A moduleM 2 LModR is simple if it has

no “proper” submodules.
1414: Here, “proper” means nonzero and

not all ofM .

Definition 5.3.2 (Simple Ring) A ring R 2 Ring if it has no “proper” ideals.

Remark 5.3.1 A submodule N of M is simple precisely when N is
minimal.

Definition 5.3.3 (Semisimple Module) A module M 2 LModR is called

semisimple if it is a (possibly infinite) direct sum of its simple submodules.

Definition 5.3.4 (Semisimple Ring) A ringR 2 Ring is called left semisimple

if it is a (possibly infinite) direct sum of its minimal left ideals.

Remark 5.3.2 A simple module is a semisimple module, trivially.

Remark 5.3.3 A simple ring does not have to be left semisimple.

We now state, without any proof, a nice characteristic of left
semisimplicity.1515: If I remember correctly, my notes from

Rezk’s 500 course have these sorts of
results proven.
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Proposition 5.3.1 For a moduleM 2 LModR,M is semisimple if and only if

every submodule ofM is a direct summand.

Proposition 5.3.2 For a ring R 2 Ring, R is left semisimple if and only if

every left ideal of R is a direct summand.
16 16: Here, this means direct summand as

anR-module.

5.4 Maschke’s Theorem

We now state the classical result which witnesses a relation between
representations of finite groups and left semisimple rings.

Theorem 5.4.1 (Mashcke’s) If G 2 Grp is a finite group and k 2 Field is

a field such that char k − jGj,17 17: For instance, let k 'Q.then the group algebra kG 2 AlgkG is left

semisimple.

Sketch of Proof. It suffices to check that any left ideal I � kG is a direct
summand, per the above proposition. First, observe that kG is a k-linear
space. Then, I is a k-linear subspace. Pick a basis ˇI in I , extend it to a
basis ˇF for all of kG, resulting in a decomposition

I ˚ VD kG; V´ spanfˇF n ˇI g:

Yet, we do not know that V is a left ideal of kG. Still, we have a k-linear
projection d W kG� I . Moreover, d is a retraction:

.8u 2 I /.d.u/ D u/:

That is, I ,! kG� I is the identity.18 Using the fact that G is finite, we 18: Recall that this is equivalent to being
semisimple.can average over G to get the desired result. Define D W kG ! I by

D.u/´
1

jGj

X
x2G

x � d.x�1u/; u 2 kG:

This is a kG-retraction kG ! I , as desired.19 19: Just use ker D as the direct
complement of the ideal.

5.5 Classification via Wedderburn-Artin

We now “complete” our investigation of left semisimple rings.

Lemma 5.5.1 A ring R 2 Ring is left semisimple if and only if R is the direct

sum of finitely many minimal left ideals.

Lemma 5.5.2 (Schur’s) LetM;M 0 2 LModR be simple. Then,

(i) any R-homomorphismM !M 0 is either 0 or an isomorphism.
20 20: That is,

HomR.M;M 0/ ' Iso.M;M 0/[ f�g:(ii) the endomorphism ring EndR.M/ is a division ring.
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Lemma 5.5.3 Submodules of semisimple modules are semisimple.

Proof. Suppose S � M is a submodule in a semisimple module. Then,
let A � S � M be a submodule. Then, A is a direct summand of M .
Thus, there is a retraction p WM � A, and restricting pjS , we get another
retraction of S onto A; A is a direct summand, so S is semisimple.

Remark 5.5.1 The same result as above holds for quotients. That is, given
S �M , we have thatM=S is semisimple.

Proof. Let S �M . We getM ' S˚S 0. Yet,M=S ' S 0, so we are done.

Exercise 5.5.1 For a ring R 2 Ring, the following are equivalent:2121: This result is, in some sense, the
homologist’s dream.

(i) The ring R is left semisimple.
(ii) For all modulesM 2 LModR,M is semisimple.

(iii) For all modulesM 2 LModR,M is injective.
(iv) Every short exact sequence in LModR splits.
(v) For all modulesM 2 LModR,M is projective.

Recall that a module is noetherian if it satisfies the acc. But why restrict
ourselves to ascending chains?

Definition 5.5.1 (Artinian) A module M 2 LModR is called artinian if it

satisfies the descending chain condition for modules (dcc).

Lemma 5.5.4 If R is left semisimple, then it is both noetherian and artinian.

Theorem 5.5.5 (Wedderburn-Artin) A ring R 2 Ring is left semisimple if

and only if R is a direct product of matricial rings over division rings �˛ :

R '
Y
˛2A

Mn˛ .�˛/:

This decomposition, in turn, is true if and only if

R 'Mn1.�1/ �Mn2.�2/ � � � � �Mnm.�m/;

where �k is a division ring for all 1 � k � m.
2222: That is, we can reduce the

decomposition statement to a finite one
without losing anything.

Corollary 5.5.6 A ring R is left semisimple if and only if it is right semisimple.

Idea of Proof. Use Rop:

Rop
'

mY
iD1

Mni .�
op
i /:

Then, Rop is left semisimple, so R is right semisimple.
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