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ON THE THEORY OF GROUPS






Developing Structure

We review some of the basic facts and notations of group theory. Most
results are given without proof, but are worthwhile exercises if you do
not remember their demonstrations. Some results are presented with a bit
more (categorical) abstraction.

1.1 Review and Notations

We usually write a group in the form (G, -), where G is the underlying set
and - : G x G — G is a binary operation.! We take these such that?

(i) the binary operation is associative, so (xy)z = x(yz).
(if) there exists a unique e € G which is an identity: ex = x = xe for all
x €G.
(iii) for all x € G, there exists a unique inverse x ! € G such that

Remark 1.1.1 We generally prefer juxtaposition over explicit use of the
operation, when context suffices. We also, by abuse of notation, will refer
to the underlying set G as the group.

Definition 1.1.1 (Abelian Group) If we have xy = yx forall x,y € G, then
G is called abelian.’

Definition 1.1.2 (Order) The order of a group is |G|, the cardinality of the
underlying set G.

Example 1.1.1 There are a few quintessential groups which we will need
to be familiar with.

@) Cp:={e,a.a....a""'}4

(b) Z/nZ :=1{0,1,2,....,n —1}.°

(¢) D3, is the symmetries of a regular n-gon in space.

(d) Sym(2) = Sgq is the symmetric group of a set ; i.e., the set of
permutations/bijections o : 2 — Q.

(e) Sp is the symmetric group on n letters: Sym([n]).

(f) GL,(F) is n x n invertible matrices with entries in a field .

(g) Os:={=£l,£i, £/, £k}

6

Definition 1.1.3 (Subgroup) Given a group G, a subgroup isa subset H € G
such that

(i) H+#27
(i) x € H impliesx™! € H.

1.1 Review and Notations . ... 3
1.2 Groups Form a Category Grp 5
1.3 Normality and Quotients . . 8
1.4 Isomorphism Theorems . .. 9
1.5FreeGroup ........... 11
1.6 Group Presentations and S;, 14

1: That is, it takes (x, y) > x -y = xy.

2: If we just have (i) and (ii), then (G, -)
is a monoid. If we just have (i), then (G, -)
is a semigroup. If none hold, then (G, -) is
a magma.

3: Anadditive group is an abelian group
written with + as the binary operation.

4: This is the finite cyclic group of order
n, written multaplicatively.

5: This is the set of congruence classes
modulo 7, which is isomorphic to Cy, but
is written additively.

6: |Dop| = 2n.

7: We can equivalently write e € H.
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8: Proving that this is, in fact, a group, is
not very difficult.

9: Thatis, if H < G such that S C H,
then (S) < H.Thisis called the subgroup
generated by S.

10: The contents of (S) are precisely the
words written in .

11: This "generator” a is not unique.

12: A right coset is written H x, defined
similarly. Note that xH = Hx when G
is abelian.

13: The same is true for right cosets.

(iii) x,y € H implies xy € H.

In this case, we write H < G.

Given a group G with a subset S € G,

(S):= () H=G
H=<G
SCH

is the “smallest subgroup” of G which contains S.?

Proposition 1.1.1 We can equivalently write

foralli € [k],
either a; € S
ora;' €S,
withk >0

(S) =(ay,...,a:

’

where k = 0 implies e € S.1°

Sketch of Proof. Let K := the RHS. We need to show that (1) K < G such
that S C K,and (2)if H <Gand S € H,then K C H. O

Remark 1.1.2 If we have a group G and S = &, then (@) = {e}.

We often say G is “generated” by the subset S if (S) = G.

Definition 1.1.4 (Cyclic Group) A group G is called cyclic is when there
exists a € G such that G = ({a}) = (a).

Example 1.1.2 Consider Cs. Note that we can write

Definition 1.1.5 (Cosets) Let H < G. Then, a left coset of H in G is a subset
of the form
xH ={xh:he H},

for some x € G.12
The collection of all left cosets partitions G into pairwise disjoint sets.'®

Proposition 1.1.2 Given x, y € G, with H < G, the following are equivalent:

(i) xH = yH.
(i) x € yH.
(iii) y € xH.
(iv) xy~! e H.
(v) yx~' e H.
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Example 1.1.3 Let x H and yH be cosets. Suppose z € xH NyH . We want
to show that xH = yH.Well, z € xH N yH means z = xh; = yh, for
some h1,hy € H. Well, this means x = yhzhl_1 and y = xhlhz_l. Hence,
x € yH and y € xH . In general, if xh € xH, then xh = yhzhl_1 € yH,
soxH C yH."

Definition 1.1.6 (Index) The index of H < G is the cardinality of the set of
left cosets:'>
|G : H|:=|G/H|.

Remark 1.1.3 There exists a bijection16

bijection

G/H «—— H\G,

taking the prescription

xH — Hx7 1.

Theorem 1.1.3 (Lagrange’s Theorem) There exists a bijection of sets"”

bijection

G «— H xG/H,
where we have the identity'
|G| =|H|-|G : H|.

We pick for each coset a representative element.!”

Definition 1.1.7 (Group Homomorphism) A group homomorphism is a
function ¢ : G — H between groups which “preserves structure.” That is,

p(xy) = e(x)p(y),

forallx,y € G.

This definition, as you should know, implies ¢(eg) = em. Additionally, the
same is true for inverses: p(x~!) = ¢(x)~1.20

1.2 Groups Form a Category Grp

We can get some neat results about groups by now thinking from a
categorical perspective.

Definition 1.2.1 (Category) A category 6 consists of*!

(i) a class ob B of “objects.”
(ii) a class Hom(X, Y') of “morphisms” for each pair X,Y € ob 6.
(iii) a "composition” operation given f € Hom(X,Y)and g € Hom(Y, Z)

14: The other direction is the same, since
the demonstration is symmetric.

15: We write G/H for the set of left H
cosetsin G.

16: We write H\G for the set of right H
cosetsin G.

17: Take H < G.

18: Thisis the H x G/H — G direction.
From here, it is probably best to just show
injectivity and surjectivity.

19: Note that this works for infinite sets.

20: Interestingly, for a  monoid
homomorphism ¢ : M — N, we define

o(xy) = o(x)e(y)

and @(epr) = en. That is, we actually
need to ensure the identity preservation
holds, because it is not implied by the
operation preservation.

21: Assume NBG instead of ZFC.
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-
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N
Figure 1.1: The identity and composition

morphisms acting between X,Y,Z €
ob 6.

~O

g

<«
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idz

22: This is essentially the same method of
proof that we would use if we were simply
considering groups.

such that g o f € Hom(X, Z).
(iv) identity morphisms idy € Hom(X, X) such that

(a) given morphisms f, g, h, we have

(hog)o f=ho(gof),

if these are all defined.
(b) foidy =idyof = f,forall f € Hom(X,Y).

Example 1.2.1 There are a few examples of concrete categories which we
are already familiar with.

(a) The category Set has objects which are sets S, 7, ... and
Hom(S, T) = {all functions f : S — T}.

(b) The category Grp has objects which are groups and morphisms
which are homomorphisms.

(c) The category Top has objects which are topological spaces and
morphisms which are continuous maps.

(d) The category Vecty has objects which are k-linear spaces and
morphisms which are linear maps.

Definition 1.2.2 (Isomorphism) An isomorphism is a morphism f : X — Y
in @ such that there exists a morphism g : Y — X such that g o f = idy and
fog=idy.

Definition 1.2.3 (Inverse) We call g, as above, the inverse of f and write

fi=g
Proposition 1.2.1 In a category, if an inverse exists, it is unique.

Proof. Let f € Hom(X,Y) and g, g’ € Hom(Y, X) such that gf = idx =
g f and fg =idy = fg'. Then,??

g'(fe)=(g'fg
g'idy = idy g,

sog =g. O

Example 1.2.2 Let M be a monoid. Then, we can define a category
@ with ob€ := {X} and Hom(X, X) := M, where composition in 6
directly corresponds to multiplication in M.

Remark 1.2.1 In general, if ‘€ is a category and X € ob G, then the set
Hom(X, X) has the structure of a monoid. This is called the endomorphism
monoid End(X).
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Remark 1.2.2 The set Iso(X, X) € Hom(X, X) of isomorphisms in 6
has the structure of a group called Aut(X), which is the automorphism

group.

Definition 1.2.4 (Groupoid) A groupoid is a category 6 such that every
morphism is an isomorphism.>>

If B is a category, it contains a groupoid €™ where ob €™ = ob G,

f is an isomorphism

and Homfgcore(X, Y) = f S Homcg(X, Y) . ine

Remark 1.2.3 (Arrow Notation) We will use the following convention,
when we remember:

(i) injection: X >~ Y
(ii) surjection: X — Y
(iii) inclusion: X — Y
(iv) bijectionfisomorphism X =Y or X — Y

Now, Grp is a category, so let us take a look at isomorphisms of groups.

Proposition 1.2.2 A homomorphism f : G — H of groups is an isomorphism
if and only if it is a bijection.

Definition 1.2.5 (Isomorphic Groups) Given groups G, H, we say G and H
are isomorphic, written G ~ H , if there exists an isomorphism ¢ : G = H.**

S3 and Dg are isomorphic groups.? If we label each of the vertices of A
by 1,2, 3, counterclockwise starting from the RHS, then each symmetry
o € D¢ can correspond via ¢ to ¢(«) € S3. The rotation r = 120° gets

v 1 2 3
r "2 3 1)

and the reflection s = 180° gets

Proposition 1.2.3 We claim ¢ is an isomorphism of groups.?®

What about Aut(S3)? Well,

set of isomorphisms
Aut(G) = 0:G>G ’

as a group under composition. Since S3 is generated by its transpositions, the
elements of Aut(S3) sending transpositions to transpositions is equivalent
to permuting the elements of S3, so Aut(S3) ~ §3.%

23: As an observation, a groupoid with
one object is a group, in the same way that
a category with one object is a monoid.
Inverses is what we needed!

24: Note that these isomorphisms are
usually not unique.

25: Remember, S3 is the permutations of
{1,2, 3} and D¢ is the symmetries of A.

26: Note that our labeling is arbitrary, so
relabeling the vertices gives a different
isomorphism. There are actually six
isomorphisms between these groups, one
for each labeling.

27: There is some more leg work to be
done here, but this is a good sketch of the
proof.
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28: This is an equality of sets. The LHS is
a shorthand for

xHx V' ={xhx"!:heH}.

This operation is called conjugating by x.

29: The multiplication is defined by
xN -yN := (xy)N.

We have to check that this is well-defined,
but we will not. Notably, we need N to
be normal in order for the operation to be
well-defined.

30: Note that ker(7) = N, so normal
is exactly the right condition to form a
quotient group.

31: Sometimes, we will also write Z/n,
though I am not a fan of this notation.

1.3 Normality and Quotients

Definition 1.3.1 (Normal Subgroup) A subgroup H < G is normal if
xHx™'' = H forall x € G. Wewrite H < G. 28

Example 1.3.1 In D¢, we have the elements {e, r, r2,s,sr,sr2}. Now,
(r) < Dg,whichis {e, r,r2}, and (s) < D¢, whichis{e, s}.Only (r) < De.
Remember there is a relation sr = r~ls,so sr~! = rs. To show (s) 4 H,

note that

rsr =5 =512 =1,

S0
rHr™ ! ={e,sr} # H.

Proposition 1.3.1 A subgroup N < G is normal if and only if Nx = xN for
all x € G.

Remark 1.3.1 That s, a subgroup is normal if and only if all left cosets are
right cosets. This characterization of normality can be great for intuiting
whether or not a subgroup is normal.

Definition 1.3.2 (Kernel) If ¢ : G — H is a homomorphism, the kernel

ker(p) :={g € G :p(g) = ¢}

is a normal subgroup of G.

Proof. This is a straightforward verification. O

Definition 1.3.3 (Quotient Group) If N < G, we can form the quotient
group G/ N, where®®

G/N :={xN : x € G} = set of all left cosets.

If we write the operation in terms of set multiplication, we find
xNyN = x(yN)N = xyN,

as desired.

Definition 1.3.4 (Quotient Homomorphism) There exists a surjective
homomorphism w : G — G/ N, defined by ¢(x) := xN.%

Example 1.3.2 For instance, consider (Z, +). Given n > 1, the group
nZ < Z. Their quotient Z /nZ is precisely the integers modulo 7, as we
hoped.?! The elements of the quotient group are written

X+nZ=4{x+ny:yeZ}c”Z.



1.4 Isomorphism Theorems

The isomorphism theorems are quite well-known, but we state the
“homomorphism theorem” first, which is the building block of the others.
In turn, the isomorphism theorems, while convoluted at first glance, are
one of the many “universal” threads which appear in standard algebraic
objects. We will return to variants of these theorems two more times.

Theorem 1.4.1 (Homomorphism Theorem) Given N I G and w : G —
G/ N, the quotient homomorphism, if ¢ : G — H is a homomorphism such
that o(N) = {e}, then there exists a unique homomorphism y : G/N — H

such that Y o = .

Corollary 1.4.2 Given N < G, withw : G — G/ M, then

via

Hom(G/N, H) —— Hom(G, H)

Y—vYonm

is injective, with image subset

Theorem 1.4.3 (First Isomorphism Theorem) Given a homomorphism ¢ :
G — H, we have an isomorphism G/ ker(¢) ~ ¢(G) < H. That is, ¢ factors
through an isomorphism.

Let us do some setup for the second theorem. Well, given 4, B < G as
subgroups, we have the product subse

Example1.4.1 Let G = Dg = {e,r,r2,s,s7,sr?}. Recall that > = e = 52
and rs = sr~!. We have the subgroups 4 := (s) = {e,s} and B :=

{y € Hom(G, H) : y(N) = {e}}

32

G ¢ H

4 l
quotient inclusion

G/ ker(p) 2> @(H)

t33

AB :={abe G:a€ A,be B} CG.

(sr) = {e,sr}. The product subset is then

as4 } 6.

Proposition 1.4.4 Given any two subgroups A, B < G, then AB € G isa
subgroup if and only if BA € AB.3* If this is the case, then AB = BA.

AB ={e,s,sr,r} £ Deg,

1.4 Isomorphism Theorems | 9

G/N

Figure 1.2: This diagram commutes if
@(N) = {e}, or equivalently, N C
ker(@).

32: The corresponding diagram has
?(xN) = o(x) € 9(G) < H,
where N = ker(¢p).

Figure 1.3: Commutative diagram of the
first isomorphism theorem

33: We may hope that this is a subgroup,
but it is not always.

34: This is not in most textbooks, and is
surprisingly hard to find anywhere.
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Proof. We begin with the forward direction. Suppose AB < G. Then, for
35: AB is closed under the operation. a € Aand b € B, we have a = ae,b = eb € AB. Hence, ba € AB.3>
Thus, BA € AB. To show AB C BA, suppose x € AB. We also have
x~1 e AB, so we can write x ™! = ab, for some a € A and b € B. However,
(x™H™ = (@b)"! =b7'a=! € BA. Thus, AB € BA,so AB = BA. Now,
for the other, more interesting direction, suppose BA € AB.Ifa € A and
b € B,then (ab)™! = b~ 'a~! € BA C AB, so AB is closed under inverses.
It is also certainly not empty with e € AB. Suppose we have a;,a, € A
and b1, b, € B. Then, BA C AB implies bia, = aj,b] for some a), € A and
bl € B:
(a1b1)(azby) = aibrazby = (ayay)(bibs) € AB,

36: There you go. Under specific  so itis closed under multiplication.® O
conditions, AB is a subgroup.

37: Thisis pretty trivial, becasue ifa € 4, Example1.4.2 If 4, B < Gand B < G,then BA € ABandso AB < GY

then a B = Ba, since B is normal.

Definition 1.4.1 (Normalizer) Given a subset S € G, the normalizer of S is
Ng(S):={xeG:xSx~! =8},

where
xSx7!={xsx71:s5seS).

Clearly, we have Ng (S) < G.

38: This is a very easy exercise. Proposition 1.4.5 If H < G, then H < Ng (H).38

Remark 1.4.1 Note that Ng (H) is the largest subgroup of G which has
39: Notably, H <1 G if Ng (H) = G. H as a normal subgroup.®’

Corollary 1.4.6 If we have A, B < G and A < Ng(B), then AB = BAisa

subgroup of G.
G
Ne(B) , .
Theorem 1.4.7 (Second /Diamond Isomorphism Theorem) Let A, B < G
] with A < Ng(B). Then,
AB
< (i) AB <G.
/ \, (i) B <1 AB.
4 g B (iii) ANB < A.
\ / (iv) A/J(AN B) ~ AB/B.
ANB
Figure 1.4: We have ¢(a(A N B)) = aB.
(i) Proof. This is immediate from the corollary. O
(ii) Proof. We have that A < Ng(B) implies B < AB. O

(iii) Proof. Ifa € Aand x € AN B, thenaxa™' € A, as A is a subgroup,
and axa™! € B,asa € Ng(B). O



(iv) Proof. We can define the isomorphism

A/(AnB) —Y— AB/B

x(ANB) —— xB.

Apply the homomorphism theorem to the diagram of y, as
x € AN Bimpliesx € B,soxB = eB.

A X=X AB x—=>xB AB/B

_-7
v -
F 4 -
_--" x(ANB)~xB

A/(AN B)

Now, we have
e is injective: Yy (x(A N B)) = eB implies xB = e¢B.*
e Y is surjective: given an element abB € AB/B, wherea € A

and b € B, we have abB = aB, so {(a) = a.
O

1.5 Free Group

A free group is a construction F(S'), dependent on a given set . We begin
with a definition, and then we will construct it.

Definition 1.5.1 (Free Group) A free group is a pair (F,t) where F is

a group and « © S — F is a function® such that, for every group G and
function ¢ : S — G, there exists a unique homomorphism ® : F — G so that

Dol =g.

Example 1.5.1 Consider S := {a}. Let F be C, := {a@" : n € Z} and
t: S — F prescribed by ((a) = a'. Then, (F,) is a free group.

Proof. Given a function ¢ : S — G prescribed by ¢(a) = g, there exists a
unique homomorphism ® : F — G defined by ®(a") = g". O

Remark 1.5.1 Note that if (F,t) is a free group, then we get a bijection
HomGrp(F, G) —;—9 HomSet(S’ G)a
where ® > ® o .

Proposition 1.5.1If (F,t : S — F)and (F',/' : S — F’) are free groups,
then F ~ F'. We claim we can even build the isomorphism.*?

1.5 Free Group | 11

Figure 1.5: Diagram of the isomorphism
v :A/(ANB) — AB/B.

40: Thatis, x € B whenx € AN B, so
x(AN B) =e(AN B).

41: The set S is a “set of generators.”

_* .G

function
v
7
7
7

S

o,
L s
7 3!'hom.
7
7
s
F

Figure 1.6: Diagram characterizing the
free group of S

42: The construction makes the statement
a bit more precise. The general idea,
though, is there is only one free group
foraset S.
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43: Thisisvias € S > s* € §*.

Proof. Via the universal property, we may construct homomorphisms in the
correct directions. There exists a unique group homomorphism¢ : F — F’
such that the following diagram commutes:

9%)
~

/N

N e
~ <

That is, ¢ ot = (/. Similarly, we may construct a unique homomorphism
¥ 1 F' — F such that the following diagram commutes:

n
<

7\

-

That is, ¥ o ' = 1. Now, we may compose these two homomorphisms into
maps Yy op : F — Fand g oy : F' — F’. By our construction, we may
glean the relations

Yopor=vol =1
and

(powot/z(potzl/.
Yet, we know idr and id f/, the identity morphisms in Grp, also satisfy

(idrp : F = F)ot=1idF
and
(idF/ P F’)OL/ =idp’.

Thus, via the uniqueness of our universal property for free groups, we
must have that ¥ o ¢ = idr and ¢ o Y = id /. Therefore, ¢, Y are inverse
isomorphisms yielding F >~ F’, as desired. a

Example 1.5.2 There is one easier example of a free group than we did
before: S = @ implies F ~ {e}.

Theorem 1.5.2 For every set S, there exists a free group (F,t: S — F).

Proof. We begin by developing some terminology:

» We call elements s € § “symbols.”

» Choose a new set S* disjoint from S, but in bijective correspondence
with §.

» Let S]] S™ be the set of “letters.”
» Given s* € §*, let (s*)* ;=5 € S.



Now, a word is a finite sequence

X = (X1,X2,...,Xp)

of letters x; € S [ S*, wherei € [n] and n > 0. Note that the “empty word”
corresponds to the n = 0 case, which we write as ().** The length of x is
precisely n. A reduced word x = (xi, ..., x,) is one such that x; # X1
for all k € [n — 1]. Let us define F as the set of all words. Then, let us take
the function

t:S—> F s (s),

where (s) is a word of length 1 in F.** Given x := (x1,...,x;) and
y:=1,...,¥n) € F,wherex;,y; € S||S*, define
(X1snvs Xomeks Vi+1s---5Vn), Kk <min(m,n)
Xoyi= Ymt1s - ¥n), k=m<n
(xl,“-»xm—n), k=n<m
0, k=m=n,

where k is the largest integer such that x;l_j = yj4+1 forall0 < j <k and
0 <k < min(m,n).* O

At this point, we only know that (F,-) is a magma.
Proposition 1.5.3 If G is a group and ¢ : S — G is a function, then there
exists a unique function ® : F — G such that¥
(i) ©((s)) = o(s)foralls € S.
(it) P(x-y) = P(x)P(y).
Proof. For existence, let us extend the definition of ¢ : S — G to ¢ :
STIS* — G, setting ¢(s*) := ¢(s)~!. Now, define
P:F = G:(x1,...,Xn) B @(x1)@(x2) -+ 9(xn).

This is a function which satisfies (1).* Now, given x, y € F of length m
and n, respectively, let us compute

X‘y = (xl"”’xm—k’Yk+1a--',ym)7

where k is such that x> , # yr41, but x,*n_j = yj41 for j < k.Then,
P(xX)P(y) = P(x1) -+ PCxm—t) P(Xm—ke41) -+ LX) P(y1) - - P(yie)
up to ®(yg41) -+ P(yn). If j < k, then x;;_j = y;+1, which is precisely
PO ) = 0(m—j) ™" = (yj11).
so

D(x)P(y) = @(x1)  @(Xm—t)P(YVk+1) - ©(Vn)
= ®(x-y),

proving (2). Now, why is this unique? Well, if & : F — G satisfies (1) and
(2), note that () - ) = () in F, s0 9(()p(0) = ¢(0) = e € G. Likewise,
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44: Thatis, () is of length 0.

45: Our goal is to define an operation
via concatenation, but this may give us
unreduced words. Our solution is simply
to remove any problems, moving from the
center of the concatenated word, out.

46: All cases except the first in the
definition of the group law are morally
“edge cases,” but they should be written
down.

47: This is what we use to prove the
universal property, even though we do
not actually know that F is a group yet.

48: That is, it extends ¢.
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49: This is just (2).

50: This shows that the formula we made
is the unique correct one.

51: As an exercise, check that x - x~1 =

O0=x"1-x.

52: We use a trick here. For some
reason, many algebra texts, at this point,
give a monologue about how difficult
associativity is to show for F. Rezk
strongly disagrees.

Figure 1.7: This is by what we showed:
there exists a unique function ® such that

®((s)) = Ag and ®(x - y) = 9(x)p(»).

53: This ending is more of a sketch, due to
time constraints, but we get associativity
because it isomorphic as a magma to the
image of ®in G.

54: This is called the group presented by
(S, R).

(5)(s*) = O = (s*)(s), then
e(()e((s*) = e = p((s*)e((s)) = e((s*)) = @((s))~ L.

Now, we know, in general, a word x of length n is a product of a word (x)
of length 1 and a word (xz, ..., x,) of length n — 1 in F. Then, we have®

P((x1)(x2, ..., xn)) = P((x1))P((x2, ..., xn)),

and induction on n will show®°

O((x1,-- .. xn)) = @((x1)) -+ @((xn)).

O

Finally, we need to show that F is a group. The easy part is taking () = e,
as it acts as an identity element. If x = (x1, ..., x;,), then define x1
(X, Xp_ s ,xi").51 We now need to show that (F,-) is associative.®

Let G := Sym(F). Givena € S|[S* let A, : F — F be defined by
Aa(x) := (a) - x. Now, we have that

2

a* # xi

x* =x.

a-xn)s
(xX2,...,Xn),

ra(x) = (a,xi,...

We can calculate that A,(A,+(x)) = x and Ag+(A4(x)) = x. Hence,
Aa,Agx € G = Sym(F), as Ag* = )L;l. This is nice, because we have just
constructed a function

A
ar—>Aq G
[

<

1

We claim that @ is an injection. Well, ®(x)(()) for ®(x) € G = Sym(F)
and () € F, so plug this into ®(x). Then, we have ®(x) = A, 0---0 Ay,

and (Ax, 0 --- 0 Ax,)0 = (x1,...,x,). We have F <E> (F) £ G by
P(x - y) = p(x)p(y).>

1.6 Group Presentations and S,

As notation, we will write F(S) to be “the free group on the set S,” and
t: S>> F(S) is essentially inclusion.

Definition 1.6.1 (Group Presentation) A group presentation is a pair (S, R),
where S is a set and R € F(S).

Now, given a presentation (S, R), we can form a group®

G := (S|R) := F(S)/N,
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where®®

N = < U gRg—1> < F(S).

geF(S)

Definition 1.6.2 (Finitely Presentable) We call a group G finitely presentable
if there exist finite sets S, R € F(S) such that G ~ (S|R).

Example 1.6.1 We have (S|@) ~ F(S).

Example 1.6.2 Consider (a|a™). In this case, S = {a} and R = {a"}
F(S). Hence, (a|a") >~ C,

IN

Example 1.6.3 Now, consider (a,b’aba‘lb_l). This “forces” aba~'b~! =
e, so ab = ba. This is isomorphic to Coo X Coo =~ Z X Z.

Example 1.6.4 Here is a fun example. Consider
(a, b}aba_lb_z, bab_la_z) .
Interestingly, this is isomorphic to {e}.>

Remark 1.6.1 Note that we can write any group as G = (G|R) =
F(G)/N,where N = ker(F(G) - G),and set R = N.

Example 1.6.5 We have (r,s ", s2, srsr) ~ Dy,

How would we show something like that? Well, we have to construct an
isomorphism from F(r,s)/N — Dz, € GL3(R).”” We construct

F(r,s) ¢ Dap € GL3(R)
cos(2m/n) —sin(27/n)
r ——— | sin(2%/n) cos(2m/n) =R
1
1
St -1 =S
1
Let N := ({gr”g_l,gszg_l,g(sr)zg_l}). We need to check that

N C kerg, so we need to show " s, srsr € kerp. We get that

gr'g™!, etc € kerg < F(S), so ({gr"g_l, .. }) C ker ¢. Thus, we have a
surjective homomorphism (S|R) —» D5,. We can complete this argument
by showing that every element in the given presentation is equal to one of
e,r,....r" Vs sr.....s,sr" 1. To do this, (1) we know in G we can

55: The normal subgroup N is called the
normal closure.

56: This shows that a group can have
multiple presentations.

57: Note that this is the correct direction,
since the quotient is specifically built for
constructing homomorphisms.

F(s,r) % 5 D,,

P
9 7
e
//7
- (4
-
e

F(s,r)/N

Figure 1.8: We need ¢.
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1

58: This is because rs = sr— 1. always move s past a power of r.°® Hence, we can reduce every element to

the form s'r/. Then, (2) we use the relations 7" = ¢ and s? = e.

Remark 1.6.2 It is very difficult to work with presentations. It is not a
calculational tool that you can always find an answer for. This is why we
need the tool of building homomorphisms.

Remark 1.6.3 (Word Problem) Given S, R finite and a presentation
G = (S|R). Provide an algorithm to decide for each w € F(S), whether
the image in G is id.

59: That is, there is not an algorithm. Theorem 1.6.1 There exist finite group presentations which are undecidable.”

Example 1.6.6 The symmetric group S, can be presented as

$iSi,
Sn =({S51,52,...,8—1 (SiSi+1)37 .
(SiSj)z if |i — ]| >2

60: See Rezk’s notes. Proof. We leave out the proof, but the ideaistouses; = (i i +1).%° O



Actions and Automorphisms

Now that we have reviewed the structure of groups, we will begin to

investigate the consequences of this structure within a broader context.

Topics will vary, but include a discussion of group actions, the simplicity
of Ap, and the automorphism groups Inn(G) and Out(G)

2.1 Group Actions

Definition 2.1.1 (Group Action) A group action is the triple (G, X, G x X —
X)), where G is a group, X is a set, and (g, x) — gx, such that

(i) g1-(g2-x) = (g1-8&2) - x.
(i) e-x = x.

We say that “G acts on X.” Some alternate notation is to define ¢¢ (x) := gx,
then ¢, : X — X is a function.

Proposition 2.1.1 Defining ¢ : G — Sym(X) by g = (¢pg : X — X)isa
homomorphism of groups.!

Conversely, given a homomorphism ¢ : G — Sym(X), define gx :=
©(g)(x). Then, this defines a group action (G, X, (g, x) = ¢(g)(x)).

Example 2.1.1 Let G = G and X = G. Then, define g - x.?

Example 2.1.2 Taking H < G,let G = G and X = G/H. We define the
action by g - xH := (gx)H, which corresponds to the homomorphism
G — Sym(G/H) with g > (xH + gxH).?

Definition 2.1.2 (Transitive Action) An action by G on X is transitive if for
all x,x" € X thereexistsa g € G suchthat g-x = x’ and X # @.

Definition 2.1.3 (Kernel of Action) We define the kernel of the action
ker|G LA Sym(x)] :={ge€G:g-x =xforall x € X}.

Note that since we have any action corresponding to a homomorphism
¢ : G — Sym(X), we have that the kernel of the action is precisely
kerp < G.

Definition 2.1.4 (Stabilizer Subgroup) Given an action by G on X and

2.1 Group Actions . . . ... ... 17

2.2 Applications of Actions and
Orbits .. ............ 18

2.3 Cauchy’s Theorem . ... .. 20

2.4 A Note on Cycles and 4, . .21
2.5 Category Setg of G-Sets . . .22

2.6 Conjugation Action ... .. 23

2.7 Automorphism Groups . . .25

2.8 Automorphisms of Cyclic
Groups . ............ 27

1: We would need to check that ¢g is a
bijection and a group homomorphism:

$g ©Ph = Pgh-

2: This is called the left action of G on
itself.

3: This is the left coset action.
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4: This is not the kernel. Look carefully.

5: In this case,

¢ =idg : G = Sym(X).
1

6: Convince yourself that we need g7 .

Otherwise, it will not work.

7: The operator conj defines a
homomorphism from G — Sym(G) via

conj
G — Aut(G).

8: The trivial group acting on the empty
set is an example of an action which is
free but not faithful.

9: That is, the isomorphism is given by

y:iar> gag_l , conjugation.

10: It turns out, this is not very useful. It
is, however, historically important.

x € X, the stabilizer*

stab(x) =G, :={geG:g-x=x}<G.

Example 2.1.3

(a) For any set X, we can take the fautological action by G := Sym(X),
sog-x:=g(x)>

(b) Another example is the action on right cosets, where we take X :=
H\G = {H x}. Then, we define the actionby g - Hx := Hxg '.°

(c) We also have the conjugation action, where we take X := G and

conj, (x) := gxg™ !t

with g, x € G, so conj, € Aut(G) < Sym(G).”
(d) The trivial action fora G-set X isg-x = x forallg € G, x € X.

Exercise 2.1.1 Prove that

() stab(x) = ker[G % Sym(x)].

x€X
Definition 2.1.5 (Faithful Action) An action is faithful if ker ¢ = {e}.

Definition 2.1.6 (Free Action) An action is free if stab(x) = {e} for all
xeXx?8

Proposition 2.1.2 If X is a G-set, then if x,y € X such that y = g - x for
some g € G. Then, Gx =~ Gy. Inﬁzct,9

1

Gy, =gGrg™ = {gag™!:a € Gy}

Proof. We must first show that y is well-defined. That is, if a € Gy, then
y(a) = gag™' € G,.Infact, gag™'-y = ga-x = g-(ax) = g-x = y. This
actually shows that gGxg~! < G,. Since x = g~! - y, the same argument
give g71- G, (g7!)~™! C Gy, which shows that y has an inverse function
given by sending b +— g 'bg. O

2.2 Applications of Actions and Orbits

Theorem 2.2.1 (Cayley) Every group G is isomorphic to a subgroup of some
Sym(X) for some set X. Furthermore, if G is finite, then we can choose
|X| < 0010

Proof. We have the left action by G on X = G, given by

¢ : G — Sym(X),
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where ¢(g)(x) = gx. This is a faithful action; i.e., the kernel of ¢ is trivial."!
Thus, ¢ : G = ¢(G) < Sym(X). O

Proposition 2.2.2 Let |G| < oo, and let p be the smallest prime such that
p | |G|. Then, any subgroup H < G with |G : H| = p isanormal subgroup.?

Proof. The proof is that there is the left action by G on X = G/H. We have
a homomorphism ¢ : G - Sym(G/H) ~ S,. Let K := ker¢ < G. Note
that K < H, asif p(g) = id, then ¢(g)(eH) = gH = eH,so g € H. We
know, by the first isomorphism theorem, that G/ K ~ ¢(G) < S,. We also
know that

lo(G)| = |G/K| =G : K| =|G: H|=|H: K| = p|H : K|.

Now, ¢(G) = S, so |¢(G)| dives p!, so |H : K| divides (p — 1)!. Yet,
Lagrange actually tells us that |H : K| = |H|/|K| | |G|. We know that
p is the smallest prime factor dividing |G|. Hence, |H : K| = 1,50 K =
kerop = H <G. O

Definition 2.2.1 (Orbit) Given a G-set X, we can define a relation ~ on X by
the recipe x ~ y if and only if there exists a g € G such that g - x = y under
the action.”® The orbit G - x is an equivalence class of this relation:

G-x:={g-x:g€G}.

Note that the equivalence relation partitions X into pairwise disjoint and
non-empty subsets (the orbits).

Definition 2.2.2 (Transitive Action) An action is transitive if there is exactly
one orbit. "

Remark 2.2.1 Recall that if x ~ y, then Gy and G, are conjugate
subgroups of G.

Theorem 2.2.3 (Orbit/Stabilizer) For any action G on X, and forany x € X,
there is a bijection

G/ stab(x) M G-x

bijection

As a consequence, for any orbit © C X, we have that |0] = |G : stab(x)|, for
any x € 6.°

Proposition 2.2.4 If X is a G-set, with | X | < oo, then

1X| = |G :stab(x)].

k=1

where x1, ...,x, € X are representative elements of the distinct orbits of the

11: Tt is also free.

12: You already know this for p = 2.

13: Show that this is an equivalence
relation on X.

14: This is equivalent to the prior
definition.

15: We essentially proved this on the
second problem set.
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16: In other words, G -x; NG -x; = &
if x; # x;j,and

17: We give a more recent proof, due to
McKay, which is a lot more clever than
the standard proof you will see in algebra
texts.

18: Infact, (p_l also takes X into X . Thus,
@ is actually a permutation of the set X.

action.16

Proof. X is partitioned into pairwise disjoint sets via the orbits, and using
the orbit/stabilizer theorem, we have a way to count. O

2.3 Cauchy’s Theorem

Definition 2.3.1 (Fixed Set of Action) Define

X6 .= {xeX:g-x=xforall g € G}.
Example 2.3.1 Let us consider actions by G := C,, where p is prime.
Suppose X is a G-set, | X | < oc. The orbits can have size 1 or p. Let m be

the number of orbits of size 1, and write n as the size of orbits of size p.
Then, | X| = m + pn. That is,

|X|=m+pnzm=‘XG‘ (mod p).

Theorem 2.3.1 (Cauchy) Let G be a finite group, and let p be a prime such
that p | |G|. Then there exists a g € G with |g| = p.”

Proof. Consider the set
X = {(g17'~~7gp) EGp :gl"'gp :e}.

Then, we have that |X| = |G|P~' =: n?~!. This is because gp is the inverse
of (g1 gp—1)"!. In particular, p | | X|. Now, define a function

X#X

(&1, 8p) ——> (g2.....8p- &1)-

We need to verify that (g1,...,gp) € X implies ¢(g1,....8p) € X. Well,
if g1g2+--g» = e, then conjugating by g~ ! tells us that g, --- g,g1 = e.1®
Also, if we compose ¢? =id,soif H = C, = (¢), then we get an action
by H on X. Explicitly,
H = (¢) ——> Sym(X)
Q0 —— Q.

Now, recall that if H = C,, acts on a finite set, then | X| = }X H ] (mod p).
Now, in our case, we have that

’XH‘ =|X|=0 (mod p).
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What is X #? Since H is cyclic, the fixed set
XH ={xeX:pkx)=x}
which is precisely the set
X" ={(g1.....8p) €G? : g €G.g" =¢}

Since (e, ..., e) EXH,Wehavethat|XH| > p,soany g € G withg # e
has (g, ..., g) € X with order p.

O
2.4 A Note on Cycles and 4,
Given G := Sym(X), and given a sequence xi, ..., x; of distinct elements
in X, define? 19: Note that we can cylically permute the
0:=(x1x2 --- xx) € G, elements of o freely, as long as we do not
change the cyclic order. Also, (x1) = id.
where
X, if x & {x1,...,x7}
o(x) = xj+1, ifx=x;,0i €[k—1]
X, if x = xg.

Any cycles 0 = (x1,...,Xxk), T = (J1,. .., yg) are disjoint if the sets

X1, o xk N e =9
If so, thenot = to0.
Proposition 2.4.1 If | X | < oo, then every g € Sym(X) is equal to a product

of disjoint, nontrivial cycles. Furthermore, this representation is unique up to
reordering the cycles.

Proof Outline. The idea is that H = (g) < Sym(X) acts tautologically on
X . We know that when we have a group action, we can decompose it into
the orbits of the action by H on X 20 O 20: These are basically the cycles.

For instance, consider g € Sg defined by

s

7

l<«——5
l !
33— 8

A <—

6
!
9

In this case, we can decompose” g = (138 5)(247)(69). 21: The picture gives us all the
information about the disjoint cycles that
We also have the cycle conjugation formula. If we have we need.

o = (x1 X2 -+ xx) € Sym(x)

and g € Sym(X), then

1

g(x1xz -+ xp)g™ = (g(x1) g(x2) -+ g(xx)).
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22: This is the sign homomorphism. One
“formula” is

sgn(o) = det[eg(l) . 'eg(n,)].

23: A group is called simple if it only has
two normal subgroups.

24: If we write both actions as g - x, then
the condition is

flg-x)=g- f(x).

25: Note that there are categories, such
as the category of topological spaces,
where the isomorphisms are not simply
bijections.

26: Here, G/H is precisely the set of left
cosets with the standard left coset action.

27: This last statement is true, so f is a
morphism by symmetry.

Now, given sgn : S, — {£1}.%? Then,

ker(Sy -5 (1)) =: A, < S

Theorem 2.4.2 A, is simple ifn > 5.2

Proof. Use the cycle conjugation formula to show that any nontrivial
N < A, contains every element of 4,. O

Example 2.4.1 One example of a simple group is C,, for prime p.

2.5 Category Set; of G-Sets

Now, fix a group G. We can define a category of G-sets called Setg. We

define the objects ob Setg to be (X, G % Sym(x)) and the morphisms
Homse; (X, ¢). (X', ¢")) to be functions of sets f : X — X’ such that for
allg € G and x € X, then?*

flp(g)(x) = @' (e)(f(x)).

Given this language, we can now talk about isomorphisms of G-sets.

Proposition 2.5.1 If we have

f € HomSetG ((X’ (P), (X/’ (P/))

is an isomorphism if and only if it is a bijection X — X'.2°

Proposition 2.5.2 Fix G. Any transitive G-set is isomorphic in Setg to an
object of the form G/H for some H < G.?® We also have that H is unique up
to conjugation in G; i.e., there is a bijective correspondence between transitive
G-sets up to isomorphism and subgroups of G up to conjugacy.

Proof. If X is a transitive G-set, pick an element x € X, and let
H :=stab(x) < G.
Then, define a function

G/H—' . x

gH+—— g-x.

We claim that f is a well-defined bijection. Now, we show that f is a
morphism in Setg. Well, for all g € G, f(g-aH) = g- f(aH), and
f(g-aH) = f(g-aH) = ga-x,and g - f(aH) = g - (a - x).7 Note
that we can show that if f : G/H — X is any isomorphism of G-sets,
then let x¢ := f(eH). We can calculate that stab(xg) = H.If g € G and



g+ xo = xo, then f~1(g-x0) = f~!(x0), and we can pull the g out to give
usg-eH =g- f~'(xg) =eH,sog e H2 O

Whereas the orbit/stabilizer gives us a way to count, this proposition about
Setg gives us a way to classify.

2.6 Conjugation Action

Recall that if we have g, x € G, then conj, (x) = gxg~!. This gives a group
action G — Sym(G).

Definition 2.6.1 (Conjugacy Class) The orbits of the conjugation action are®

Cl(x) :={gxg~' : g € G},

called the conjugacy classes.

Definition 2.6.2 (Centralizer) The stabilizer of the conjugation action is

Go(x):={ge€G:gxg” ' =x}={geG:gx=uxg}

called the centralizer subgroup.>

Remark 2.6.1 The kernel of conj : G — Sym(G) is precisely
F(G):={geG:gx=xgforallx € G} <G,

the center of G.3!

Now, recalling the orbit/stabilizer theorem, we know that

ICl(x0)| = |G = B (x)].
Example 2.6.1 We have that Cl(e) = {e}, and Bg(e) = G.

Example 2.6.2 Now, if G is abelian, then 6 (x) = G and Cl(x) = {x}.
It is not very informative in this case.

Let G := D,,. We can write

D2n = (I‘,S

rts? (sr)?) =feor " s s s

Since there are two generators r, s, all we need is the following:?

conj, %y =r*

conjr(srk) = srk=2
conjs(rk) =k

conj (srk) =sr7k.
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28: Use the same argument, but
backwards, to show the other direction of
inclusion.

29: Recall that these partition G by
subsets.

30: We have that 6 (x) < G.

31: This is precisely the intersection of all
the centralizers.

32: Note that D4, always has a center of
order 2.
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33: We can use the orbit/stabilizer
theorem to deduce the order of the
centralizers. In D4 12, it is typical to
have all reflections in the same conjugacy
class.

34: Recall that g € £(G) if and only if
Cl(g) = g. Note that each term on the
RHS divides |G|, and

1 <|G:6c(gr)l <IG|.

35: This tells us that p-groups can “de-
structured” by using this fact about their
centers.

36: Why is this true? Well, pick (g) €
G/Z(G).Lift g toanelement g € G. We
claim that every element y of G can be
written as y = gkx, where x € E(G),
and k € Z. Thus, if we have g¥xgtx’ =

gex’gkx.

Remark 2.6.2 The general method for D,, is to conjugate each element
by r and s, via the formulae computed, after chasing the conjugation
diagrams.®

Theorem 2.6.1 (Class Equation) Let |G| < oc. Then,

G| =1Z(G)| + )_ |G : 66 (gw)l.
k=1

, 8k are representative elements of distinct conjugacy classes of G,
).34

where g1, ...
which are not contained in (G

Proof. There are two types of orbits O of conj:

» |6 = lifand only if |G : B (x)| = 1if and only if x € Z(G).
» |6 > 2ifand only if |0 = |G : Bg(x)| for any x € O.

Now, for any group action on X, we have

IX] =) lol+ ) Iol,

l6]=1 |0]>2

and grouping view counting and our observations above yields the class
equation. O

Despite this being a seemingly silly result, we can actually get some nifty
results out of it.

Definition 2.6.3 (p-group) A p-group is a finite group with |G| = p¢,
whered > 1.

Theorem 2.6.2 Every p-group has a non-trivial center.

Proof. Use the class equation:we know that |G| = p¢, and the indices
m; | p¢,and 1 <m; < p?,s0 p||G|and p | m; foralli. Thus, p | |£(G)|,
which means the center is nontrivial.?® O

Corollary 2.6.3 If we have |G| = p?, then G is abelian.

Proof. For any group G, if G/Z(G) is cyclic, then G is abelian.*® Now, if
|G| = p?, then |Z(G)| € {p, p?}, by the theorem, so |G/Z(G)| € {1, p}, so
G/Z(G) is cyclic. O



2.7 Automorphism Groups

Recall that an endomorphism of a group G is a homomorphism ¢ : G — G,

and an automorphism is an isomorphism ¢ : G — G. Note that in general,

Aut(G) € End(G) = Homgy(G, G).
N —
group

monoid
Now, recall that we have a homomorphism
conj : G — Aut(G) < Sym(G),

and ker(conj) = Z(G).

Definition 2.7.1 (Inner Automorphisms) The image>”
conj(G) =: Inn(G) < Aut(G),

is the inner automorphism group, and by the first isomorphism theorem,
Inn(G) ~ G/Z(G).

Example 2.7.1 If G is abelian, then Inn(G) = {id}.%®

Example 2.7.2 Let G := D¢. What is End(Ds)? Fix H. Well, there is a
bijection

homomorphisms (R,S)e Hx H

R®=5%=SRSR =e|

Ds ——H (T

Suppose H = Ds. Then, R® = e implies R € {e,r,r?} and S? = ¢
implies S € {e, s, sr,sr?}, such that (SR)? = ¢.%°

Proposition 2.7.1 Let ¢ € Aut(G). Then, with g € G, we can write

@ conj, ol = CONj 4 -

As such, Inn(G) < Aut(G).

Proof. Let x € G. Then,

(¢ conj, o H(x) = ¢(conj, (0~ (x))
=g~ (g™
= 0(@)e(e~ (x)p(g) ™!
= p(&)xp(g)™" = conj,)(x).
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37: That is, the image of conjugation is
the group of inner automorphisms.

38: Once again, abelian groups make our
tools useless.

39: There will be 10 distinct
endomorphisms. What if we were,
instead, checking for automorphisms?
We know that if ¢ € Aut(G), then
Re{r,r?}and S € {s,sr,sr2}, so we
have an upper bound

|Aut|(Dg¢) < 6.

We also have Inn(Dg) =~ Dg/ZE(G),
which is of order 6. Thus, there exists
an isomorphism

D¢ = Aut(Dg),

via conj.
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40: Note that there are not “outer

automorphisms.”  Rather, Out(G)
contains  equivalence  classes  of
automorphisms.

41: Thatis, k(h)(g) = hgh™ 1.

42: This is immediate from the definiton.

Figure 2.1: We have that
H/€y(G)G =~ K < Out(G).

43: As an exercise, show that G >~ Dsg.

Definition 2.7.2 (Outer Automorphisms) Seeing as the inner automorphisms
form a normal subgroup, we can form the outer automorphism group™

Out(G) := Aut(G)/ Inn(G).

Recall that Inn(G) ~ G/Z(G). How do you find “outer automorphisms”
of G? We want to embed G as a normal subgroup in some H.Take G < H.
We gett!

H—" Aut(G)
h ———— conj,, |G'
Proposition 2.7.2 The kernel of k, as above, is

kerk =By (G) :={he€ H :hx = xhforallx € G},

the centralizer of G in H .**

Proposition 2.7.3 We can also write

k" 1(Inn(G)) = By (G)G < H.

Proof. Note that k(B (G)) = {id} and «(G) < Inn(G). Suppose z € H, so
that x(z) € Inn(G). Then, there exists a g € G such that x(z) = «(g) =
conj,, . If we take

k(zg ") =k(2)k(g)~" =id,

soy = zg~' € By(G). Thus, z = yg € €y (G)G, which means
k" 1(Inn(G)) = 6y (G)G. O

H « Aut(G)

| lﬂ

H/Cy(G)G — Aut(G)/Inn(G) = Out(G)

Consider
H = D16 = (r,s

r8, s, (sr)2).
Then, G = (rz,s) < H.*® Now, « : H— Aut(G), and
ker(k) = By (G) = {e.r*} C G.
Doing this shows that
kN (Inn(G)) = Bx(G)G = G.
Thus, we have an injective homomorphism k : H/G > Out(G), where

H/G =~ (r|r?) and Out(G) =~ Dsg. Thus, conj,|, defines an “outer
automorphism” of G >~ Ds.

l6
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Proposition 2.7.4 Let us look at another standard example, S,. Well, £(S,) =
(e} ifn # 2.4

Proof. Let 0 € E(Sy). Then, o(a b)o~! = (a b), but we also know that
o(a b)o~! = (o(a) o(b)). This implies that o(a) € {a, b}. If there exists a
¢ ¢ {a, b}, the same argument gives us o (a) € {a, c}. Since we can run this
for any two elements, o (a) = a. O

Remark 2.7.1 Because of the above, if n > 3, we have that Inn(S,) >~ S,.

Remark 2.7.2 We have that Out(S,) = {e} unless n = 6, in which case
Out(Sg) ~ C,.#

Example 2.7.3 In the alternating group A,, we can show that £(4,) =
{e} if n # 3. The proof is very similar to Z(S,). In fact, 4, < S,, so
we can show that 6g, (4,) = {e} if n > 5. As a consequence, we get
an injective homomorphism S, /A4, ~ C, > Out(4,), meaning there
always exists a non-trivial automorphism of 4, for all n.

2.8 Automorphisms of Cyclic Groups

Recall that if G is abelian, then Inn(G) = {id}, so Aut(G) = Out(G).

Consider G = C = (a|D) ~ (Z, +). Then, the endomorphisms in
End(Co) = Hom(Cop, Coo) = Z,

where we just take ¢ — n, taking ¢(a) = a”.

Remark 2.8.1 Define ¢, € End(Cy) such that ¢,(a) = a”, meaning
¢n(a¥) = a™ . Then, since End(Cq) is a monoid, ¢, 0@, (@) = ¢m(a”) =
a™" = @mn(a). Thus, we have an isomorphism of monoids End(Co) =~
(Z,-). Thus, Aut(Cs) >~ {£1}.

Example 2.8.1 Let C, = ({(ala") ~ (Z/n,+). Well, End(C,) =
k 46

Hom(C,, C,) = Z/n. Then, we can take ¢ > [k], where ¢(a) = a*.

For instance,

Aut(C2) = (Z/2)* = {[1]}

Aut(C3) = (2/3)* = {[1]. [2]}
Aut(Cy) = (Z/4)* = {[1]. 3]}
Aut(Cs) = (Z/5)* = {[1]. [2]. [3]. [4]}
Aut(Ce) = (2/6)* = {[1].[6]}.

Additionally, |(Z/7)%| = 6, and (Z/8)* ~ V.

44: Inthe casewheren = 2, S, isabelian,
so the center is certainly not trivial.

45: We omit proof for when n #
6. However, note that ¢ € Aut(G)
preserves a lot of structure. For instance,
»(Cl(g)) = Cllp(g)), and if ¢ €
Inn(G), then

»(Cl(g)) = CUG).
In the case of the symmetric group, let
T :=Cl((12)) € S,.

Then, ¢(T) is a conjugacy class of
elements of order 2. We would then show
that if ¢(T) = T, then ¢ is innner, and
then we count the sizes of conjugacy
classes of elements of order 2 in S,,. We
can show that the only class with the same
sizeis T'.

46: This k is only defined up to
modulo n. Like before, we have
an isomorphism of monoids, where
(Z/n,) =~ Hom(Cp,,Cp). As a
consequence, Aut(C,) =~ (Z/n)*, the
group of units.
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Proposition 2.8.1 In general,
|Aut(Cp)| = [(Z/n)*| = p(n),
47: Recall that the totient counts the where ¢ is Euler’s totient function.

number of elemenets {0, . .., n—1} which

are relatively prime to 7. . . . . . .
P Given this work, you might wonder if we could generalize this work on

cyclic groups to abelian groups.

Example 2.8.2 Consider

G =CyxCpx--xCp,

N ——— | —
m products

48: This is partially because G is where |G| = p™. Then,*

isomorphic to the vector space (Z/ p)™,

under addition. Aut(G) ~ GL,(Z/ p).

This is, of course, not abelian if m > 2.

Example 2.8.3 The automorphism group

Aut(C, x Cp) ~ GLy(Z/2) =~ S;.



Sylow Theorems and Products

Recall that a p-group is a group of order p¢, where a > 1 and p is prime.

3.1 Sylow Theorems

Definition 3.1.1 (p-Sylow Subgroup) A subgroup P < G such that P isa
p-group and p t |G : P|is called p-Sylow.

Note that this is actually equivalent to saying that |G| = p®m, where p } m,
and |P| = p? wherea > 1.

Remark 3.1.1 We have a notation for the set
Syl,(G) :={P = G : P isa p-Sylow subgroup}.

Now, G acts on Syl ,(G) via conjugation, as for g € G and P € Syl (G),
we have that gPg~' = P’ € Syl (G).!

Now, fix a finite group G and a prime p such that p | |G]|.

Theorem 3.1.1 (Sylow I) There exists a p-Sylow subgroup of G.

Theorem 3.1.2 (Sylow II) Any two p-Sylow subgroups of G are conjugate.?
Thus, a p-Sylow subgroup P < G if and only if n,(G) = 1.
Theorem 3.1.3 (Sylow III) If P € Syl,, (G), then
np = |G : Ng(P)|
andnp, =1 (mod p).

We will give proofs for the Sylow theorems, but we will start with some
applications.

Remark 3.1.2 Fix primes p < g. Suppose |G| = pq. Then, n, € {1, q}.
Similarly, n, = 1.3

Proposition 3.1.4 If |G| = pgq, then there exists P < G such that |P| = p,
and A < G such that |Q| = q. If we also have that p + q — 1, then G is cyclic.

Proof. In this case, n, = 1, so P < G. Also, because p, g are primes,
P = (x), 0 = (y),and P N Q = {e}. Thus, xy = yx, so the group is

3.1 Sylow Theorems
3.2 Ascending Chain Condition 32

3.3 Torsion and Products. . . . . 35
3.4 Extensions and Semidirect
Products............. 38

1: The notation for cardinality here is

np(G) = ’Sylp(G)‘.

2: Thatis, Syl,, (G) is a single G-orbit.

3: We can have np = g if and only if
g =1 (mod p),and ny = p if and only
if p =1 (mod ¢q), which does not work.



30 | 3 Sylow Theorems and Products

4: We use Sylow III

5: That is too many elements.

6: We omit the proof for brevity. Check
Rezk’s notes. The idea is that if n3 = 4,
then we have an action by G on the set
Syl;(G) which has size 4. Thus, there is
a homomorphism

G —Z— Sym(Syl;(G)) =~ S4.

The exercise here is to show that ¢ is
injective, and @(G) = A4.

abelian. Why? Well,
xyx lyl=x(yxly " HhePP="P
and

(yx"Hy e Qo =0,

so xyx~1y~! = {e}. Thus, z = xy has order pg, where z¥ = x¥y¥, and
= eifandonlyika =y *ePnNQ=/{el,sopl|k, qlk.Assuch, we
must have pq | k. O

1 k

Example 3.1.1 (Groups of Order 30) Let |G| = 30 = 2-3-5. We can
write that*

ny € 1{1,3,5,15}
ns € {1,10}
ns € {1,6}

We claim that we cannot have n3 = 10 and ns = 6, as n3 = 10 implies G
has 2 - 10 elements of order 3, and n5 = 6 implies G has 4 - 6 elements
of order 5.° Choose |P| = 3 and |Q| = 5. One of these is normal in G.
Consider

PO ={xy:xeP,yeQ}
We have that PQ < G, since either P or Q is normal. Thus, |PQ| = 15,
meaning |G : PQ| =2,and PQ < 2.Yet, 3 } 5—1, so by the previous
proposition, PQ is cyclic. Thus, every G of order 30 has a normal
subgroup C1s ~ N < G.

Example 3.1.2 (Groups of Order 12) If |G| = 12 = 3-22, then

ns € {1,4}
np € {1,3}

If G has no normal 3-Sylow subgroup, then it is isomorphic to A4.°

Now, let us prove the Sylow theorems.

Proof of Sylow I. We claim () that

(i) there exists a proper H < G suchthat p t |G : H|or
(ii) there exists N < G such that |N| = p.

We will use the claim (*) to prove Sylow I, proceeding by induction on
|G|. For the base case, |G| = p implies P = G. For the inductive step, by the
claim, either (i) or (ii). If (i), then by induction, there exists P < H which
is p-Sylow in H. Then, [H| = p?m', where m’ | m. Thus, P € Syl (G).
If (ii), then consider G := G/N. Then, E| = p*'m < |G|, and via
induction, there exists P < G, where |P| = p*~!. Write 7 : G — G for
the canonical quotient homomorphism. Let P := n_l(F). Then P < G,
and |P| = |?||N| = p“,so P € 5yl,(G). O




Proof of Claim (). Via the class equation, we will show that if not (i), then
(ii). Not (i) implies that for all H < G, p | |G : H|. In particular, p |
|G : Bg(x)| for all k € [r]. The class equation implies that p | |£(G)|. By
Cauchy, there exists an x € £(G) such that |[x| = p.Set N := (x) I G. O

Lemma 3.1.5 Let H, K < G. We have an action K onto G/H by k - gH =
kyH . Then, this action has a fixed point if and only if there exists x € G such
that K € xHx1,

Proof. Suppose there exists xH € G/H such thatk -x = xH forallk € K.
Then, for all k € K, kx € xH, which means k = kxx~! € xHx~!. Thus,
K C xHx™ 1. Conversely, if x € G such that K C xHx™!, then for all
ke K, kexHx 1. Assuch, kx € xH, meaning kxH = xH. Thus, xH is
a fixed point of the action K onto G/H . O

Proposition 3.1.6 If P € Syl (G), and Q < G such that Q is a p-group,
then there exists an x € G such that Q € xPx~17

Proof. Wehave Q, P < G and |P| = p® and |G| = p® < p“. Remember
that |G : P| = m, where p } m. Consider the action of Q onto G/P. We
want to show that this has a fixed point, which by the lemma, would show
that 0 € xPx~!. We do some counting:

d
G/ P =) 10i].
i=1
where each ©; € G/ P is an orbit of the Q-action. Then, each |6;| | | Q| = p®.

In other words, we have

6i € {1, p, p*,.... p"}.

Then, |G/ P| = m, so there exists an i such that p } |6;], so 6; = {xP},
which is a fixed point. O

Corollary 3.1.7 If Q is also p-Sylow, then |Q| = |xPx_1} = p% s0Q =
xPx~L. This is Sylow II.

Corollary 3.1.8

|J P=0eG:y=pFk=0
Pesyl,(G)

Proof of Sylow I11. Sylow II tells us that Syl ,(G) is a transitive G-set. Well,
the orbit/stabilizer gives us that®

1y = ’Sylp(G)’ — |G : N (P)|.

3.1 Sylow Theorems

7: Equivalenetly, x~1 Qx C P.

8: Let P € Sylp(G).

31
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9: Thatis, P < NG (Q).

10: See Rezk’s notes for an outer
automorphism of Se.

11: This is clear from the reduced word
construction of F(S).

12: If G = (S),then G/N = (S),and we
have the canonical map = : G — G/N,
where S = 7 (S).

13: This is easy: take F'(S) = (S).

Suppose P € Syl (G). Then, P inherits an action onto Syl, (G ), where for

xePand Q € Sylp (G), x acts on Q by xQx~!. What are the fixed points
of the action? Define

c:=1{0:0¢ Sylp(G) is fixed by P}|.

Well, ¢ > 1,as P is fixed by P, and ¢ = n, (mod p), as |P| = p* implies
orbits of any P-action have sizes 1, p, p2,..., p*. We will show that ¢ = 1.
Suppose Q is a p-Sylow subgroup such that

xOx'=0

for all x € P. Then, P normalizes Q. Yet, 0 < Ng(Q) < G. Furthermore,
Q is a p-Sylow subgroup in Ng (Q). Well, Sylow II tells us that if Q is a
normal p-Sylow subgroup, then it is the only p-Sylow subgroup in Ng(Q).
Thus, P = Q.10 O

3.2 Ascending Chain Condition

We now begin our discussion of finitely generated groups.

Definition 3.2.1 (Finitely Generated) A group G is finitely generated if there
exists a finite subset S € G such that G = (S).

We can make some observations about finite generation:

» |G| < oo implies G is finitely generated.

> |S| < oo implies the free group F(S) is finitely generated.!

» G ~ H implies G is finitely generated if and only if H is finitely
generated.

» G being finitely generated and N < G implies G/N is finitely
generated.'?

Remark 3.2.1 Note that there is absolutely #o reason for subgroups to
preserve this property, generally. Keep this in mind; it is a common pitfall
students make when studying finitely generated groups.

Proposition 3.2.1If S is a set and G = F(S) is the free group on S, then G
is finitely generated if and only if |S| < oo.

Proof. We have that |S| < oo implies F(S) is finitely generated."
Conversely, we claim that if F(S) = (T) for some T C F(S), |T| < oo,
and then |S| < co. We can write

T:{xlv-"vxn}gF(S)’

where each xj is a reduced word in symbols on S. If S; € S is the finitely
subset of symbols such that xi is a reduced word in Sk, then let

n
S =) Sk €8.[8| < 0.

k=1
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We have that F(S) = (T') = (S’). Therefore, S = S’ is finite. O

Example 3.2.1 Consider G := F(a,b), the free group on 2 elements.
Write x,, := a"baa™ € G,foranyn € Z.Let H := (x,,n € Z) C G.
We claim that H is not finitely generated.

Proof. Let S be the set of symbols {X,,n € Z}. Define a homomorphism' 14: Remember, it is easy to build
homomorphisms out of free groups.

F(S) —2— G

X, — x, =a"b*™".

Note that ¢(F(S)) = H, meaning we have a surjective homomorphism
¢ : F(S) - H,and we claim that ¢ : F(S) = H. By the proposition, H
cannot be finitely generated. Why is ¢ injective? A typical element w in
F(S) can be written as

w = X;:X;;X;: withr > 0,k; € Z,¢; € {£1},

sothatif k; = ki+1/ then ¢; = C,'+1.15 We compute 15: This condition is what makes it a
reduced word. Note that this is a unique
o(w) = akiperg=k . gkapea ko akr—1per—14=kr—1 gkrper —kr expression.
The question is: is this e? Cancellation can occur only if k; = k;+; and
¢; = —ci+1. However, this cannot happen, so if p(w) = e, thenw = 0.1 16: Thus, the kernel is trivial, meaning ¢

is an injection.

O

Remark 3.2.2 Without proof, we note that every subgroup of a free
group is a free group.

Now, moving towards the ascending chain condition, let (P, <) be a poset.

Definition 3.2.2 (Ascending Chain Condition) We say that (P, <) has
the ascending chain condition (ACC) if for every Z -indexed sequence {xj €
P72, such that xg < Xy forall k € Z, then there exists an N € Z
such that xy = xn forallk > N.

Equivalently, (P, <) does not have the ACC if there exists a sequence in P
of the form
Xp < Xg <Xx3 <. {xp € Plrez,,

where x; < xg4 forall k.

Definition 3.2.3 (ACC for Subgroups) A group G has the ACC for subgroups
if (Subgroups(G), <) has the ACC.

Proposition 3.2.2 Let G be a group. Then, the following are equivalent:

(i) G has ACC for subgroups.
(ii) Every subgroup of G is finitely generated.



34 | 3 Sylow Theorems and Products

17: That is, every subgroup is not finitely
generated, then ACC fails.

18: As such, G has the ACC for
subgroups.

19: Suppose x € Hg. Then, xN €
H;N/N = H,N/N,soxN € H,N.
Thus, there exists k € N such that
xn € H,. We have that x = yk—!,
y € Hy, s0

y x=nleH,NN=H,NN.

Proof. We start with (i) = (ii). We will show that —(ii) = —(i).” If G’ is
not finitely generated, then we can choose a sequence of elements x; € G/,
k € Z, such that

xr € G\ (x1,...,xx_1).

Let Hy := (x1,...,x¢) € G’ <G;ie.,
Hi <H,<Hz;<---<G,

so we are done. Now, conversely, suppose every subgroup of G is finitely
generated. Consider an ascending chain

Hi <H;<H3=<---=<G.

Let H := |Jg2; Hk. Then, H < G. By hypothesis, H is finitely generated,
so H = (y1,...,¥m), and each y; € Hy, for some k;. Now, defining
k := max(ky,..., k;) implies {y1,...,ym} € Hr. Thus, H € Hy € H,
meaning Hy = H.!® O

Proposition 3.2.3 Let N < G. The following are equivalent:

(i) G has the ACC for subgroups.
(ii) Both N and G/N have the ACC for subgroups.

Proof. Start with (i) = (ii). Suppose G has the ACC for subgroups. Then, it
is immediate that N does too. Suppose

Hy<H,<--<G/N.
We have the quotient homomorphism 7 : G — G/N. Let
Hy = ﬂ_l(ﬁk),

so via the ACC, there exists an N such that Hy = Hy forall k > N. Well,
then 7(Hy) = n(Hy), and so the H stabilize. Conversely, consider a
chain

Hy<H,<---<G.

Then, we get a new chain
HlmeHszS"‘fNy

and
H{N/N < H,N/N <---<G/N,

where Hy N/N = n(Hp). By hypothesis, there exists an n for all k > n,
H, NN =H,NN and H,N/N = H,N/N. Therefore, H, = H, for all
k>nlb O

Theorem 3.2.4 Every subgroup of a finitely generated abelian group is finitely
generated.

Proof. Suppose G is an abelian group which has a generated set of size n.
We proceed by induction on n that G has the ACC for subgroups. In the
n = 0 case, G = {e}. Now, for a proper base case n = 1, we have G = (x).
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Since subgroups of cyclic groups are cyclic, the base case holds. Now, for
n=>2,
G = (x1,X2,...,%p).

Let H = (x1,...,Xp—1), and by induction, H has the ACC for subgroups.
Well, G/H = (X,),*° so it has the ACC for subgroups, meaning G has the 20: Since G is abelian, H < G.

ACC for subgroups.21 O 21: Thus, by the equivalence, every
subgroup of G is finitely generated.

3.3 Torsion and Products

Hereafter, assume G is abelian.
Definition 3.3.1 (Torsion) An element a € G is torsion if |a| < co. We write
Giors = {a € G : |a| < oo}
for the set of torsion elements.

Proposition 3.3.1 Since G is abelian, Gis < G isa subgroup.22 22: This is easy, but we need G to be
abelian.

Definition 3.3.2 (Torsion Group) We say that a group G is a torsion group
if it is abelian and Giors = G.

Example 3.3.1 For instance, Cy,;, X - -+ X ¢, In fact, any finite abelian
group is torsion.

Example 3.3.2 Take the group G := (Q/Z, +). This group is countably
infinite and abelian. However, it is a torsion group. Every element

a
=—-+4+Z e,
X b+ S

and take the “bth power” yields
a
e —_ Z e e
bx=b(; +Z)=a+Z=0+Z

which means |x| divides b.

Definition 3.3.3 (Torsion Free) An abelian group G is torsion free if its
torsion group is trivial: G,s = {e}.

Proposition 3.3.2 If G is abelian, then G/ Gy is torsion free.

Proof. Suppose X € G/Giors, where |X| = n < oo. Let x € G such that

w(x) = X. Well, x" € Gy, s0 |x"| = m for some m < oo, which means

x"™" = e. Thus, x € Giors, meaning X = e O 23: If you kill the torsion elements, the

elements that are left are torsion free.
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Proposition 3.3.3 If G is abelian, finitely generated, and torsion, then G is
finite.

Proof. Suppose G = (ay,...,an), where|a;| = m; < 0o.Since G is abelian,
every x € G can be written as

kn

_ k1 k2
x=a;'ay” ---a,

for some k; € Z, where k; € {0,1,...,m;}. Thus, |G| <mymy---my. O

24: Recall that finite generatoin is Corollary 3.3.4 Both Q/Z and Q are not finitely generated.**
preserved by taking quotients.

Definition 3.3.4 (Direct Product) We define the direct product

G =Gl X"'XGn = {(glvn"gn):gi GGZ}

Definition 3.3.5 (Projection Homomorphism) We get the projection
homomorphism
T G — Gk,
where
(8155 8n) P> 8k

Proposition 3.3.5 For any group H and product G := Gy, x - -+ x G, then
there is a bijection
Hom(H, G) = Hom(H, G1) x - x Hom(H, G,),

where ¢ : H — G becomes (¢1, ..., ¢n), taking ¢ := o @ : G — Gy,
and we also get

p(h) = (p1(h). ... on(h)).

25: We will not constrct this here, but Remark 3.3.1 (Free/Co Product) Given Gy, ..., G,, there exists a group25
the construction parallels that of the free
group. G =Gy %% Gy

called the coproduct, such that

Hom(G’, H) = Hom(Gy, H) x -+ x Hom(G,, H).
Example 3.3.3 We have that V4, = C; x (5, the Klein 4-group.

Remark 3.3.2 We can regard G as a subgroup of G := G| X --- x Gy.
For specifically, we have an injective homomorphism

th—k>G,



where
kx> (e,....,x,e).

We have G, := x(Gx) < G.

Theorem 3.3.6 Let G be a group with normal subgroups Gi1,...,Gy 1 G

such that

(i) G1G---G, = G.
(ii) G N (G1Gy---Gk—1) = {e}forallk € {2,...,n}. Then,

GIXG2X'“Gn——L——>G

(81.82,---,8n) ———> 182" &n

is an isomorphism of groups.

Sketch of Proof. We have G;, G; < G. We claim that if G; N G; = {e}, then
forall x € G; and y € G, we have xy = yx.2°® Well, (i) inplies if i > j,
then

Gi N (G1G2-+-Gi—1) = {e},

and we use this to prove ¢ is a homomorphism. Note that we need the
second property for injectivity. O

Proposition 3.3.7 Let G = G1 X --- X Gi. Let g € G. Then,

gl = lem(|g. ... [gx]).

or oo if any |gi| = oo.

Proof. We have the formula

g =(g1. 85 8p)
so g" = eg if and only if g7 = eg, fori € [k]. In other words, the order of
G; divides n for all i € [n]. O
Proposition 3.3.8 Let

G = le XCmZX"'Xka»

where Cp,; = (x;|x["*). Then, if

i

ai . .az

a
X =x7' X537 x.%,a; €Z,

then

) (m1 my mk)
|x| = lem )

where d; := ged(m;, a;).
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26: We can write

xyx 1yl =(xyxDye G;G;.

On the other hand,
xy)cflyf1 = x(yflely) € G;G;.
Thus, the commutator is in the

intersection, so it is trivial, giving us the
result.

27: By definition, the smallest of these is
the lem.
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28: We call the decomposition the primary
decomposition.

29: This is nontrivial, and we will discuss
it later when we have developed more
structural tools.

30: Dummit and Foote do not use this
language, but it is common in the
literature.

Figure 3.1: This sort of thing is called a
short exact sequence of groups.

31: Note: H' = j(H)and G/H' = K.

Corollary 3.3.9 If m = mm - -- my, then
Cpy XX Cpy =~ Cpy,
if and only if gcd(m;, m;) = 1 foralli # j.
We have a nice consequence. If
m = p{' p3?--- pi¥,
where p; are distinct primes, then?®

Cpp = C ey XC g X+ XC ep.
m 128 P52 ek

Remark 3.3.3 We have a classification of finitely generated abelian
groups, which states that all such groups are isomorphic to a finite
product of cyclic groups.?’

3.4 Extensions and Semidirect Products
Let H, K, G be groups.

Definition 3.4.1 (Group Extension) We say G is an extension®® of K by H
if there exists H' < G such that H' ~ H and G/H' ~ K.

Definition 3.4.2 (Split Extension) A split extension is an extension, as above,
if there exists K' < G so that

K—>G-—2>G/H ~K
is an isomorphism: K' ~ G/H.

We have an alternate formulation of extensions. We have a homomorphism

H—L 6 —2 >k
such that j is injective, p is surjective, and ker p = j(H).*!
Remark 3.4.1 (Extension Problem) Given H, K, find all groups G whichis

an extension of K by H. This is hard, but we can give such a classification
by group cohomology.

Example 3.4.1 If G := H x K, then we have the trivial extension of K
by H, where H' := H x {e}. Then, the projectionmap = : G/H' = K
via (h, k) — k. Alternatively, we also have a trivial extension of H by K.

Trivial extensions are always split.
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Example 3.4.2 Consider H = K = C,. Let G; := C, xC, = H x K,
which is the trivial extension of K by H. Let G, := C4 = (a \a4). Then,
H = (az), and G/H ~ (a|a2) =K

Example 3.4.3 Let H := C3 and K := C,. We have one extension

G1 = C6 = (a|a6),

and wehave H = (a?) > C3,sothe quotientgivesus G/H = (a|a?) ~ C,.
Let K’ := (x3). Then, K’ = Cg/ (a?).* Now, let G, = S3 =~ Dg. Then,
H = (r) ~ C3 and G,/H =~ C,. This is a split extension. For instance,
take K’ = (s), (sr), {sr?).

Example 3.4.4 Similarly, let us write H = ¢, and K = Cs. We still have
a trivial extension of G; ~ C» x C3 ~ Cg.3*

It turns out, split extensions correspond exactly to semidirect products.

Theorem 3.4.1 To identify G as a split extension, it is enough to find subgroups
H, K < G such that®®

(i) H<G.
(i) G = HK.
(iii) HNK = {e}.

Proof. Condition (i) gives us 7(K) := kH, taking the K - G — G/H
short exact sequence, as before. Thus, ker 7 = H N K. Finally, 7 is surejctive
ifand only if G = KH.% O

In particular, every g € G can be written uniquely as g = hk for unique
H € H and K € K. That is, there is a bijection G = H x K where
hk — (h, k).

Remark 3.4.2 We get a homomorphism

K —2 5 Aut(H)

k ——— oy

defined by o (h) := khk~! € H.¥

Remark 3.4.3 We can reconstruct the group structure on G from H, K, «.

32: The latter extension G is not split.

33: Thus, G is a split exttension. In fact,
since C¢ =~ C3 X Cp, so it is a trivial
extension.

34: It turns out this is the only extension
of C3 by C>.

35: This is an equivalency.

36: That is, the second two conditions
force 7 to be an isomorphism.

37: That is,

aj = conjy |H € Aut(H).
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38: We can actually proceed in reverse.
Proving the construction is exceptionally
tedious. At least, as an exercise, check that
G is a group as defined.

39: Dummit and Foote do not include «
in the notation, which makes no sense.

Let g1 = hk1, g2 = haok, € G, where h; € H and k; € K. Well,

8182 = hiky - haks
— kyhok T ks
= h1-ag, (h2) - kika
=h-k,

where h = hiag, (h2) € H and k = kik, € K38

Theorem 3.4.2 Given groups H, K and oo € Homgo (K, Aut(H)). Let H :=
H x K as a set. Define a product on G by

(h1, k1) - (ha, k2) := (hag, (h2), kika).
Then,
(i) G is a group with identity (e, e) and inverse
(hk)™" = (-1 (W), k7).
(ii) G is a split extension of K by H with
H > H' :={(h,e):he H} <G

and
K = K':={(e,k) : ke K} <G.

We have H < G, H N K' = {e}, G = H'K’', and for h € H' and
k € K', we have khk™! = ay (h).

Definition 3.4.3 (Semidirect Product) We call (G, -), as above, the semidirect
product of H and K using o, and we write>
G = H x4 K.
Every split extension of K by H arises as a semidirect product.
Exercise 3.4.1 If o(K) = {id} € Aut(H), then H x, K = H x K.
Example 3.4.5 (Infinite Dihedral Group) let H := F(a) = (a]) >~ Cw.
let K := (b|b2) ~ C,. Define
a: K — Aut(H) = {id, inv}
by «(b) = inv. Then, considering G = H x K as a set is
{a"e :ne€eZ} or {d"b:neZ}
Then if a, = inv, we have o (a) = a~1. Thus, there is a presentation

G ~ (a,b|b* bab™'a) ~ De.
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Example 3.4.6 Note that we have D,, >~ C, x4 C,, where we have
Cy — Aut(Cy) ~ (Z/nZ)*.

If you chase through the definition, we have C,, :=
where we have o : s = (r = r71).

(rjr")and K :=

Example 3.4.7 Let G = Cg xq C,. We could have
a: Cy— Aut(Cy) ~ (Z/8Z)*.

There are four different semidirect products here.

Example 3.4.8 (Groups of Order 30) We have that G >~ N x, H for some
o Cy — Aut(Cis5).% Let us present H = (a|a2) and N = <b|b15). Since
Aut(Cis5) ~ (Z/15Z)*, we know this group is of order eight. We have
four different as:*!

a bbbt b b7

For each of these, we can deduce a presentation:42
G] = (a b|a bls = b) C3()
Gy = (a, b|a ,bls, ba~ :b4)
Gz = (a b|a2 b aba™' = b~ )
G4 = (a b|a bls aba” =b" ) D30.

Well, for G4, the conjugacy classes are

fed, {b, b~ (b2, 072, . b7, b7}

and
{a, ab™2,

On the other hand, for G,,

ab™.ab°, ... .ab”!, ... }

{e}. (b, %} {b> bPYAb> "2} (b} {bC. 0%} (b0} (b b1 (b7 b3}
Interestingly, Z(G2) = {e, b>,b'°}.®3 For the as, we get
{a,ab3,ab6,ab9,ab12}, {ab,ab4,ab7,ab10,ab13},

{abz, ab'?, ab?®, ab”,ab”}.

The hard question is to determine whether G, >~ G3. In G3, we have
ab = b *a and ba = ab™*. Then, bab™! = ab™>, so we get a class

Cl(a) = {ab™>,ab™ ', a}.
It looks like these conjugacy classes are of size three. Then, note that
Cl(b3) — {b3, ab3a—l — b—12 — b3},

SO Z(G3) = (b3) Thus, G2 ;ﬁ G3.44

(s1s2).

40: We use what we have learned about
groups of order 30 from the Sylow
theorems.

41: Note that there is an isomorphism of
rings Z/15Z ~ Z /3Z x Z/5Z, so their
groups of units is isomorphic to C2 X Cy.

42: We can try to use conjugacy classes to
distinguish these groups.

43: Note that
bab™! = ab*b™! = ab3,
blab)b™! = abi 3.

44: Thus, there are four distinct groups of
order 30 up to isomorphism, and they
are all semidirect products Ci5 x C»,
distinguished by their centers.
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Ring Structure

Now, we need to distinguish between the standard definitions of rings,

those having unity and not. To avoid a clash with Dummit and Foote, who
take the classical approach, we define rings to not inherently have unity.

4.1 Basic Definitions

Definition 4.1.1 (Ring) A ring is a triple (R, +, ) such that (R, +) is an
additive group, - : R*> — R is associative, and multiplication distributes over
addition from either side.

Definition 4.1.2 (Ring With Unity) A ring with unity isaring R with 1 € R
suchthat1-a =a =a-1foralla € R.

Definition 4.1.3 (Commutative Ring) A commutativering Rhasa-b = b-a
foralla,b € R.

Proposition 4.1.1 (Easy Facts) We have some easy facts about rings.!

(i) a-0=0=0-a.

(ii) (—a)b = —(ab) = a(-b).
(iii) (—a)(—=b) = ab.
(iv) If 1 € R, it is unique, and

(=Da = —a = a(-1).

Example 4.1.1 (Trivial Ring) The best ring is R
commutative and unital.?

:= {0}, which is

Definition 4.1.4 (Unit) Let 1 € R. A unit is an element in a € R such that
there exists b € R so thatab = 1 = ba,anda™! = b2

Definition 4.1.5 (Group of Units) We write

R* :={a € R : aisa unit}.
We have that R* is a group under multiplication, which is a quick proof.
Example 4.1.2 (Matrix Ring) Say Risaringandn > 1. Let S := M, (R).

Then, S is a ring via the matrix operations. The corresponding group of
units, S =: GL,(R), the group of invertible n x n matrices over R*

4.1 Basic Definitions . ...... 45
4.2 Quadratic Integer Rings . . . 47
4.3 Monoid and Group Rings . . 49

4.4 Homomorphisms and

Isomorphisms . ........ 50
4.5 Ideals and Quotients . . . . . 51
4.6 Polynomial Rings . . .. ... 52
4.7 Particular Ideals and Zorn’s

Lemma ............. 54
4.8 Rings of Fractions . . . . . .. 57

1: If you do not know how to prove these
immediately, sit down and do them. They
are easy exercises.

2: This is the only ring in which 1 = 0.
You will find that some people disallow
such a ring. This is stupid. We need the
zero ring if we use categories.

3: Such an inverse b is unique.

4: Assume 1 € R.
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5: Thatis, for any b € R, eitherab = 0
orba = 0imply b = 0.

6: It has no zero divisors.

7: Injective for a finite set implies bijective.

8: Division  rings are  precisely
“noncommutative” fields.

9: In other words, S is closed under +,
-, and with those operations (S, +,-) isa
ring.

Definition 4.1.6 (Zero Divisor) An element O # a € R is a zero divisor if
there exists b € R such that ab = 0 or ba = 0.

Definition 4.1.7 (Non Zero Divisor) Wesay 0 # a € R is a non zero divisor
(or cancellable) if it is not a zero divisor.>

Definition 4.1.8 (Integral Domain) An integral domain (or, simply domain)
is a commutative ring with 1 such that 1 # 0 and ab = 0 implies either a = 0
orb =0, foralla,b € R.°

Proposition 4.1.2 If R is commutative and unital, then R is a domain if and
only if (R \ {0}, ) is a monoid.

Thatis, forall r € R\ {0} and 1 # 0, x > rx is an injection.

Definition 4.1.9 (Field) A field is a commutative, unital ring such that 1 # 0
and for all 0 # a € R, the element a is a unit.

In this case, forall» € R\ {0} and 1 # 0, x > rx is a bijection.

Proposition 4.1.3 We have that a commutative, unital ring R is a field if and
only if (R \ {0}, ) is a group.

Example 4.1.3 (Fields) We have the usual examples R, Q, C, [F,,.
Proposition 4.1.4 Every finite domain is a field.”

Definition 4.1.10 (Division Ring) A division ring (or skew field) is a unital
ring R such that every r € R \ {0} is a unit, and 1 # 0.8

Definition 4.1.11 (Subring) A subring of a ring R is a subset S € R which
inherits a ring structure from R.°

Remark 4.1.1 (Subring Equivalent Definition) A subset S € R is a
subring if

@) (S.4+) = (R, +).
(ii) S is closed under multiplication.

Example 4.1.4 Let R := M3(R) > 1, but

el 9o

is a subring, yet 15 # 1.



Now, when we talk about unital rings, we usually want its subrings to have
the same 1. In practice, when people are discussing rings with unity, they
are considering the case where the subrings inherit the identity.'’

Example 4.1.5 Let R := Z. We have that S = 2Z is a subring, but 1 ¢ §

Example 4.1.6 There are some classic examples of rings.

(@) Z/nZ forn > 1
(b) The quaternions

H:={a+bi +cj +dk:a,b,c,d € R},
where i, j, k are symbols which satisfy11
i?=j*=k*>=-1
(c) Function rings
&(X,R) ={f : X — R functions},

where
(f +8)x) = f(x) +gx)
and

(f8)(x) = f(x)g(x).

taking X to be a set and R to be a ring
(d) Given a ring R, S, the product ring R x S has component-wise
operations.

4.2 Quadratic Integer Rings

Take D to be a square-free integer.'? Define a subring Q(+/D) € € which
can be written as the set

{a+bvD:abeQ).

We actually have that Q( VD)isa field. Well,

a —b
bv/D)™! = D.
(a+ \/_) az—b2D+a2—b2D\/_
Ifa>—b2D = 0, then D = (a/b)?, which is impossibleif a, b € @, because
D is square-free.l> Now, let Z [v/D] be the integral coefficient subset of
Q(«/E). It is a subring. In fact, it is a domain, inheriting the lack of zero

divisors from C. The famous example is the Gaussian integers Z[i] = Z[/i].

If D =1 (mod 4), then let w = (1 + +/D)/2 € C. Well, we can always
write

2 (LHVDP  14+2VD +1+4k
N 4 N 4 ’
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10: The issue is that Dummit and Foote
do not define subring this way.

11: Here, ij = k = —ji, jk =i =
—ki,and ki = j = —ik. We know H
is a divison ring. What is the formula for
inverses? Well, the conjugate

X:=a—bi—cj—dk,
and
xXx =a’>+b%>+c>+d?eR,

so we can divide by it. Thus,

12: That is, it is nonzero and has no
repeated prime factor.

13: In fact, if D is square-free, then the
expression a + b+/ D is unique.
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14: Closure under multiplication comes
from w? = o + k.

15: An exercise is to show

- {122,

wherea,b € Z anda = b (mod 2).

which is just
1
(l+k)+—«/5=w+k
2 2
Now, define

Z[VD], D =23 (mod 4)

6=06 =
Q(vD) {a4+bw:a,beZ}, D=1 (mod4).

We claim Og, /5 is a subring of Q(~/D).** We call this the ring of integers
inside Q(+/D). For instance, when D = —3,

@Q(ﬁ) ={a+bw:abe”Z}

where

I R e S GNP
TRV I T

This ring is known as the Eisenstein integers.'®

Proposition 4.2.1 Let D be square free with D = 1 (mod 4). Then, if

x =a+bD € QVD), then x € O/ if and only ifa — b € Z and
2a € Z.

Definition 4.2.1 (Norm Map) We have a norm
QWD) > Q@
defined by
N(a +bvD) = (a + bvD)(a —bvD) =a®> —b>D € Q.

The norm above has the properties N(e) = 0 if and only if « = 0,
N(aB) = N(a)N(B), and & € Og /) implies N(a) € Z.

Proposition 4.2.2 An element o € Oq /p) is a unit if and only if N(a) €
7* = {£1}.

Proof. Since N is multiplicative and N(1) = 1, it is easy to see that if
o € 0%, then N(a) € Z*. Conversely, if « = a + b/D and N(a) € Z%,
then a®> — b>D = 1. Well, by our formula for reciprocals, ™! € 6. O

Remark 4.2.1 (Pell’s Equation) This means o« = x + y\/B € O for
x,y € Qif and only if x> — Dy? = +1.

Example 4.2.1 Consider the Gaussian integers. Then, © = Z[i], so

O ={a+bi:abeZa>+b*=1}=1{Fl%i} > Cs.



4.3 Monoid and Group Rings | 49

Example 4.2.2 Consider the Eisenstein integers. It turns out,' 16: Here, o is a primitive sixth root of
unity.

0% = {£1, +w, +0?} ~ (») ~ Cs.

Remark 4.2.2 If D is square-free and D < 0, then 6* is finite. If

h X . . f. . Q(ﬁ)
D >0t en@Q(ﬁ) is infinite.

4.3 Monoid and Group Rings

Usually you will hear about “group rings,” but it is worth considering a
slightly more general object. Let G be a monoid and R be a commutative
unital ring.

Definition 4.3.1 (Monoid Ring) We define the set of formal sums

finite
R[G]:=={) a,lg]:a; € Ry.
geG
This is the monoid ring R [G].l7 17: Really, an element of R[G] is a tuple

of (ag)geG, whereag € R, such that
l{g € G :ag # 0}| < oco.

Proposition 4.3.1 R[G] is a ring via the “obvious” formulae:
Then, [h] = (ag) such thatay = 1 and

ag = 0.

> aglel + D belgl = D (ag +be)lg] ’

g g g
and

(Z ag [gll) (Z bgz[gﬂ) _ Z( > aglbgz)[g]_
g1 g2 7 \g182=¢
The idea is that
[g1][g2] = [g182]-

Proposition 4.3.2 R[G] is unital, where 1 = [e], where e € G is the identity.'® 18: If G is not commutative, there is no

reason to expect R[G] to be, either. If G is
a group, then R[G] is called a group ring.

Example 4.3.1 If |G| = n < oo, where G = {g1,..., gn}, then

n
> arlgklsax € R
k=1

R[G] =

Example 4.3.2 Let G = {e, g} ~ (g|g?). Let R = Q. Then,
Q[G] = {aole] + aig] : ap, a1 € Q},
where the operations are

(aole] + a1[g]) + (bole] + b1[g]) = (a0 + bo)le] + (a1 + b1)[g]
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19: This is an isomorphism of rings.

20: In particular, it is the free monoid on

one generator.

21: These are the consequences of

following Dummit and Foote here.

22: Check that this is a
homomorphism. It will be quick.

ring

and

(aole] + a1[g])(bo[e] + b1[g]) = (aobo + aib1)[e] + (aob1 + aibo)[g].

Since G is abelian, Q[G] is commutative. Is this a field /domain? No:

(le] + [gD(le] — [¢]) = O.

Exercise 4.3.1 Q[G] ~ Q x Q."”

Example 4.3.3 (Polynomial Ring) Let G = {e.aqa, a?,as,... } =
{a"}nez..,- This is a monoid, but not a group.20 Then, we could form
R[G]. We will write x := [a], and a short exercise shows us x¥ = [a¥]. A
typical element in R[G] can be seen as

{ap +a1x +---+ax":g>0,a; € R}.

As such, R[G] is the ring of polynomials in one generator x with
coefficients in R. Usually, we will write R[x] for this.

4.4 Homomorphisms and Isomorphisms

Let S, R be rings.

Definition 4.4.1 (Ring Homomorphism) A homomorphism ¢ : R — S isa
function which “preserves all the structure.” That is,

pla +b) = ¢(a) + ¢(b)
and
p(ab) = g(a)p(b),
foralla,b € R.

Remark 4.4.1 Even if 1z € R and 1g € S, a homomorphism of rings
@ : R — S might or might not have ¢(1g) = 15.”!

Example 4.4.1 Let R, R, be unital rings. Define S := R; x R, where
ls = (Ig,.1R,). Now, ¢ : Ry — § defined by ¢(r) := (r,0) is a ring
homomorphism, but ¢(1g,) # 1 g.22

Definition 4.4.2 (Unit-Preserving Homomorphism) We will often specify
a homomorphism to be unit-preserving, sending 1 to 1.

Definition 4.4.3 (Image) Given ¢ : R — S, a homomorphism, ¢(R) € S is
a subring of S.



Definition 4.4.4 (Kernel) We have that kerg := {r € R : ¢(r) = 0} isa
subring of R.?

Definition 4.4.5 (Ring Isomorphism) An isomorphism is a homomorphism
@ : R — S such that ¢! exists.?*

4.5 Ideals and Quotients

In some sense, ideals are the parallel of normal subgroups in rings. However,

there are instances where this inherited intuition fails.

Definition 4.5.1 (Ideal) Let R is a ring and I C R be a subset. Then, if
r € R, write
rl :=={rx:xel}

and
Ir :={xr:xel}.

Then, I € R is aleft ideal if | < (R,+)andrl C I forall r € R. Similarly,
aright ideal I < (R,+) and Ir C [ forall r € R. Then, a two-sided ideal (o,
just ideal) is I < R which is both a left and a right ideal.

Proposition 4.5.1 If R is commutative, then left ideals are the same as right
ideals, so we just call them ideals.?®

Example 4.5.1 (Unit Ideal) Let I := R.

Example 4.5.2 (Trivial Ideal) Let I := {0} € R.

Remark 4.5.1 Any idealis a subring using Dummit and Foote’s definition
of subring. In particular, if 1 € R, then the only ideal / € R with 1 € /
is the unit ideal.

Given I C R which is a left, right, or two-sided ideal, we can form
R/I :={a+1:a¢€ R},

wherea + I = {a + x : x € I} is a coset of / in the group (R, +).If [ is
two-sided, then R/ is a ring such that the quotient map w : R — R/I isa
ring homomorphism.

Definition 4.5.2 (Quotient Ring) Our ring structure for the quotient ring
R/1 is defined by
(@a+1)b+1):=(ab)+ 1.

Exercise 4.5.1 Show that the operation above makes R/ into a ring if /
is two-sided.?®
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23: Usually this does not contain 1.
According to Rezk, this means it really
is not a ring.

24: Isomorphisms of rings certainly have
to preserve unity, if it exists.

25: For the moment, only worry about
two-sided ideals.

26: In particular, we need to show that
the operation is “well-defined.” This fact
absolutely uses that I is two-sided.
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R/I
Figure 41: Diagram of the
homomorphism theorem, which

holds if I < ker . We omit the proof,
since it mirrors the theorem for groups.

27: In fact, we have the map x + (A N
INN—x+1.

R
|
A+1T
ideal
) / \ I
id;l\ /

ANI

Figure 4.2: Diagram of the second
isomorphism theorem

Remark 4.5.2 Note that 7 is certainly surjective, by construction, and
ker w = I. Note further that if ¢ : R — § is any homomorphism of
rings, then I := ker ¢ C R is always a two-sided ideal.

Lemma 4.5.2 (Homomorphism Theorem) Let ¢ R — S bea
homomorphism of rings. Let I < R be a two-sided ideal. If I C kerg,
then there exists a unique ring homomorphism @ : R/I — S such that

pla+1) = ¢(a)

Theorem 4.5.3 (First Isomorphism Theorem) If ¢ : R — S is a ring
homomorphism, then ker ¢ is an ideal in R, ¢(R) is a subring of S, and we
have an isomorphism of rings

@ R/kerp = ¢(R).

R ¢ S

N A

R/kerg # o(R)
Now, let R be a general ring with a subring A € R and ideal / C R.

Theorem 4.5.4 (Second Isomorphism Theorem) We have the following:

(i) A+ I is asubring of R.
(ii) [ isanidealin A+ 1.
(iii) AN [ is an ideal in A.
(iv) AJ(ANT) >~ (A+ I)/I is an isomorphism of rings.”

Proof. Both the first and second isomorphism theorems for rings have
proofs akin to the group theorems. Prove them as an exercise. O

Theorem 4.5.5 (Lattice Isomorphism Theorem) Let I C R be an ideal in a
ring. Then, there is a bijective correspondence

st1 CJ R/I
Ji=a'J)— n(J) S R/I

%ideals J C R} ~ %ideals in}
<>

The opposite map is J +> 7~ (J).

4.6 Polynomial Rings

Let R be a unital ring. We define the polynomial ring

R[x] := set of formal expressions



f= ) axk,

keZxg

where a; € R and almost all of the ay, are 0.

Definition 4.6.1 (Degree of Polynomial) The degree deg f of an f € R|[x]
is the largest n such that a, # 0, or it is —oo if no such n exists. That is,28

deg : R[x] = Z>¢ U {—o0}.

Definition 4.6.2 (Constant Polynomial) A polynomial f € R[x] is constant
ifdeg f € {0, —oo}.

Note that
R[x],

constant subring
polynomials

where we have an isomorphism of the LHS with R, taking a +> a - x°.%

Proposition 4.6.1 Let R be a domain. Then,

(i) f.g € RIx] implies deg(fg) = deg(f) + deg(g)
(i) (R[x])* = R*.
(iii) R|[x] is a domain.

(i) Proof. Let f = aux™ + lower deg polynomials, a,, # 0 and g =
byx" 4 ---, where b, # 0. Then,

fg= (ambn)xm+n + -,

where a,,b, # 0.5 O
(ii) Proof. We know thatdeg1 = 0.If fg = 1, thendeg f + degg =0,
so deg f = degg = 0, meaning f,g € R € R[x]. Thus, R[x]* =

R*. O
(iii) Proof. If f,g € R[x] and f,g # 0, then deg f,degg € Zx. Then,
deg fg € Z>o,s0 fg #0. O

Note that given R, we can form
R ~> R[x] »> (R[xD[y] » (RIxDIyDlz] »> -~

so we usually write (R[x])[y] = R[x, y] = (R[y])[x].??

Proposition 4.6.2 (Universal Property of Polynomial Rings) Let R, S
be commutative rings with 1. For every (¢, a), where ¢ : R — S is a ring
homomorphism, ¢(1r) = lg, and a € S, then there exists a unique ring
homomorphism ¢ : R[x] — S which preserves 1, so that ¢(r) = ¢(r) if
r € RC R[x],and ¢(x) = a.®®
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28: We take —o0 since that is certainly
less than 0, giving us a nice ordering.

29: This is so canonical, that we usually
just write R € R[x].

30: Assume —o0 + k = —oo for any k.

31: We use that R is a domain.

32:If R is a
Rlxy1,x2,...,%5].

domain, so is

33: The universal property is our recipe
for forming new ring homomorphisms.
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34: This homomorphism of rings is
called evaluation at a, which is a neat
fact: evaluation of a polynomial is a
homomorphism. This is nice because
(f + 8@ = f(a) + fb) and
(f&)(a) = f(a)g(a).

35: We use Fermat'’s Little Theorem. This
is precisely why algebraists do not think
of polynomials as functions.

36: We use parentheses, which is mostly
standard. Sometimes you will see (A4).

Proof. Given ¢, a, define

Rjx] —2— §

finite

f= Z crxt —— Zcp(ck)ak.

Verify that ¢ is a ring homomorphism preserving unity. Uniqueness is the
observation that the rules ¢ must satisfy force this formula:

finite
a(z ckxk) = Z@’(ckxk) = 25(6k)¢(x)k,
forcing our formula. O

Consider the special case S = Rand ¢ =idg : R — R.

Corollary 4.6.3 Let R be commutative and unital. Let a € R. Then there exists
a unique ring homomorphism ¢ : R[x] — R such that ¢|z = idg, where
R C R[x], and ¢(x) = a. We have the formula*

E(chxk) = chak =: f(a).

Remark 4.6.1 Given R as commutative and unital, we get a function
R[x] — &(R, R), where the latter is the set of all functions R — R,
which is a ring under pointwise operations. The map is

R[x] —— &(R, R)

f = (ar f(a)),
so ev is a ring homomorphism preserving 1.

Observe that ev : R[x] — &(R, R) can fail to be injective.

Example 4.6.1 Consider R = Z/p = [F,, where p is a prime. Then,
we have ev : F,[x] — &([F,, [F,). Define f := x? — x € F,[x]. Then,
ev(f) =0, because a? = a foralla € F,.%°

4.7 Particular Ideals and Zorn’s Lemma

Given a ring R and a subset A € R, then we can form

A= () I

ideals I CR
st ACT

Note that the intersection of ideals is an ideal, so (4) C R is the smallest
ideal of R which contains the set A. We call (A) the ideal generated by A.
Notationally, if A = {ay, ..., a,}, then (4) = (ay,...,an).>® Now, define
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RA:={riay+---+ray :ri € R,a; € A,k >0}
AR :={ayri+--+agrg :1ri € R,a; € A,k >0}
RAR :={riairy + -+ + reagry i ri.rj € R.a; € Ak = 0}

Proposition 4.7.1 If R is unital, then (A) = RAR. If R is commutative and
unital, then (A) = AR = RA.If 1 ¢ R, then™

(A) = (A) + RA+ AR + RAR.

Proof. Prove the above as an exercise.*® O

Definition 4.7.1 (Principal Ideal) We define a principal ideal I tobe I = (a),
where a € R.

In a unital ring, we have a formula / = (a) = RaR, and if R is commutative,
then I = (a) = Ra.

Example 4.7.1 Let R := Z[x], the integral polynomial ring. Define an
ideal I := (2, x) € Z[x]. We claim that [/ is not a principal ideal.

Proof. Recall that
I ={g-2+h-x:g,heZx]}

Suppose I = (p) for some p € Z[x]. Since 2, x € I, there exist f, g € Z[x]
such that 2 = pf and x = pg. Then, deg(2) = deg(p) + deg(f) and
deg(x) + deg(p) + deg(g), meaning deg(p) + deg(f) = 0 and deg(p) +
deg(g) = 1. Hence, deg(p) = deg(f) = 0 and deg(g) = 1. That is,
p. f € Z C Z[x];ie., 2 = pf implies p, f € {£1, £2}. For instance, if
p = +2,thenx = £2¢ = £2(a+bx)—=+2a+£2bx,implying +2b = 1.%
We are left with the case p = +1, which give us I = Z[x]. We claim this
is not true, either. If 1 € I, then 1 = 2m + xn, where m,n € Z|x] LN Z,
which sends us to 1 = 2m(0) 4 0rn(0), which is impossible, sincem € Z. O

Example 4.7.2 If R := F is a field, then consider F[x, y]. Then, I :=
(x,y) € F[x, y] is not principal.

Proposition 4.7.2 Let R be commutative and unital. Then, R is a field if and
only if R has exactly two ideals (which necessarily are R # (0).)*

Proof. Anelementa € R* if and only if (@) = R.If Ris a field, then 1 # 0.
If I € Rand I # (0), then pick any a € I \ {0}. Since R is a field, « € R*
so Ra = R € I, meaning I = R. Conversely, if R # {0} with only ideals
R, (0),thenifa € R\ {0}, then ] = Ra € Risanideal. We see that (0) # I,
so I = R, meaninga € R*.4 O

Corollary 4.7.3 Any nonzero ¢ : F — R ring homomorphism from a field is
injective.

37: We only care about unital rings, so do
not worry about this.

38: We need to (1) verfiy that RAR is an
ideal. Then, (2) show that A € J, which
uses that 1 € R. Finally, (3) show that if
I C Risanideal such that A C R, then
JCI.

39: This is a contradictionto b € Z.

40: The wording here cleverly exlcudes
the zero ring, which is not a field.

41: You will hear algebraists call fields the
simplest kind of ring, since they are sparse
in ideals.
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42: Thatis, M is maximal among proper
ideals.

43: Note that, as a corollary, R is a domain
if and only if (0) is prime.

44: In particular, every nonzero unital
ring has at least one maximal ideal.

45: Thatis, forallx,y € C,eitherx < y
ory < x.

Proof. If ker ¢ C F as an ideal, then ker ¢ = (0) so ¢ is injective O

Definition 4.7.2 (Maximal Ideal) Let R be unital. An ideal M C R is called
maximal if M # R and if M € N C R, where N is an ideal in R, either
N=MorN =R*

Proposition 4.7.4 Let R be commutative and unital. An ideal M < R is
maximal if and only if R/ M is a field.

Proof. Via the lattice isomorphism theorem, we have a correspondence
between ideals in R/M and ideals in R which contain M. O

Definition 4.7.3 (Prime Ideal) Let R be commutative with 1. Then, an ideal
P C Risprimeif P # Rand ifab € P, then eithera € P orb € P.

Remark 4.7.1 We can restate the definition above as R/ P is a monoid
under multiplication.

Proposition 4.7.5 P is a prime ideal if and only if R/ P is a domain.*®

Corollary 4.7.6 Every maximal ideal is prime.

Proof. All fields are domains. O

Example 4.7.3 Let R := Z. The only ideals in Z are of the form (). We
have that (n) is maximal if and only if n = &£ prime. It is prime if and
only if n = &+ prime orn = 0.

Theorem 4.7.7 (Maximal Ideal Theorem) Let R be unital. Every proper ideal
is contained in some maximal ideal **

Corollary 4.7.8 If R is unital and commutative, then R # (0) implies there
exists a quotient ring which is a field.

Definition 4.7.4 (Partial Order) A partial order < on X is a relation such
that x <x,x <y,y < ximpliesx = y,and x < y,y < z implies x < z.

Definition 4.7.5 (Chain) In a poset (X, <), a chain C C X is a totally ordered
subset.

Definition 4.7.6 (Upper Bound) For S C X, an upper bound of S isu € X
such thats < u foralls € S.
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Definition 4.7.7 (Maximal Element) A maximal element of X is an element

m € X such that lfm < x, thenm = xfor all x € X % 46: In other words, it is maximal among
all things it can be compared to.

Lemma 4.7.9 (Zorn's) Let (X, <) be a nonempty poset. If every nonempty
chain in X has an upper bound in X, then X has a maximal element.

Proof. 1t is equivalent to the axiom choice. We are not studying set theory,
so look elsewhere for the proof. O

Lemma 4.7.10 (Zorn's Equivalent) Let (X, <) be a poset. If every chain in X
has an upper bound in X then X has a maximal element.* 47: We took out nonempty.

Proof of Maximal Ideal Theorem. Let1 € R 2 I be an ideal. let
X ={J CRideals : J # Rand I C J}.

By Zorn’s lemma, X has a maximal element which is the desired thing.
Well, I € X, so X is nonempty. Suppose we have a nonempty chain C C X.
Letd = Jec J S R. We claim that A4 is a proper ideal with / C A. Then,
A € X and A is an upper bound of C. Well, I C A is easy, since C # @.
Clearly A is an ideal. Now, why is A # R?If A = R ,then 1 € A4, but
then 1 € | J J, so thereexistsa J € C such that 1 € J, meaning J = R, a
contradiction. O

4.8 Rings of Fractions

Dummit and Foote do not give as rigorous of a construction of rings
of fractions, at least until far later in the text. Still, it is an important
construction. Let R be commutative with 1. Let D C R be a multiplicatively

closed*® subset. We can form a ring 48: By this we mean if a,b € D, then
ab € D,and 1 € D. Thatis, D is a

DR = {% sortof :r € R,d € D}, submonoid (D, ) £ (R, ).

called the ring Of fmctions of R with respect to DY 49: We will construct this object formally,
after discussing some examples.

Definition 4.8.1 (Field of Fractions) Given a domain R and D := R\ {0},
then D' R = Frac(R), the field of fractions of R.

For instance, the familiar example is Frac(Z) = Q. You may also see the
notation Fz or Fz, depending on the context.

Definition 4.8.2 (Field of Rational Functions) Given a polynomial ring
F(x1,...,Xs], whereF is a field, we could take Frac([F[x1, ..., x,]), which is
denoted [F (x1, ..., Xn).

Example 4.8.1 If 0 € D, then J = R = D! R = {0}, the trivial ring.
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50: The localization finds extreme
importance in commutative algebra and
algebraic geometry.

Example 4.8.2 Given an a € R, we could form D = {ak 1k > 0}. We
could forma™'R := D7IR.

Definition 4.8.3 (Laurent Polynomials) The Laurent polynomials are denoted
Flx*™'] := x~Y(F[x]).

Elements can be uniquely written as

ny
Z akxk, no<ny €Z,a; €F.
k=ng

Definition 4.8.4 (Localization) Given a primeideal P € Rand D := R\ P,
then D' R = Rp is called the localization of R with respect to P.>°

Example 4.8.3 (p-local Integers) Form the localization

Z(p)ﬁ{%iﬂb}g@.

Example 4.8.4 What about in a polynomial ring over a field? Well, we
could form the localization [F[x](y) which is precisely

{i. £(0)
g £(0)

is defined } .

Our goal is to produce a ring homomorphism  (preserving unity)

R—Y DR

where D™!R is the ring of fractions. In particular, D is our set of

“denominators.” Givena € R and d € D, we want

ad
d 9

a
1

but if da = 0, then we need the above to equal 0/1 = 0. This construction,
in general, may kill some elements of R. We end up “giving up” injectivity
of ¥, despite it being the natural “inclusion” into R. Define

J :={r € R: thereexistsd € D stdr = 0}.

Note that J = {0} if and only if all elements of D are non zero divisors.

Proposition 4.8.1 We have that

(i) J is an ideal in R.
(ii) ifd € Dandr € R, then dr € J impliesr € J.

Put a relation ~ on R x D = {(r,d)} where (r1,d;) ~ (r2, d») if and only
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if there exists a d € D such that d(rid, — dyr;) = 0. That is, if and only

if ridy — dyr, € J. We claim that ~ is an equivalence relation.’! We write 51: Reflexivity and symmetry are
out transitivity: Suppose (r1,d1) ~ (r2,d») and (r2,dz) ~ (r3,d3). Then,  immediate.

ridy, —rody € J and rpdz — r3d, € J. We want to show (ry, dy) ~ (r3, d3),

or equivalently, r1d3 — dyr3 € J. Well, we can write

(r1d2 — dli"z)dg, —+ d1(72d3 — dzl"3) € J,
which after some cancellation gives us r1ds —dyr3 € J.
Remark 4.8.1 (Notation) Let[r/d]be the equivalence class of (r,d), D' R

is the set of equivalence classes, ¥ : R — D~'R where ¥/(r) = [r/1] is
a ring homomorphism preserving unity. Also, 1 is [1/1]. We claim that

D~!R is a commutative unital ring with>? 52: We omit the proof, but the long
part is to check that the operations are
[Vl/dl] u [rz/dz] = [(rl d> + dq Vz)/(dl dz)] well-defined, since they are defined on

equivalence classes.

and

[r1/d1] - [r2/d>] := [(r1r2)/(d1d2)].

These are standard fraction operations.

Proposition 4.8.2 Given R, D, there exists a commutative ring D 'Randa
ring homomorphism ¥ : R — D™ R such that

(1) ifd € D, then ¥ (d) € (D_IR)X.
(ii) every element x € DR has the form x = Y (r)y(d)~! for some
reR, de D .53 53: That is, they are of the form “r/d.”

(iii) kery = J.
(i) Proof. We have

[d/1]-[1/d] = [d/d] = [1/1] = L.

O
(if) Proof. Any element is of the form
x=[r/d]=[r/1]-[1/d] = ¢ (r)y ()"
O
(iii) Proof. Note that ¥ (r) = 0 if and only if [r/1] = [0/1], which is true if
andonlyifr-1-0-1€J. O

Thus, our construction is complete and does what we want. Now, rings of
fractions come with a universal property, so let us do some investigation.

Proposition 4.8.3 (Universal Property of Rings of Fractions) Let ¢ : R —
S be a ring homomorphism preserving 1 between commutative unital rings. Let
D C R be a multiplicatively closed subset, taking ¥ : R — D™!R to the ring
of fractions. If (D) € S, then there exists a unique ring homomorphism
@:D7 'R — Ssuchthat g oy = g.

. . _ 1 R——— S
Proof. We start with existence. Let ¢([r/d]) := ¢(r)p(d)~". We need to A
check that this is well-defined. If [r;/d;] = [r2/d>], then rid, — dyrp € J, wl -
DR

Figure 4.3: Commutative diagram for the
universal property of rings of fractions
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54: This is one of the more “usual”

constructions of the field of fractions. We

show that the two definitions coincide,

isomorphically.

55: We abuse inclusion notation a lot in
this proof.

so there exists d € D such that d(r;d, — dy1r2) = 0. hence, we can take

9(d)(p(r)e(d2) — ¢(d1)e(r2)) =0,

but ¢(d) € S*, so our multiplication by ¥ (d)™! gets us ¢(r1)¢(d2) =
¢(d1)¢(r2), so

p(r)e(d) ™" = p(r2)e(d2) ™" = p(r2)p(d2) ™"

Let us show it is a (unique) ring homomorphism. We have uniqueness,
since every x € R has the form ¥ (r)y(d)™!, so

WY@ =g )o@ ™),
which is just (r)p(d) L. O

Proposition 4.8.4 Let [ be a field, R C F a subring with 1y € R. Then, R is
a domain. Let Q := Frac(R) = (R \ {0}) "' R. Then, Q is isomorphic to the
smallest subfield of F which contains R.>

Proof. Consider the injection ¢ : R < F. Then, ¢(R \ {0}) € F \ {0}.
so there exists a unique 9 : Q — F. Well, ker(p) € Q is an ideal,
so ker(p) = {0}. Thus, ¢ is injective, meaning QO =~ ¢(Q) € F, and
R = 9(R). If F' C F is any subfield with R C F, then Q0 < F/, since
O={rd7':reR,decR\{0}}CF.> O

Remark 4.8.2 A common example of this is Z C R, but we can squeeze
inZ CQ CR.



Introduction to Modules

Hereafter, all rings will be unital. The idea is that there is an analogy. Given
a group G, recall that we have a category Setg of G-sets. Now, given a ring

R, we get a category of R-modules.

5.1 Category Modyr of R-Modules

Definition 5.1.1 (Left R-Module) A left R-module is an ordered triple
(M, +, -) where (M, +) is an abelian group and - : R x M — M is a function
sending (r,m) +— rm, where!

(1) (ry +r)m = rym + rom.
(ii) r(my + my) = rmy + rm,.
(iii) ri(rom) = (rir)m.

(iv) Im = m.

Definition 5.1.2 (Right R-Module) A right R-module is (N, +, ), where
(N, +) is an abelian group and - : N x R — N is a function satisfying similar
axioms.

Definition 5.1.3 (Opposite Ring) Let (R, +, -) be a ring. Then, the opposite
ring R is a ring defined by (R, +, ), wherea P b = b - a.

Example 5.1.1 Consider R := M,(F). Here, R°? # R, since the
matrix ring is not commutative. Nonetheless, R ~ R°P as rings. Our
isomorphism is given by ¢ : A > A’, the transpose. This works since
(AB)" = B' A" and it preserves addition.

Example 5.1.2 Consider the ring
ajj € Ffori,j € Z stforall j

only finitely many a;;
are nonzero

R = Muo(F) := {(aij) :
The transpose definitely does not work. We claim that R % R°P.

Proposition 5.1.1 A left R-module is a right R%-module. That is, if M €
LModg, then we an form M € RModg, we can define in M that m - r := rm
in M.2

We define a category LMod g of left R-modules. The objects ob LModp, are left

R-modules M, and morphisms are homomorphisms of left R-modules.

5.1 Category Modg of R-
Modules. . .. ......... 61

5.2 Quotients . . .......... 64
5.3 Coproducts and Products . . 66
5.4 Internal Direct Sums and

Free Modules ......... 67
5.5 Simple and Semi-Simple

Modules. ... ......... 68
5.6 Semi-Simple Rings . . . . .. 73

1. Letr,r1,r» € Randm,m{,mp € M.
Note that these properties force 0 gm =
Opr. Also, (—1)m = —m.

2: Note that for groups, G and G°P are
always isomorphic via inverses.



62 5 Introduction to Modules

3: As an exercise, prove that this is true if
and only if ¢ is bijection.

4: This is easy to check.

Remark 5.1.1 If R is a field [, then LModf = Vectf.

Definition 5.1.4 (Module Homomorphism) Left R-module homomorphisms
are functions ¢ : M — M’ such that

(i) p(my + ma) = @(my) + @(my).
(ii) o(rm) = ro(m).

Definition 5.1.5 (Module Isomorphism) An isomorphism ¢ is an invertible
homomorphism of modules.

Remark 5.1.2 Notationally, sometimes we will write Homg (M, N) or

Homlféft(M , N) for the set of left R-module homomorphisms.

We also have a category RModr of right R-modules, defined as you might

expect. The morphisms will be denoted like Hom;izght(M . N).

Proposition 5.1.2 (Facts About Homllgﬁ) Let M, N, P € LModg. Then,

(i) Hompg (M, N) is an abelian group, where ¢, ¥ — ¢ + V is defined by
(¢ + ¥)(m) == (m) + Y (m).*
(ii) If R is commutative, then Hompg (M, N) € Modg. Remember, if R is
commutative, then LModr = RModg, so we usually just write ModRg.
(iii) Composition is bilinear:

Hompg (N, P) x Homg(M, N) ——— Hompg(M, P)
(0. V) ——— oy

is bilinear. That is, ¢ o (Y1 + Y2) = @ o Y1 + @ o Y, and the same
reversing ¢ and .

Remark 5.1.3 In general, Homg (M, N) need not be an R-module.That
is, ¥ = r¢ might not form an R-module homomorphism. We have
that v (rr'm) is ro(r'm) = rr'o(m), but r'v(m) = r'ro(m). These are
generally not the same, unless R is commutative.

Definition 5.1.6 (Endomorphism Ring) We define Endg(M) :=
Hompg (M, M) of module endomorphisms of M.

Proposition 5.1.3 End g (M) is a ring with unity. The structure is given by:
+ being addition of homomorphisms, - is composition of homomorphisms, and
unity given by 1 = idyy.

Example 5.1.3 Let [F be a field and take M := " € Modfy = Vectf. Then,
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Endp (F"). Well, we know that
Homp (F”*, F) = Myuxn (),
where + is 4 of matrices and o is - of matrices. Hence, the endomorphism
ring Endp (F") >~ M, ([F).
Remark 5.1.4 Define
F*° := {(ar)kez, : ar € F stall but finitely many a; = 0}
is an [F-vector space. Then, R := Endf(F*°) = M ([F) is from earlier.

Definition 5.1.7 (Automorphism Group) We define Autg(M) to be the
automorphism group of a module M .

Remark 5.1.5 Since we just need the invertible endomorphisms, it is
clear that Autgr(M) = Endg(M)>.

Example 5.1.4 We have that
Autp(F*) = Endg(F")* = GL,(F) € M, (F) =~ Endg(F").

Example 5.1.5 (Free Module of Rank One) If R is a ring with unity, then
M = R s aleft R-module by (R, +, 9.5

Example 5.1.6 Let R := M,(F). Let M := F2. Then, M has the natural
structure of a left R-module. Clearly M % R as a module, as it is too
small.

Exercise 5.1.1 Whatis S := Endg(M) = Endm, ) (F?)?

Proof. Well, S = {f : F?> — [F?} of R-module homomorphisms. This is just
the set of abelian group homomorphisms. That is, ¢ : F?2 — F? such that
@(Av) = Ag(v) for all A € My(F) and v € F2. Note that A € F implies we

can form Al,. As a consequence of ¢ € Endg(M) is (A12v) = Alrp(v),

so ¢(Av) = Ap(v). Hence, ¢ is an F-linear map, so ¢(v) = Bv for a fixed
B € M,([F). Inorder for it to be an R-module map, we need p(Av) = Ap(v)

for all A € My (F). Thatis, B(Av) = A(Bv) forallv € F? and 4 € R. Thus,

weneed BA = AB forallA € R,soEndr(M) ={Al,: A eF}~F.° O

Example 5.1.7 Let F be a field and G a group. Then, set R := F[G], the
group ring of G over . What is a module over F[G]?

5: The easiest way to think about this is
when we write [ to be a vector space over
itself.

6: This is the center of the matrix ring.
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7: As you should expect, N is a module
in its own right.

8: Recall that this means W C V such
that T(W) C W.

9:m : M — M/A is the quotient
homomorphism.

M—2 N

/7Y
ar -
s P
P
7

M/A

Figure 5.1: Here is the standard
homomorphism theorem diagram, where

o(4) =0.

5.2 Quotients

Definition 5.2.1 (Submodule) A subset N € M is a submodule if (N, +) <
(M,+)and rN C N forallr € R7

Example 5.2.1 Note that if R := Z, then a Z-module is precisely an
abelian group. Then, a submodule is exactly a subgroup.

Example 5.2.2 Let R := [, a field. Then, Modf = Vectr and submodules
are subspaces.

Example 5.2.3 Consider R := F[x]. An F[x]-module is the same thing
asapair (V,T), where V € Vectand T : V' — V is an F-linear map. If

n
f= chxk and ¢ €T,
k=1

then

f(I) =) eT*
P

and

f(T)yv = chTk(v).
k

Let V7 be this R-module. Then, submodules of V7 are precisely T-
invariant subspaces.®

Example 5.2.4 If R is an R-module over itself, then a submodule of R
is left ideals. This is clear that the ideal properties force the submodule
ideals.

Definition 5.2.2 (Quotient Module) Let R be a ring, M a module, and
N € M a submodule. Then, the quotient module M /N has

(i) underlying abelian group M/ N .
(ii) scalar multiplication given by

r(x+ N):=rx+ N.
Proposition 5.2.1 (Homomorphism Theorem) Let ¢ : M — N be a

homomorphism of R-modules and A € M a submodule. If A C ker ¢, then
there exists a unique homomorphism @ : M/A — N such that g o = ¢.°
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Theorem 5.2.2 (First Isomorphism Theorem) Let ¢ : M — N be a
homomorphism of R-modules. Then, we have an isomorphism of modules
M/ ker ¢ = @(M). Note that ker ¢ C M is a submodule and (M) C N.

M/ k — o(M
/ ere @ ¢(M) Figure 5.2: We have ¢ (x +ker ) = ¢(x).

Theorem 5.2.3 (Second Isomorphism Theorem)Let A,B C M be
submodules. Then,

(i) A + B is a submodule.

(i) AN B is a submodule of A.
(iii) B is a submodule of A + B.
(iv) A/ANB = (A+ B)/B.

Remark 5.2.1 The diamond isomorphism theorem is cleaner for modules
than the other structures we have seen. This is because we can form
quotients by arbitrary submodules, so we do not need a notion of

”normality.”lo 10: Remember, for rings we had ideals

acting as “normal” rings.

Theorem 5.2.4 (Third Isomorphism Theorem) Let A, B be sub modules of
M and A C B. Then,

(i) B/A C M/A isasubmodule.
(i() M/B = (M/A)/(B/A).

Theorem 5.2.5 (Fourth Isomorphism Theorem) Let N € M. Then, we
have a bijection

~

submodules A C M | Vbijection (submodules
st N C A ACM/NY

where A +— m(A) and w(A) — =1 (A).

Let M be an R-module and S € M a subset. Define!! 11: Note that RS is a submodule of M.

Proposition 5.2.6

RS = ﬂ N

submodules NCM SCN

That is, RS is the smallest submodule containing S. We say that M is
“generated by” S if RS = M.
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12: In particular, if Rx = M for some
x € M, then M is a cyclic module.

13: It is generated by the coset 1 + 1.

14:
o(r1 +1r2) = (1 +r2)x
=r1x +rxx
=@(r1) + ¢(r2)
or'r) = (r'r)x
= r'o(r)

15: The module structure on M :=
[1M; is component-wise.

16: The definition tells us that finitely
many X; are nonzero.

Definition 5.2.3 (Finitely Generated) We say M is finitely generated if there
exists S € M with |S| < oo such that S = M .2

Example 5.2.5 It is clear that R is a cyclic R module, as 1 € R. More
generally, if / C R is a left ideal (submodule), then R/! is a cyclic
module.®

Proposition 5.2.7 Every cyclic module is isomorphic to some R /I

Proof. 1If M is cyclic, pick a generator x € M such that Rx = M. Define a
homomorphism of modules ¢ : R — M such that ¢ : r > rx."* Since M
is cyclic, ¢ is surjective. We get isomorphism from M ~ R/ ker ¢ where [
is ker ¢. O

5.3 Coproducts and Products

Let {M;};es be an indexed set of R-modules.

Definition 5.3.1 (Module Product) Define'® the (direct) product

l_[Mi = {(Xi)ier : xi € M;}.

iel
If1 ={1,...,n}, then
[]Mi=Mixx My ={(x1.....xa) : xi € M}

iel

Definition 5.3.2 (Module Coproduct) Define the coproduct (or direct sum)

@Mi ={(xi)ier 1 |{i €1 :x; # 0} <00} € HMi-

iel i€l
This is a module.X® If I is finite, then
Pmi=Mo-- oM,

iel

Remark 5.3.1 By definition, it is clear that

M &--- DM, ~M X---xXM,.

Let us loosely discuss some universal properties. Consider the set

gN%]_[M,-}

iel
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of module homomorphisms. Then we can directly build f; : N — M; of
R-module homomorphisms. Then, f(y) := (fi(»))ier. On the other hand,
consider the set

iel

@M,-%N}

of module homomorphisms. Then, we can build f; : M; — N, where
S((xi)ier) = Y fi(xi).” Remember, the product of G, H in Grp is just  17: The duality comes from the fact

G x H. Yet, the coproduct G * H is the “free product,” which does not look ~ that we are mapping info our object
like a product for products and out of our object for

coproducts.

Example 5.3.1 The coproduct C; * C; =~ D, in Grp. This one can be
done simply in terms of presentations. Let C; =~ (a |a2) and C; ~ (b }bz).
Then, C, * Cy >~ <a,b|a2, bz).

5.4 Internal Direct Sums and Free Modules

Fix a module M and consider a collection {N; C M };c; of submodules.
We can then form the coproduct map

DN — M,
iel
where ¢ is the “tautological map.” Thatis, ¢((x;)) = >_ x;, where (x;) € N;.

This just means ¢ is the sum of the inclusions.

Definition 5.4.1 (Internal Direct Sum) We say M, as above, is an internal
direct sum of submodules {N; } if ¢ is an isomorphism.

Proposition 5.4.1 Let M and {N;} be as above. Then, deﬁnels 18: The sum is the submodule given by
(U N;, which is not usually a submodule.

N:=ZN,-§M

iel
Then, the following are equivalent:

(i) N is an internal direct sum of {N;}.
(ii) For every {i1,...,in} € I and j ¢ {i1,...,in} we have

N;j N (Niy +---+ N;,) = {0}
(iii) Every x € N can be written uniquely as x = xj + ---x,, where
Xk € Ny, for pairwise distinct iy.
Example 5.4.1 Let N;, N € M. Then,
Ni@® N, > M

via ¢ if and only if Ny + N, = M and Ny N N, = {0}.19 19: Recall that this is precisely how we use
internal direct sums for vector spaces.
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20: By this, we mean that for all x €
M there exists a unique collection {a;s €
R} cs such that

x =) ages,
seS

where we necessarily have as = 0 for all
but finitely many s € .

21: This is the Kronecker delta.

Figure 5.3: Universal property of free
modules

22: Necessarily, {0} # M. Thatis, M is
nontrivial.

Example 5.4.2 Let N1, N>, N3 € M. You can have N; N N; = {0} for all
i # j,but Ny @ N, & N3 — M is not an isomorphism. For instance,
with M = R @ R, then we could define

Ny ={(r,0):r € R}
N, ={(0,r):r € R}
N3z ={(r,r):r € R}.

Now, let R be unital.

Definition 5.4.2 (Free R-Module) A free R-module on a set S is (M, e)
where M is and R-module and e : S — M is a function sending s +— eg of
“basis elements.”*

For instance, S := [n], thene : S — M gives us ey, ..
X € M can be uniquely written as

n
X = Z arex
k=1

., ep. Then, every

foray € R.

Example 5.4.3 Let R := [ a field, Then, every F-module admits the
structure of a free F-module.

Proposition 5.4.2 A free module exists for every set S. In fact,

M =R

seS

isfreeone: S — M by (eg); = 8.2

Theorem 5.4.3 (Universal Property of Free Modules) Let (M, e : S — M)
be a free module. Then, for a module N and function ¢ : S — N, there exists a
unique R-module homomorphism ¢ : M — N such that g o e = g.

Warning: Unlike vector spaces, most modules are not free!
Example 5.4.4 For instance, let R := Z. Consider the module M =

Z/B)se=1+@3).

5.5 Simple and Semi-Simple Modules

Fix R.

Definition 5.5.1 (Simple Module) An R-module M is simple if it has exactly
two submodules.?
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Proposition 5.5.1 Every simple module is cyclic and isomorphic to one of the
form R/ I, where I is a “maximal left ideal.”*®

Proof. Let M be simple. Then, M # {0}, so there exists x € M such
that x # 0. Pick any such x and define ¢ : R — M by ¢(r) = rx.
This is an R-module homomorphism. We claim that ¢ is surjective. Well,
¢(R) € M is a submodule, and since ¢(R) is nontrivial, ¢(R) = M. Then,
we have w : R — R/ ker ¢, and via our isomorphism theorem we have
@ R/kerp = M where p(r + I) = ¢(r). I := ker ¢ is a left ideal. Since
R/I ~ M, R/I is simple.?* Well, submodules of R/I correspond exactly
to submodules J C R such that I C J. If we have a submodule J, then we
just take 7 ~1(J). Simplicity gives us maximality. O

Remark 5.5.1 An altered proof via Zorn’s lemma gives us that any ring
has at least one nontrivial maximal left ideal.

Example 5.5.1 Note thatif R := [ or R := D, a division ring, then there
is only one simple module up to isomorphism.

Example 5.5.2 Let R := Z. All simple modules are isomorphic to Z/(p),
where p is prime. That is, the simple Z-modules are the cyclic groups of
prime order. Note that Z, although it is cyclic, is not a simple Z-module.

Example 5.5.3 Let R be M, (F) for n > 1. Then, we can define M := F"
of “column vectors” as a module over the matrix ring. It is simple as an
R-module, but it is certainly not a simple F-module!*

Proposition 5.5.2 (Schur’s Lemma) If S, S’ are simple R-modules and
f S — 8 is a module homomorphism, then either f = 0 or f is an
isomorphism. In particular, D := Endg(S) is a division ring.?

Proof. Let f : S — S’. We have submodules ker f € S and f(S) € §".
Suppose f # 0. That is, there exists 0 # s € S such that f(x) # 0. Then,
ker f # S,soker f = {0}, and f(S) # 0,s0 f(S) = S’. Thus, f isa
bijection.”’ O

Example 5.5.4 Take F” as a M, (F)-module. Then, Endr(F") = F, a
division ring.

Definition 5.5.2 (Summand) A submodule N € M is a summand of M
if there exists N' € M so that the tautological map N & N’ = M with
(x,x") = x + x' is an isomorphism.?

Note that N’ >~ M/N . This is not equality. Do not confuse them.

23: That is, I is maximal among proper
left ideals in R.

24: Isomorphisms preserve submodules.

25: If v € F” with v # 0, then {Av :
A € M, (F)} has to be all of [F”. This is
just a bit of linear algebra exercise.

26: Recall that End g (S) is always a unital
ring for modules.

27: The structure theory of simple
modules is quite easy!

28: Note that N’ is not unique. Let R be
aringand M = R® R.Let N = R® 0.
Then, N’ = {(0,r)} and N = {(r,7) :

r € R} can be used to form

M=N&N =N&N".



70 5 Introduction to Modules

29: We will often call r a “retraction.”

30: Here, e is idempotent. In linear algebra,
we call such e projection maps or projectors.

31: Thus, e is a module homomorphism.

32: Occasionally we write 0 = {0}.

33: Note that for “semi-simple”
rings, which includes fields, every
corresponding module is semi-simple.

Proposition 5.5.3 Let N € M be a submodule. The following are equivalent:

(i) N is asummand of M.
(ii) There exists a module homomorphismr : M — N such thatr ot = idy,
where 1 : N < M is the inclusion.?®

(iii) There exists a module endomorphisme : M — M such thateoe = e
ande(M) = N.*°

Proof. Start with (i) = (iii). We have that every x € M can be written
uniquely as x = y + )’ where y € N and y’ € N’. We define e(x) 1=y,
and we claim thate : M — M is a module homomorphismand eoe = e
and e(M) = N.If wehave x1, x, € M, then we can write them uniquely as
X1 = y1 +yj and x5 = y, + y}, where y1, ¥, € N and y{, y5 € N'. Then,

X1+ x2 = (y1 + y2) + 01 + »2).

SO
e(x; +x2) = y1 + y2 = e(x1) + e(x2).

Also, rx1 = ry; +ry},soe(rx;) = re(x;).> Itis clear that e(M) = N and
e is idempotent. The idea is that

idy O /
e~(0 0) wrt N @ N'.

Now, we prove (iii) = (ii). Given e, definer : M — N by r(x) := e(x).
Then, r oi = idy. Finally, consider (ii) = (i). We haver : M — N
such that r|y = idy. Define N’ := kerr. We claim that N @ N’ = M
via the tautological action. Define an inverse function M — N & N’ by
X = (r(x),x —r(x)), then we are done. O

Definition 5.5.3 (Semi-Simple Module) We say that M is semi-simple if
every submodule is a summand.

Remark 5.5.2 Every simple module S is semi-simple, as we have a trivial
decomposition S = S @ 0.3

Our goal is to prove that every semi-simple module is isomorphic to the
coproduct €p; S; of simple modules.*?

Example 5.5.5 Let R := [[x]. Then, R is not semi-simple as an R-module.
For instance, / := (x) = x[F[x] is a submodule of R, but not a summand.

Proposition 5.5.4 Let M be a semi-simple module. Suppose N € M is a
submodule. Then, both N and M /N are semi-simple.

Proof. Let P € N be a submodule. Then, P is a submodule of M. Since
M is semi-simple, there exists a retraction r : M — P so that r|p = idp.
Letr' :=r|y : N - P.Then, r'|p = idp, so P is a summand of N.
Consider the quotient module N/N.Letw : M — M/N be the quotient
map. Consider a submodule P € M/N.Let P := n~'(P) € M. We have
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that N € P € M is a chain of submodules. Since M is semi-simple, the@
exists a retraction r : M — P such thatr|p = idp. Definer’ : M/N — P
by r'(x + N) := r(x) + N.3* O

Lemma 5.5.5 Let f : M — L be a surjective homomorphism from a semi-
simple M. Then, there exist submodules N, N' € M such that

(i) Neo N = M.
(i) N' ~ L.

Proof. Let N := ker f. Since M is semi-simple, we can find a submodule
N’sothat N & N’ = M > For (ii), the isomorphism is given by

N’LL,

which is injective since ker f = N N N’ = 0.3 O

Corollary 5.5.6 If M is a semi-simple module, then if M has a simple quotient
module, then M contains a simple submodule.

Proof. See the lemma. Simplicity is preserved under the isomorphism
N L 0

Proposition 5.5.7 Every nontrivial semi-simple module contains a simple
submodule.

Proof. The trivial module 0 is always semi-simple.” Let M # 0. Pick an
elementx € M withx # 0. Then, we geta cyclicsubmodule Rx € M. Then,
Rx # 0 and semi-simple. Without loss of generality, we can assume the
module is nontrivial and cyclic. We know how to classify cyclic modules.®®
We can take M := R/I, where I C R is a left ideal. We will construct a
simple quotient module of M. The

submodules submodules J C R
J S R/I stI CJ SR

We want to take (R/I)/J = R/J. The observation is that we need to

find a left ideal J containing / which is maximal among proper left ideals
containing /.% Apply Zorn’s lemma to the poset on the RHS above. [

Definition 5.5.4 (M SS) Let M be a module. Define
Simp(M) :={S S M : S simple submodule }.
Then, we take*®

M= )

S €Simp(M)

. submodule of M cM
" generated by Usimpay S T

34: This map is well-defined, since
rly =idy,since N € P. Also, 'l =
id, by construction.

35: This is (i).

36: Itis surjective. If X € L, pick x € M
such that f(x) = X. Write x = y +
y’ where y € N and y’ € N’. Then,
fx)=f0O").

37: It is excluded since simple modules
are nontrivial.

38: They are quotients of the ring by left
ideals.

39: This will imply that R/J is simple
(as there are no intermediate ideals).

40: Really, MSS is the set of all sums of
x; € S; for some S; € Simp(M).
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41: As before, Image(f4) € MSS.

Note that ZS8 = 0.

Example 5.5.6 Let R := Z. Remember, Modz is just abelian groups. Let
M be an abelian group. Then, M S is the subgroups generated by all
X € M such that |[x| = p for some prime p. For instance, if we take

(Z/p*®® = (pZ/p*) ~Z/p.

Proposition 5.5.8 Consider N C MSS. Then, there exists a subset X C
Simp(M ) such that the tautological map

N@@S%MSS;%M
SeX

is an isomorphism.

Proof. We want to use Zorn’s lemma. Let & be the set of subsets 4 C
Simp(M) such that the tautological map

No@s - m
SeA

is injective.41 It is clear that & is a poset with C. Note that % # &, since
@ € P. We claim that every nonempty chain € € &% has an upper bound
in 9. The idea is to consider

B := (] A c Simp(M).
Ae®

In fact, B € &;ie.,

fB:No@sS—>M
SeB

is injective. An element in the domain of fp can be written
z:=(x,y1,...,V%) x€N,y; €S;,S; € B.

Suppose fg(z) = 0. Each S; € A; for some A; € 6. Since 6 is totally
ordered, there exists a j so that A; € 4;,s0 S1,...,Sr € A; € P. Thus,
f4; is injective and fy, (z) = fg(z) = 0,s0 z = 0. By Zorn’s lemma, there
exists X € & which is maximal. We get

fx:No@PS—>M* cm
SeX

which is injective. We claim that Image( fx) = MSS.If fx is not surjective
onto M SS, then there exists S’ € Simp(M ) not in the image of fx. Yet, we
can form

S’ NImage(fx) =0,

since S’ is simple. Hence,
fXU{S’}:N@@S@S/—)M
SeXx

is also injective, which contradicts maximality. O



Corollary 5.5.9 MSS is isomorphic to a direct sum of simple submodules.

Proof. Use the proposition with N = 0. O

Corollary 5.5.10 M SS is semi-simple.

Proof. If N € MSS, use the proposition and take N’ := @y S. Then,

N®N =5 MSS#2 O

Theorem 5.5.11 (Semi-Simple Structure Theorem) Let M be an R-module.
The following are equivalent:

(i) M is semi-simple.
(i) M = MSS.
(iii) M is isomorphic to a direct sum of simple submodules.

Proof. Start with (i) = (ii). Let M be semi-simple. Well, M5 C M, so
MSS®N = M forsome submodule N € M .* We showed that submodules
of semi-simple modules are semi-simple, so N is semi-simple. If N = 0, we
are done. If N # 0, then there exists a simple submodule S € N 4 Then,
S C M35 N N, a contradiction to the definition of the “direct sum.” Thus,
N = 0. For (ii) = (i), the corollary tells us M S® is semi-simple. Similarly, (ii)
= (iii) comes from M SS being a direct sum of simple submodules. Finally,
(iii) = (ii) is immediate.*® O

Remark 5.5.3 The dimension dim % of a vector space ¥ over [ is
precisely the number of summands in a simple direct sum decomposition.
In particular, it is the number of copies of F in the decomposition (since
the only simple submodules of %" are isomorphic to [F).

5.6 Semi-Simple Rings

Let R be unital.

Definition 5.6.1 (Semi-Simple Ring) We say that R is semi-simple as a ring
if R is a semi-simple as a (left) R-module.

Example 5.6.1 Let R := M, (), where [ is a field (or division ring). Let
I € R be the set of matrices which are nonzero only in the kth column.
I ~ F" is a simple module.*® Well,

R~11 & &Iy

as R-modules.
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42: Thatis, N is a summand of M SS.

43: This is what it means for M to be
semi-simple.

44: This was proved earlier.

45: The hypothesis literally implies
M= Y s,
S €Simp(M)

which is just M SS.

46: F" is the set of column vectors; i.e.,
the space F 1>,
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47: That is, R is semi-simple as an R-
module.

48: Of course, this also means S € MSS.
49: Note, I x = 0. Thus, Ix; = 0.

50: We abuse notation in the standard
way, switching back and forth between
tuple and sum notation for the internal
direct sum.

Example 5.6.2 Let R := Z or R := [F[x]. This is not a semi-simple ring,
since neither of these have simple submodules whatsoever.

Proposition 5.6.1 Let R be a ring. The following are equivalent:

(i) R is semi-simple as a ring.
(ii) Every R-module is semi-simple.

Furthermore, if these hold, then

(a) R is a finite direct sum of simple submodules.
(b) there are only finitely many simple R-modules up to isomorphism.

To attack this, we will need a few lemmas.

Lemma 5.6.2 Let R be a ring. If M is an R-module and M = @, M; for
some {M; C M}. Then,
MSS — @Miss_
i

Proof. Clearly each M € MSS,s0>"; M C MSS. Then, the tautological
map
@ MiSS — MSS

i
is injective. We just want to show that it is surjective. Suppose S € M
is a simple submodule.* Now, simple modules are always cyclic, so
S = Rx ~ R/I for some x € M with x # 0. We can write x = (x;)
where x; € M; and all but finitely many x; = 0. We claim that each nonzero
x; is contained in some simple submodule of M;. In fact, S; := Rx; € M;
is a simple submodule. Then,

inj rex;
J :=ker — R —— Rx;

leaves Rx; ~ R/J, and since [ is maximal among left ideals, / = I, so
S; >~ §, meaning x; € Ml-SS. O

Lemma 5.6.3 Let M be a cyclic module. If
D=
i

for some {M; € M};cq, then M; = 0O for all but finitely many i.

Proof. Pick a generator x € M. Then, M = Rx. The same idea arises,
taking x = (x;) where x; € M; and all but finitely many are 0. The claim is
that the direct sum decomposition implies Rx; = M, foralli € I. Write
X = X1 + -+ + xu, where x; # 0and x; € My, for distinct k;. Suppose
y € M; where j ¢ {ky,....k,}. Since M is cyclic, we can write y = rx for
some r € R. On the other hand,°
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Yy =rx =rxy+--+rxp,
—— N ——— ——

M, My, ++My,

but there is no overlap, so this forces both sides to be 0.5! Thus, M ;=0 O 51: We use that @ M; = M.
Now, we can prove the proposition from earlier.

Proof of Proposition. Start with (ii) = (i). If every R-module is semi-simple,
then R is semi-simple as a module, so R is semi-simple as a ring. Conversely,
consider (i) = (ii). Suppose R is semi-simple. Then, R = RSS. Consider
M = @, R, afree module, It is clear that

MSSZ@RSS:@R

implies M is semi-simple. Now, we have a fact that every R module is
isomorphic to a quotient of a free module. We can take the simplest map
surj
R—— M.
XEM

Plus, quotients of semi-simple modules are semi-simple. Finally for (a),
R is a cyclic R-module, so R = @_, S;, by the lemma. What about (b)?
Well, if S is simple then it is cyclic, so S ~ R/I. O

Lemma 5.6.4 Suppose M = @,c; Si, where each S; € M is a simple
submodule. Then, any simple submodule of M is isomorphic to one of the S;s.

Proof. Consider S € M. Then, S = Rx for some x € M with x # 0. Then,

X =Xx1 + -+ x, whereeach 0 # xx € S;, and S;,, ..., S;, are distinct

summands in the direct sum decomposition. In particular, consider the

projection 7 : M —» S;,. Then, 7r|g : S — S;, is anisomorphism.>> [0 52 UseSchur’slemma. We know 7(x) =

x1 # 0.

For the finiteness aspect of the proposition, we use the lemma. If S is

a simple submodule and R is semi-simple, then § is isomorphic to a

submodule of R. The lemma says S ~ Sk forsomek =1,...,n.

Lemma 5.6.5 Suppose S = S @ N for S simple. Suppose further that S' € M
is simple with S € N. Then, the tautological map yields

S ®N = M.

Plus, S ~ S’.

Proof. We have that S’ N N = 0, as S’ is simple and S’ € N. First, let
7w : M — S bethe projection. Then, ker 7 = N.Wenotethat|g : S" — S
isanisomorphism, againby Schur’slemma. Givenx € M, writex = x;+x5,
where x; € S and x; € N. Since n|g, : S’ — § is an isomorphism, there
exists y; € S’ such that 7(y;) = x;. Observe y, := x; — y; € kerw = N.
Thus, y; € Sand y, + x, € N, so

i+ 2+ x2)=y1+x1—x1+x2=1x,
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53: That is, these simple direct sum
decompositions are isomomrphic up to
reordering. We only show this for the finite
case, but it is true for infinite coproducts
too.

54: For this aside, G does not have to be
finite.

so S’ + N = M. Therefore,

S"®N = M.

Proposition 5.6.6 If we can write

m n
M=Ps =S
j=1

i=1

where the S;, S ]’ are simple submodules, then m = n and there exists 0 € Sy,

so that S; >~ S(’T(j).“:’3

Proof. We perform induction on min(m, n). The base case is 0. Consider
1 <m <n.Write M =S ®N,where N =P, S]f. There exists an i so
that S; € N. Without loss of generality (we use reordering), suppose i = 1.
Then, S; € N. By the lemma, S; @ N = M and S; ~ S{. We also ahve
that M ~ S; & N, where N’ := @, S;. Yet, N ~ M/S; ~ N/, so

m n
Psi~Ps;.
i=2 j=2

By induction,m — 1 =n — 1, and
{Siy = (S}

up to reordering. O

Example 5.6.3 (Group Ring Modules) Let [ be a field and G be a finite
group where |G| = n < co. Define R := F[G]. What are R-modules?>*
Well, they are precisely “representations of G.” That is, let (7, p), where
7V is an [F-vector space and

p:G — Autp(7).

Let

finite

r= " aglgl.

geG

where ag € . Then, with v € V', we get
finite
rv = Z agpg(v) € V.
geG

For instance, if G = C, (x|x"), then F[G] 3 ap + a;x + -+ + ap_1x" L.
We get an automorphism p : G — GL,(F), where 7 = F". We get

(@o + a1x + -+ a1 X" (V) = Y axpuk (v).

For instance, take the reqular representation, taking % = R = F[G]. This



has a basis given by group elements in G. If we take our basis F[G] =
F{[g].g € G}, then p: G — Autp(7).If h € G, then py([g]) := [hg]. As
an example, take G := C4 = {e,x,x2, x3}. Then,

vV = F[G] = F{fe]. [x]. [x]. [¥°]} = F*.

We have

Px =

S o~ O
(= e i )
- o O O
S O O =

Proposition 5.6.7 If G is finite with |G| = n and n=! € F.% Then, F[G]
is semi-simple. As a consequence, every G-representation over [ (every F[G]-
module) is a coproduct of irreducible representations (simple [F[G-modules).

Proof. Let R := [F[G]. Suppose we are given an R-module M and an
R-submodule N € M. We want to show there exists an R-module map
r: M — N such that r|y = idy.%® Note that N C M is an F-subspace, so
there exists an [F-linear retraction ¢ : M — N so that |y = idy. Define
¢: M — N by

o(x) = ﬁ S lelv (g~ ).

geG

We claim that ¢ is precisely the retraction we are looking for. Note the
inclusion of p(M) C N.

We first want to show that ¢ is an R-module map. Second, we want to show
that |y = idy.

Pick h € G. We already know ¢ is [F-linear, so we just need to show
! -1
o((h]x) = = ) [gl¥ (g™ hlx).
Gl 72
Re-index with g = hg’. Then,

1

el > e Ty ([(hg') " hlx) = [h]p(x).

geG
Recall that x € N implies [g]x € N.

We compute,

_ L )= oy =
() = g;[g]w([g ) = g =

so ¢|y = idn. O

Let R be a ring and take N, M to be R-modules. Write

n m
N=@N, and M =P M.
i=1

j=1
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55: Recall, we have a ring homomorphism
Z—F

with 1 = 1and n — “n”. Then, if F =
Q, R, C, this is always true. If F = [,
then it is true only if p { n.

56: Remember, finding a retraction is the
same as finding a summand.
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57: That is, our method of writing
matrices in linear algebra actually works
because of the direct sum decomposition:
not because we are dealing with vector
spaces.

58: If we had multiplied a on the left,
then it would not be a map of left
modules (though, it would be one of right
modules).

The idea to form a homomorphism f : N — M, considering the vectors
X1 »
x=1": and y =
Xn Ym
Proposition 5.6.8 Under the identification above, any R-module

homomorphism f : N — M can be written as ( f;;) as an m x n matrix with
fij € Homg(N;, M;). That is,

Sii(x1) + -+ fin(x)
fx) = :
Sm1(x1) + -+ frnn(xn).

We can interpret

PN Lom

as matrix multiplication (g, )(fij).”

Theorem 5.6.9 (Artin-Wederburn) Every semi-simple ring is isomorphic to
one of the form

,
R =[] M. (D).
k=1

where Dy, ..., D, are division rings, taking ny > 1 and r > 0.

Proof. We know that R is semi-simple, so we can write
n
R=Ds.
k=1
where the S; € R are simple submodules. Note that

R°P ~ Endg(R) = Homg(R, R).

Leta € R, and define ¢, : R — R by ¢,(x) := xa. We claim that ¢, is a
map of left modules. Let b, x € R. Then,*®

@a(bx) = (bx)a = b(xa) = by, (x).

Yet,
Pa(pp(x)) = @a(xb) = (xb)a = x(ba) = pa(x),
as @q © Pp = Ppg. We have an isomorphism of rings R°? >~ Endr(R). Now,
we can precisely write
EndR(R) = {f,j € HOI‘nR(Sj, S,)}

Schur’s lemma tells us that if S, S’ are simple, then

0, S8

Hom(S, S’) ~
om($.5) =y o
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where D is a division ring. We will now write

n
R~ @ S;B"".
k=1

Each of the Sy are simple, where S; % S; if i # j, but we can take ny > 1.
Using our new form of R, we have that®? 59: Per Schur’s, we take Dj :=
End g (Sk ). Note that

n n
0 n Mg (D) >~ Mg (DP).
R ~ Endg(R) =~ [] Endg(S2™) = [ Mugscn, (D)- K (D) = My (D)

k=1 k=1

O

Example 5.6.4 (Complex Group Rings) Consider C[G]. We can always
write

CIG] = [ Ma, (©).
k=1

where |G| = n < oco. Note that if we have a division ring D # C and
C < Center(D), we can pick x € D \ C. We can consider the ring
R := (C,x). Thus, R is commutative. It turns out, it is really hard to
have larger division rings containing C, since it is algebraically closed.
Putting a finite dimension restriction on D forces equality with C.






Particular Domains and Modules

We now return to our standard progression, approaching principal ideal
domains, which have a very satisfying theory. Hereafter, all rings will be
commutative and unital.

6.1 Preliminaries

We have a unique ring homomorphism sending 1 — 1. Take ¢ : Z — R,
where ker ¢ = (p). For instance, if R = Z /4, then p = 4.1f R = [ is a field
(or domain), then ker ¢ € Z is a prime ideal. Either p is a prime number
or p=0.

Definition 6.1.1 (Characteristic) We define the characteristic of a field to be
charF = p,

as above. For instance, char(Q, R, C) = 0 and char(Z/p) = p.

Now, let Ry, ..., R, be rings. We can build the product ring
R:=R; x---xR,.

Let A, B C R be ideals. We get
R—Y S R/AxR/B

r—— (r+ A,r + B).

We have that ¢ is a ring homomorphism, but it is also an R-module
homomorphism.! Clearly, kerp = A N B. In fact, we get a homomorphism
¢ R/ANB — R/A X R/B is an injection. If A, B are ideals, recall that
we write A 4+ B to be the set of pairwise sums. We also define

AB :={a\bi +---+axby :a; € A,bj € B.k =0} C R,

which is an ideal.? If we have two sets of generators A = (ai,...,a,) and
B = (by,...,b,), then

A‘I’B = (al,...,am,bl,...,bn)
and

AB = (...,Clib_/,...).

Definition 6.1.2 (Comaximal) We say A, B < R are comaximal (or coprime)
if A+ B = R. Equivalently, A, B are comaximal if there exists an a € A and
be Bsothata +b = 1.

6.1 Preliminaries. . . ... ... 81

6.2 Euclidean Domains and

PIDs .............. 83
6.3 Unique Factorization
Domains and Fermat . . .. 86

6.4 Torsion Modules,
Independence, and Rank . 89

6.5 Annihilators . ........ 93
6.6 Modules OverPIDs .... 94
6.7 Linear Algebra via Modules100

1: When is ¢ an isomorphism? There is
no reason to generally believe that ¢ is a
surjection.

2: Note that this is not the product set,
which usually is not an ideal.
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3: This is why you will hear comaximal
referred to as coprime.

4: This is both an isomorphism of rings
and of R-modules.

5: Thatis, A; + A; = Rifi # j.

Example 6.1.1 Let (a), (b) € Z. We have that (a), (b) are comaximal if
and only if ged(a, b) = 1.3

Proof. By the standard lemma, (a) + (b) = (d), where d = gcd(a, b), but
(1) =R. O

Theorem 6.1.1 (Chinese Remainder Theorem) If A, B C R are comaximal
ideals, then AN B = AB. We have that ¢ induces an isomorphism4

R/AB = R/A x R/B.

Proof. First, AB C AN B via the obvious inclusion. Conversely,if x € AN B,
then use 1 = a + b via comaximality. We get

x =x(a+b)=xa+xbe BA,AB,
so AN B € AB. We know we have an injection
R/AB =R/ANB — R/AxR/B

given by r — (r + A,r + B). Is it surjective. Well, consider (71,72) €
R/A x R/B. Lift to elements ry,7, € R. Using 1l =a + b forsomea € A
and b € B, set

r:=rya+rb,

and modulo A we getr + A = rpa+r1b+ A = r1b + A. We also know that
b=1-a=1 (mod A). Wecanwriter = rya+rb = r,a—ria+ry,sor =
r1 (mod A). Likewise, r = r, (mod B). Thus, ¢ is an isomorphism. [

Example 6.1.2 If a,b € Z with gcd(a,b) = 1, then we get a ring
isomorphism
Z/(ab) = Z]a x Z]b.

Proposition 6.1.2 Let Ay, ..., A, C R be pairwise comaximal.® Then,
Ay Ay = A1 N--N Ay,
and

R/(Ay---An) => (R/A1) X (R/A2) X -+ X (R/Ap).

Proof. Proceed by induction on n. The base case of n = 2 is the Chinese
Remainder Theorem. Forn > 3,set A = A;, B = A, --- A,,. We claim that
A, B are comaximal, and we can continue the argument from there. For
eachk = 2,...,n,thereexists x; € Ay,ay € Ag sothat 1 = x; + a. Then,

a = (x2 +az)(x3 +az)---(xn +an),
which we can expand to

(az---an) +xa(stuff) + xz(stuff) + --- + x5 (stuff),

B



6.2 Euclidean Domains and PIDs 83

and the latter terms are allin A = A;. Thus, A, B are comaximal. O

Example 6.1.3 If we again take R :=Z,

Z/(phr - phay 2z < x Zy (i,

where the p; are distinct primes.

6.2 Euclidean Domains and PIDs

Note that, at least within textbook literature, the definition of Euclidean
domains is rather inconsistent. Morally, they reflect the same idea.

Definition 6.2.1 (Euclidean Domain) A Euclidean domain is a commutative
domain R with unity so that there exists a function®

N :R\ {0} > Z

such that foralla,b € Rand b # 0, there exist q,r € R suchthata = gb +r
with either r = 0 or N(r) < N(b).”

Example 6.2.1

(@) Let R := Z and N(a) = |a|.

(b) Let R := F[x] and N(f) := deg f.8

(c) Let R := ZJi] and N(a + bi) = |a —i—bi|2 = (a + bi)(a — bi) =
a? + b2. In this case, note that N(af) = N(a)N(B).°

(d) Let R := Z[+/—5]. The obvious guess for N is N(a + bv/=5) =
a® + 5b2. This does not satisfy the definition.

Definition 6.2.2 (Principal Ideal Domain) A principal ideal domain (PID)
is a domain so that every ideal is principal.

Proposition 6.2.1 Euclidean domains are PIDs.

Proof. Let R be a Euclidean domain with N : R\ {0} — Z5¢. Let (0) #

I € Rbe anideal. There exists a d € I such thata # 0. We can pick any
d € I\ {0} for which N(d) is minimized. We claim that / = (d). Clearly,
(d) C I.Leta € I. Thereexistq,r € R such thata = gd + r, where either
r =0or N(R) < N(d). Note that r = a — gd € I, but either r = 0 so

a =qd € (d),or N(r) < N(d), which contradicts minimality of N(d). O

Using this implication, some examples of PIDs are Z, F[x], [F, Z[i]. We also

have that GQ[ J3] is a Euclidean domain.

Definition 6.2.3 (Associates) Let R be a domain. We say a,b € R are
associates if there exists a unit u € R™ such that b = ua.

6: We call this function a norm.

7: The idea is that in F = Frac(R),
a/b=q+r/b.

8: We use polynomial long division.

9: See 418 notes for the proof. Itis a simple
geometric proof using the interger lattice
in C.

10: This is an equivalence relation.
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11: Equivalently, b € (a).

12: That is, (d) is minimal among
principal ideals which contain a, b.

13: This is not in the Euclidean sense.

Definition 6.2.4 (Divides) We say a | b (a divides b) if there exists a ¢ € R
such that b = ac.

Remark 6.2.1 We have that a, b are associates if and only if (a) = (b).
Remark 6.2.2 We have that a | b if and only if (a) 2 (b)."!

Definition 6.2.5 (GCD) Let a,b € R. A GCD (greatest common divisor) of
a,bisd = gecd(a,b) € R such that

@ d |aandd |b.
(ii) ife € R,e|aande | b, thene | d.?

Corollary 6.2.2 The GCD is unique up to associates.

Proposition 6.2.3 If R is a PID, then GCDs always exist. In fact, d =
ged(a, b) if and only if (a,b) = (d).

Proposition 6.2.4 In a PID, every nonzero prime ideal is maximal.

Proof. Let p € R\ {0}. We have that (p) is prime if and only if R/(p)
is a domain. Additionally, (p) is maximal if and only if R/(p) is a field.
Consider a prime ideal (0) # (p) & R. We want to show (p) € (a) C R,
then either (a) = (p) or (a) = R. We will show (p) € (a) € R implies
(a) = R.We do have thata ¢ (p) C (a), but p € (a), so p = ab for some
b € R. Eithera € (p) orb € (p),buta ¢ (p),sob € (p). Thus, b = cp
for some ¢ € R, meaning p = ab = acp, therefore | = ac. Thus, a € R*,
meaning (a) = R. O

Proposition 6.2.5 0 := Z[+/—5] is not a PID.

Proof. Define
I:=(3,2+ vV=5).

Using the norm function,'* N(eB8) = N(a)N(B) and N(a) = 0 if and only
ifa =0.1f1 € I, then 1 = 3a + (2 + v/—5)B. We can multiply through to
get

2—V=5=32-v=3)a+98 c (3).
We have that 2 — +/—5 ¢ (3), a contradiction, so 1 ¢ I.In 0, as above,
N(a) = 1if and only if @ = £1. We have that N(«) = a? + 5% = 1, so
0> = {£1}. Suppose [ is principal. Then, we can write

3= (a+bvV-5)u

and

24+ V=5=(a+bv-5)p
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for some «, B € 6. Take the norm:
9 = (a* + 5b*)N(x)

and
9 = (a® + 5b*)N(B).

so a® + 5b% | 9. Note that since the norm uses squares, we only have
a few choices: {1, 9}. Therefore, either a®> + 5b%> = 1, so a? + 5b% € 6%,
meaning / = 0, a contradiction. If a* + 5b* = 9, then N(«), N(8) = 1, s0
a,B € {£1}. Thus, 3 = (x1)(a + bv/=5) and 2 + /=5 = :t(a—i—bx/_)

which is a contradiction. Thus, / is not principal.

Proposition 6.2.6 Let R be a domain. Elements a of R can be divided into 4
non-overlapping groups:

(i) a =0.

(ii) a is a unit.
(iii) a is reducible.!* 14: Thatis, @ # 0, not a unit, and if a =
(iv) a is irreducible.’® bc for some b, ¢ which are not units.

We can restate these groups in terms of ideals, and prove the irreducibility ;5. 14 means g £ 0, a isnota unit, and
equivalence. is not reducible.

Proposition 6.2.7

(i) (a) ={0}.
(i) (a) =
(iii) anything else
(iv) (a) # 0 and (a) is maximal among proper principal ideals.

Proof. Suppose a is irreducible. Then, a # 0 and a ¢ R*. Suppose (a) &
() € R. Then, a = bc for some ¢ € R\ R*. Yet, since a is irreducible,
b is a unit, so (b) = R. Thus, (a) is maximal among proper principal
ideals. Conversely, suppose (a) is maximal among proper principal ideals.
If a = bc, with b,c ¢ R*, then (a) € (b) S R. This is a contradiction to
maximality, so a is not reducible. O

Example 6.2.2 Let R := [ be a field. We have

(i) O.
(ii)) F* =F \ {0}.
(iii) @.
(iv) @.

Example 6.2.3 Let R := Z. Then,

@i o.
(il) Z2* = {£1}.
(iif) composites.
(iv) £p where p is prime.
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16: We need nonzero, non-unit, f # gh
for non-constant g, i of smaller degree
strictly.

17: We force p ¢ R*.

18: We have

(3) ={3a+3b/=5:a,b € Z}.

Example 6.2.4 Let R := [F[x], where [ is a field. We get

(i o.

(i) F* < F[x].

(iii) f reducible.

(iv) f irreducible polynomials.'®

Example 6.2.5 If we take a look at C[x], then irreducibles are precisely of
the form (x — a), up to units, where a € C. On the other hand, if we look
at R[x], then irreducibles are either (x — a) for a € R or (x? + bx + ¢)
for b, c € R, where b? — 4c < 0.

Remark 6.2.3 If we have one irreducible dividing another, they must be
associates.

Definition 6.2.6 (Prime Element) We say p € R is prime if p # 0 and (p)
is a prime ideal. In other words, p # O and if p | ab, then p |a or p | b.V

Proposition 6.2.8 Let R be a domain. Every prime element is irreducible.

Proof. Let p be prime. Then, (p) < (a) € R. Thus, p = ab for some b € R
with b ¢ R*. Inturn, p | a or p | b, but p cannot divide a since (p) < (a),
so p | b. Thus, b = ¢p for some ¢ € R. Then, p = ab = acp,so 1 = ac,
meaning a,¢ € R*, and a € R* implies (a) = R. Thus, (p) is maximal
among principal ideals, so it is irreducible. O

Example 6.2.6 Consider R := Z[+/—5]. We have 3 € R. If we have
3 = aff, then N(3) = N(a)N(B) = 9, but N(«) # 3. Thus, at least one
of the RHS is 1, so one is a unit. As such, 3 is irreducible. On the other
hand, it is not prime. We can factor 3> = 9 = (2+ V—=5)(2—+/=5). Then,
3laB,but3 o and 3  B.1B

Proposition 6.2.9 If R is a PID, then prime is the same as irreducible.

Proof. We have already shown the forward direction. Conversely, if (a)
is irreducible, then (a) is maximal among proper principal ideals. Yet,
all ideals are principal, so (a) is maximal. Thus, R/(a) is a field, and in
particular, R/(a) is prime, so a is prime. O

6.3 Unique Factorization Domains and Fermat
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Definition 6.3.1 (Unique Factorization Domain) A unique factorization
domain (UFD) is a domain R such that for all R € R \ ({0} U R),

(i) there exists r = p1pa - -+ pn, Where the p; are irreducible and n > 1.
(ii) this factorization is unique up to reorderings and units.

Remark 6.3.1 The latter statement is saying if r = p1---pp = q1 - qm
with p;, g; are irreducible, then m = n and there exists 0 € Sy such that
Pk ~units o (k)-

Remark 6.3.2 Thatis, (r) = (p1)--- (pn) with p; irreducible, which is
unique up to reordering.”

Definition 6.3.2 (ACC for Principal Ideals) We say R has the ACC for
principal ideals if for Iy C I C --- C R, then with {Ix}rez, , Ix = (ax)
implies there exists n such that I = I, for all k > n.?

Lemma 6.3.1 Every PID has the ACC for principal ideals.

Proof. Let
by =J:=J SR
k>1
so there exists n such thatb € I,,,s0 J = I,. O

Theorem 6.3.2 PIDs are UFDs.

Proof. Let R be a PID. We want to show every nonzero, non-unit in R has
r = pi--- py for p; irreducible. Suppose a € R \ ({0} U R*) for which this
is not true.?! Then, a is not irreducible, so a is reducible. Then, there exists a
factorizationa = a’b and a,b ¢ {0} U R*. Thus, a’ also is not a product of
irreducibles. We have a; = a»b; bad, so a; is bad and b, ¢ R*. Continue
iterating in this way. Then, we get a a chain of principal ideals

(@) G (@) GG SR,

a contradiction to the ACC.?? We now need to prove uniqueness,m which
uses that irreducibles are prime (which is true in a PID). Suppose
a = p1--+Ppn = {q1--qm, Where p;,q; are irreducible. Of course,
P1 | 9192+ +qm, 5o p1 | g; for some j. Reorder so that j = 1. Thus,
P1 ~units ¢1- What we get here is that ¢; = pju for some u € R*, so
canceling p; gives us

Wp2)-- Pn =42 qGm.

and induction by the number of factors tells us n = m and the factors are
the same up to reordering and units. O

19: These are products of ideals, as
discussed earlier.

20: That is, every chain stabilizes, as you
might expect.

21: Call this property “bad.”

22: In practice, this means the process
must stop if we keep pulling off elements.
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23: Just check products of the four units.

24: We call this a “restricted ideal.”

25: Algebraic number theorists say that
“o lies over p.”

Example 6.3.1 Let 6 := Z[i]. This is a PID, so it is UFD. What are the
irreducible elements? Well, recall that we have thenorm N : 6 — Z >
so that N(a + bi) = a? + b2, which is multiplicative. We also have
6* = {%1, i}. Let us start with a lemma.

Lemma 6.3.3 Let o € O with N(«) = p, a prime in Z. Then, o is irreducible
in ©.

Proof. If @ = By, then since norm is multiplicative, either § or y is a unit
in O. O

For instance, N(2 i) = 22 + 12 = 5,50 2 & i are both irreducible, yet
they are not associates.?> Algebraic number theorists will say “irreducibles
in Z[i] sit over irreducibles in Z.”

Proposition 6.3.4 If R is commutative, unital, S C R is unital, and P C R
is a prime ideal, then S N P C S is a prime ideal **

Proof. Suppose a,b € S sothatab € S N P.Yet, P C R is prime, so either
a € Porb e P,butboth are in S so we win. O

Alternatively, we have a subring inclusion S/(S N P) € R/P, where the
latter is a domain, and subrings of domains are domains.

Proposition 6.3.5 Let p € Z be a prime number. Let « € 6 = Z[i] be an
irreducible element. The following are equivalent:?>

(i) « is a divisor of p in O.
(i) pZ =aONZ.

Proof. Since « is irreducible in 6, we have that («) = a0 is maximal in O.
Thus, it is a prime ideal in ©. Then, by the previous proposition, «® N Z is
a prime ideal in Z. We know that «® N Z = ¢ Z for some unique prime
number ¢. Now, start with (i) = (ii). If¢ | pin©,then p e 6NZ = gZ, so
p = q.Conversely, if g = p, p € a0, s0 p = aff for some f € 6. O

Remark 6.3.3 If @ € O is irreducible and «® N Z = pZ, we can p = aff
for B € 6. Applying the field norm yields p> = N(p) = N(a)N(p).
There are two cases, when N(«) = p and when N(a) = p2.If N(«) = p?,
then N(B) = 1,50 B € 6%,50 & ~unitsine p- Thus, @ € {+p, +pi}. Now,
if N(a) = p, then N(B) = p, so p = af is an irreducible factorization of
p in 6, meaning o/, B are unique up to units. Note that if « = a + bi, then

p = N(a) = (a + bi)(a — bi),

so in this case, @, 8 € {a &+ bi} up to units by unique factorization.
Consequently, every irreducible « in © lies over a unique prime number
p € Z. Exactly one of the following happens:

(i) N(a) = p?>and a € {£p, £pi}.
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(i) N(x) = panda?+ b? = p = (a + bi)(a — bi).*

Corollary 6.3.6 Let p € Z be prime. We have that p factors nontrivially in ©
if and only if p = a® + b for some a,b € Z.%

Example 6.3.2 Let p =2 = 12 + 12. Then, p = (1 +i)(1 — i), which is
an irreducible factorization. Note thati(1 —i) = 1 +i,sol +iand 1 —i
are associates.

Example 6.3.3 Let p = 3, which is not a sum of squares. Then, 3 is
irreducible in the Gaussian integers.

Example 6.3.4 Let p = 5 = 22 + 12 = (2 +i)(2 — i). These are two
irreducibles in © over 5 up to units.?®

Remark 6.3.4 If p = a? + b2. Then, a + bi ~units @ — bi if and only if
p=2

Lemma 6.3.7 (Lagrange) Let p be a prime of the form p = 4m 4+ 1 for some
m € Z. Then, there exists n € Z such that p | n?> + 1. That is, n> = —
(mod p).%

Proof. We proved this in the homework. O

Theorem 6.3.8 (Fermat) If p € Z is prime, then p = a® + b? for some
a,beZifandonlyif p=2 (mod 4) or p =1 (mod 4).%

Proof. We know 2 = 12 = 12, so assume p is an odd prime. If p = a? + b2,
then p = 0,1,2 (mod 4),s0 p % —1 (mod 4), as a%,b?> = 0,1 (mod 4).
Thus, p = 1 (mod 4) for odd p. Suppose p = 1 (mod 4). By Lagrange’s
lemma, there exists an n € Z such that p | n% + 1. We can factor n? + 1 =
(n4+i)(n —i)inO. Thus,

pln*+1=m+i)(n—i) inO.
Suppose p is irreducible in ©, which is true if and only if p is prime in ©
(PID). Then, p dividing a product implies p | n +i or p | n —i. Then, one
of n +i,n —i € pO, which is impossible. Thus, p cannot be irreducible in

O. Thus, p is reducible in 6, so p = (a + bi)(a — bi) for some irreducible
a £ bi in 0. O

6.4 Torsion Modules, Independence, and Rank

Let M be an R-module, where R is a domain.

26: That s, p is not irreducible in ©.

27: Using the field norm, this also gives
us the factorization for free.

28: Note that these are not associates.

29: To clarify, —1 € [F,, has a square root.

30: Thatis, notif p = —1 (mod 4).
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31: Thatis, R > Rx € M where r >
rx has nontrivial kernel.

32: Ther; € R.

Definition 6.4.1 (Torsion) We say that x € M is torsion if there exists an
r € R\ {0} such that rx = 0.3

Definition 6.4.2 (Set of Torsion Elements) We define

M,ys := {x € M : x is torsion }.
Definition 6.4.3 (Torsion Module) We say that M is torsion if M = M.
Definition 6.4.4 (Torsion Free) We say that M is torsion free if My,s = {0}.

Lemma 6.4.1 M,,s C M is a submodule and M | M,y is torsion free.

Proof. The proof is the same as in the case of R = Z, and Z-modules are
abelian groups. O

Lemma 6.4.2 If N € M is a submodule, then M/ N is torsion if and only if
forall x € M there exists r € R \ {0} such that rx € N.

Proof. The proof is obvious. O

Proposition 6.4.3 A cyclic module M = R/ 1, is a torsion module if and only
if I #0.

Proof. Suppose there exists a € I \ {0}. Then, a-b € I,s0b € (R/I )iors.
Conversely, if I = 0, then M = R, s0 Rios = 0, because R is a domain. [

Example 6.4.1 If R = [, a field, then if ¥ is a F-linear space, then
Thors = 0. All vector spaces are torsion free.

Definition 6.4.5 (R-Linearly Dependent) We say that {x;};er is R-linearly

dependent if there exists
finite

Zrixi = O,

iel

where not all r; = 0 (all but finitely many r; = 0).3>

That is, if {x1,...,Xp}i=1,...n, then R-dependence happens if and only if
there exists r, ..., r, € R with some r; # 0 such that

rixy+ -+ rpx, =0.

Definition 6.4.6 (R-Linearly Independent) A sef {x;};es is R-independent
if it is not R-dependent.
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Remark 6.4.1 If {x;} is R-independent, then x; # x; fori # j.
Note that R-independence is precisely equivalent to giving a map

@R%M
iel

e —— X;

which is injective.33 If this is the case, we can consider the submodule 33: The e; are the standard basis
R{x;} € M, which is free. elements.

Definition 6.4.7 (Maximally R-Independent) We say that S € M is
maximally R-independent if both

(i) it is R-independent.
(ii)) if S €T C M and T is R-independent, then S = T.

Example 6.4.2 The basis of a free module is always maximally R-
independent.

Example 6.4.3 Take 0 # (a) C R, then {a} is R-independent.

Example 6.4.4 Let R := Z and take M := Q as a Z-module. The subset
{1} € Q is maximally Z-independent.

Lemma 6.4.4 Let S € M be an R-independent subset. Then, S is maximally
R-independent if and only if M/ RS is a torsion module.

Proof. Let y € M. Look at the quotientimagey = y + N € M/N, where
N = RS € M. The element y € M/N is torsion if and only if there
exists b € R \ {0} such that by = 0. We can recast this as saying there
exists b € R\ {0} with ay,...,a, € R and x1,...,x, € S such that
by =aix1 + -+ + apxp. Thus, y is torsion if and only if y € S or S U {y}
is R-dependent. Therefore, all 7 € M/N are torsion if and only if § is
maximally R-independent. O

Example 6.4.5 Let R := T, a field. The only torsion module is 0. We
have that if 7" € Modf, then S € 7 is maximally F-independent, which
holds if and only if it is [F-linear independent and ¥ = [ §. This is true
if and only if S is a basis of V.

Proposition 6.4.5 Every R-independent subset S € M is contained in some
maximally R-independent subset. In particular, every module has at least one
R-independent subset.>* 34: Applying this to R = [, this is
precisely the statement that every vector
space has a basis.

Proof. Use Zorn’s lemma, applied to the poset of R-independent subsets
which contain S. 0
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35: The standard proof wuses the
replacement/ interchange theorem,
which is usually used in linear algebra
to discuss dimension. This is ugly, so we
will use dimension, looking at the case of
finitely generated free modules, and then
look at the general case.

36: The lemma follows from linear
algebra applied to V.

37: Wehave v = (v1,...,V,) € FOmM,

Theorem 6.4.6 (Invariance of Rank) Let M be an R-module over a domain.
Let S € M be a finite subset with |S| = n such that M/(RS) is torsion.
Then, there exists a T C S such that T is maximally R-independent, and every
maximally R-independent subset of M has size equal to |T| = m < n.%

Definition 6.4.8 (Module Rank) In the case of the theorem above, we define

rank(M) := size of any R-independent subset of M.

Corollary 6.4.7 Let M := R®". Then, rank(M) = n. If R®" ~ R®™ jsan
isomorphism of R-modules, then m = n.

Example 6.4.6 Let R := [ be a field. If ¥, an [F-linear space, has a
spanning set S of size n < oo, then S contains a basis T of size m < n,
and every basis of ¥ has size m.

Consider the special case M := R®™.

Lemma 6.4.8 If M = R®™ then every R-independent subset S of M has size
less than or equal to m, and such an S is maximally R-independent if and only
ifIS| = m.

Proof. Define F := Frac(R) 2 R. We have M = R®™ C % := F®™. This
is an [F-vector space and an R-module. If S € M, and also S € 7/, then §
is R-independent in M if and only if S is F-independent in %". Similarly, S
is maximally R-independent in M if and only if S is maximally [-linearly
independent in 9 .36 Now, we prove the claim. If S = {x;}ie; € M is
R-independent, then

finite
E a;x; = 0
iel

implies all R > a; € 0. Suppose

finite

Z CiXxXi = 0,

iel

where ¢; € F. Then, each ¢; = a;/b;, where a;,b; € R and b; # 0. Let
b = by --- b, for all nonzero ¢; (the other ¢,y = 0ifk # 1,...,n). We can
then rewrite the sum as

n

> (bei)xi =0,

i=1
with be; € R, and R-independence tells us that all bc; = 0,so0 all ¢; = 0.
Conversely, if S is [F-independent then § is R-independent is the same
but easier. Now, it is trivial that if S € M is maximally F-independent,
then S is maximally R independent. Suppose S € M is maximally R-
independent, but suppose further that there existsa v € ¥ with v ¢ S so
that S U {v} is F-independent in V. Then, there existsa b € R \ {0} such
that bv € M.¥ If S U {v} is F-independent, so is bS U {hv} C M, meaning



bS U {bv} is R-independent in M > Yet, bS is maximally R-independent
by the following lemma, a contradiction. O

Lemma 6.491If S € M = R®™ is maximally R-independent and if b €
R\ {0}, then bS is also maximally R-independent.

Proof. S being R-independent implies bS is R-independent. Consider
RbS € RS € M.If S is maximally R-independent, then M/RS is torsion.
Also, RS/RbS is torsion, as for all X € RS/RbS has bx = 0. We claim that
this means M/RbS is torsion. If y € M/RbS, then since m/RS is torsion,
there exists a € R \ {0} such thatay € RS, but then b(ay) € RbS. Thus,
bay = 0for ba € R\ {0}. O

Corollary 6.4.10 If N € M, then N, M/ N are torsion, so M is torsion.
Example 6.4.7 Remember, Q is a Z-module. We have that rank(Q) = 1.

Proposition 6.4.11 (Finding Maximally R-Independent T') Let T' be any
subset of S which is R-independent and has maximal size.

Proof. Existence comes from the fact that @ is R-independent. If T C S
is maximal among subsets of S which are R-independent, then we claim
that RS/RT is torsion. Well, RS/RT is generated as an R-module by the
image of S \ T3 Let x € S\ T. Then, T U {x} € M is not R-independent,
by the maximality of 7.3° Then, aX = 0in RS/RT € M/RT,so RS/RT is
torsion. Consider RS/RT € M/RT.Well, (M/RT)/(RS/RT) ~ M/RS.
Since the submodule RS/RT is torsion and the quotient M/RS is torsion,
we have that M/RT is torsion. Suppose S, T € M such that T is maximally
R-independent of size n and S is R-independent with |S| = n 4 1. We
will show a contradiction. Since 7" is maximally R-independent, M/RT is
torsion. Take S = {x1, ..., xXy+1}, then there exists d € R \ {0} such that
dS ={dx1,...,dx,11} € RT ~ R®" and dS is also R-independent. Last
time, we showed this is impossible. O

Corollary 6.4.12 If R is a domain and R™ ~ R" withm,n > 0, then m = n.
Proof. We have that rank(R") = n, and rank is an invariant. O

Proposition 6.4.13 Let M be a domain R-module. Take N C M to be a
submodule. If rank(N) = n is finite and rank(M/N) = m, then rank(M) =
rank(N) + rank(M/N).

6.5 Annihilators

Let R be a unital ring and M be a left R-module.

6.5 Annihilators 93

38: We take the quotient image.

39: That is, there exists ax = bt; +
-+« + byty, where t; € T, a # 0, and
a,b; € R.



94 6 Particular Domains and Modules

Definition 6.5.1 (Annihilator) We define the annihilator

Ann(M):={x e R:xM =0} C R.
Proposition 6.5.1 We have that Ann(M) € M is a two-sided ideal.

Proof. We have that 0OM = 0.If xM = 0 = yM, then (x + y)M = 0. If
xM =0, then xrM C xM,so xrM = 0. Also, r(xM) =r0 =0. O
Exercise 6.5.1 Prove that
Ann(M) = ker [R — Endz(M)].
40: The proof is short, but this is Proposition 6.5.2 If M ~ N, then Ann(M) = Ann(N).%
particularly intuitive.
Proof. If ¢ : M = N is an R-module isomorphism, then x¢(m) = 0 if and
only if xm = 0. O

Proposition 6.5.3 Let I C R be a two-sided ideal. Then, Ann(R/1) = I.

Proof. If x € Ann(R/I), then x1 = 0,x1 € I sox € I.If x € I, then for
ally € R,wehave xy € I,so0 xy = 0. O

Remark 6.5.1 If / € R is only a left ideal, we can have Ann(R /1) < I.

0

Example 6.5.1 Let R := M, (F). Let [ := (: 0

Ann(R/I1)=0# 1.

) be a left ideal. Then,

Proposition 6.5.4 Let I, J C R be two-sided ideals. Then, R/l ~ R/J as

41: A useful example is when R is lé’ft R-modules ifand only ifl =JA4
commutative.

Proof. We have that the respective annihilators are isomorphic for R-
modules, plus Ann(R/I) = 1. O

Corollary 6.5.5 Let R be commutative with M, N cyclic as ROmodules. Then,
M ~ N as R-modules if and only if Ann(M) = Ann(N).

6.6 Modules Over PIDs

Now, let R be a PID. Then, for cyclic modules, we have R/(a) >~ R/(b) as
R-modules if and only if (a) = (b). That s, if a ~ynits b.
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Proposition 6.6.1 (Cylic Modules) There are three types of cyclic modules
over a PID:

(i) trivial: R/(a) ~ 0 fora € R*.
(ii) nontrivial torsion: R/(a) fora # 0,a ¢ R*.
(iii) free: R/(0) >~ R.

Proposition 6.6.2 Let R be a PID. Then, every finitely generated R-module is

isomorphic to one of the form*? 42: That is, a finite direct sum of cyclic
modules.

M >~ R/(a1) ®---® R/(ax).

Remark 6.6.1 (Chinese Remainder Theorem) Factor
k1 k k
R >a= p11p22..'pdd,

where py, ..., pg are distinct-up-to-units primesin R, theky, ..., kg > 1,
and d > 0. Then, (a) = (p¥')(p%2)--- (p5?). Thus,

R/(@) =~ R/(Pf") ®---® R/(p5).

Theorem 6.6.3 (Elementary Divisor) Every finitely generated module over a
PID R is isomorphic to one of the form

r k b

wherer > 0,u > 0,and p1, ..., pyareprimesin Rand k; > 1.*3 Furthermore, 43: The p; are not necessarily distinct.
this is unique in the sense that if we also have

M~R &R/ & R/(gL)

withr’',v > 0and q1, ..., qy are prime with £; > 1, thenr = r’, v = v', and
there exists a o € Sy such that p; ~ynits o iy With ki = Ls().

We need to show uniqueness and existence.

Lemma 6.6.4If M ~ R" @ R/(a1) & --- & R/(an) with ax # 0, then
rank(M) =r.

Proof. We showed that N € M implies rank(M) = rank(N)+rank(M/N).
In particular, rank(N; @ N;) = rank(N;) + rank(N3). Thus, the claim
follows from the fact that rank is an isomorphism invariant: rank(R) = 1

and rank(R/(a)) = 0ifa # 0.4 O 44: The rank is zero because it is a torsion
module.

Now, let R be a commutative ring, M be an R-module, and / C R be an
ideal such that I € Anng(M). That is,

IM ={xymy +---xymy :x; € I,mj € M} =0.

We have that M/IM admits the structure of an R/I-module. Set (r +
I)m := rm. Furthermore, if M ~ N as R-modules and /M = 0, then
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45: By (iv), these are all finitely generated.

IN =0and M ~ N as R/I-modules.

Example 6.6.1 Let R := Z and let M be an R-module such that (p)M =
0, where p is a prime. Then, M is also a module over Z/p = F,. Then,
it has an invariant dimg, M. The idea is that dimg, (M/pM) =: B(M)

is an isomorphism invariant of abelian groups: B(Z/( PN =1k>1,
B(Z/(q") =0forp fq.

Proposition 6.6.5

(i) Let ¢ : M = N be an isomorphism of R-modules. Then, ¢ restricts
an isomorphism IM => I N of R-modules. Furthermore, it induces an
isomorphism M/IM = N/IN of R-modules (and R /I-modules).

(ii) Let M = My &---® M, of R-modules, then IM = IM,®--- & I M,.
Then, we get a nice isomorphism

M/IM ~ M /IM; & -+ & M,/ IM,

of R-modules (and R/ I-modules).

(iii) If M is a finitely generated R-module, then M /I M is a finitely generated
R-module (and R/ I-module).

(iv) Let M be a finitely generated R-module. Let I < R be a finitely generated
ideal. Then, I M is a finitely generated R-module.

Proof. For (iv), note that M = Rxy +--- + Rx,. Similarly, I = (ay,...,ax).
Then, the claim is

IM = Z Ra,-xj.
i=1,....k

Let RbeaPID and p € R a prime (irreducible) element. Let M be a finitely
generated R-module. Then, we can form submodules pkM C M:*

M=p’M2Dp'MDp°M>D---.
Using (iii), we can form finitely generated R-quotients pFIM/ p*M:
M/pM, pM/p*M, p>M/p> M.

Well, p*~'M/p*M = N/pN, where N = p¥~'M. Then, these are all
R/(p)-modules. Why do we care? Well, these are fields!

Definition 6.6.1 (a,« (M)) We define an “invariant” for k > 1:

o,k (M) = dimpg/(p) Pl pkm e Z .

Proposition 6.6.6

(i) If M >~ N are finitely generated R-modules, then a,x (M) = o, (N).



(i) IfM = M; @ --- © My, then*®®
apk(M)Z pk(M1)+"'+apk(Mn)'

(iii) If M = R/(a) for some a € R, then*

k
awp(R/@) =10 P14

0, otherwise.

Proof. See the previous proposition for (i) and (ii). We now prove (iii).

Our module is cyclic, so N := p*~!M is also cyclic. It is generated as
a submodule of M by the class of p*¥~!. Then, p*"'M/p¥M is a cyclic
R-module (and R/(p)-module). Thus, we have forced

dimpg,(p) pk_lM/pkM € {0, 1}.

Wecanwrite N = p*~'M = pk=1(R/(a)), and we claim this is isomorphic
to (pk,a)/(a).Map (p*1,a) - pF"'(R/(a)) by x > X.% In the other case,
pN = p*M = p*(R/(a)) ~ (p¥.,a)/(a). we want to know if N = pN.
Well, N/pN =~ (p¥~',a)/(p*.a). Well, these are equal if and only if
P e (p¥.a) = (d),sod = ged(p¥,a). Thatis, N/pN = 0if and only if
ged(pk,a) | p*~'. This happens if and only if p* } a. O

Definition 6.6.2 (8« (M)) We define for prime p and k > 1

Bpk (M) = ok (M) — atpit1 (M).

Proposition 6.6.7
(i) By (M) is an invariant.

(ii) B,k (M) is additive.
(iii) If q is prime and £ > 1, then

L k

I, ¢~p
R/(¢Y) =
Bpx (R/(q7)) 0, otherwise.

In particular, B« (R) = 0,

Corollary 6.6.8 The number
¢
B (R" & R/(a)") © -+ & R/(g;))

is precisely the number of summands which are isomorphic to R/(p¥*).*°
Similarly,

rank (R @ R/(qfl) @ ®R/(g) =T

We are now heading towards existence. Now, if M is finitely generated

over R, then M ~ R"/N, where R®" 25 M with (1, oscn) > D cixi
is a surjective R-module homomorphism and M =~ R"/ker¢. Then,
N := ker¢.
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46: The My are finitely generated.

47: Consequently, o« (R)=1.

48: It is surjective easily. Why is it
injective? Well, the kernel of the map is
exactly (a), so we get an isomorphism via
the first isomorphism theorem.

49: That is, such that qu ~ pk,
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50: Since we are in a domain, the kernel
is only 0.

51: Quickly, note that we have three
elementary matrices. The first swithces
rows and columns, the second by a row
or column by a unit, and the third adds

multiples of a row (or column) to another.

Proposition 6.6.9 Let R be a PID and M be a free module of rank n. Then any
submodule N € M is free of rank m < n.

Proof. We have that M = R" O N. Proceed by induction on n. Then =0
is trivial. What aboutn = 1? Well, (d) = N C R,as Risa PID.If (d) =0,
then N = 0, which is free of rank zero. If (d) # 0, then R = (d) by
r > rd as R-modules.”® Now, let n > 2. Consider the projection

R" — " LR

(c1y...,cn) ———— cp.

Then, kerm = R* 1 @0 C R*.Let N’ := N Nkerw C R" L By induction,
N’ is free of rank less than or equal to n — 1. Consider 7(N) € R as a
submodule. Either 7(N) = 0,so N = N’ and we win, or 7(N) = Ri, for
some? € Rfort # 0.Lift7 tosomet € N. Weclaimthat N = N’ @ R¢,soiit
isof rank rank(N’) +1 < (n—1) + 1 = n. Note that N’, Rt C N Then, take
N = N’+ Rt,soif x € N, thenw(x) = cf forc € R. Letx’ :=x—ct € N.
Then, 7 (x") = n(x)—cf = 0,s0x’ € N'.Thus,x = x' +ct. If NN Rt =0,
then if x € N’ N R¢, then x = ct, so w(x) = ¢t = 0. Since we are in a
domain, we get x = 0. O

Definition 6.6.3 (Smith Normal Form) Let A € My,x,(R), taking n < m.
We say that A is in Smith normal form if A is diagonal with d;, and zeros
beneath. and dy | da | -+ | dp.

Definition 6.6.4 (Similar) We say A, B € M;xn (R) are similar if there
exists P € GL,,(R) and Q € GL,(R) so that B = P~1AQ.

Theorem 6.6.10 Let R be a PID with A € My,xn(R) and n < m, then A is
similar to a matrix in Smith normal form.

Proof. We want to show there exist Pj,...,Pr,€ GL,(R) and
01,...,0¢ € GL,(R) such that

Pl"'PkAQl"'Q€

is in Smith normal form.>! We also have a “Bézout operation” based on the
standard number theory linear combination result. Leaving out essentially
all of the matrix checking, we can get a matrix A into our desired form. Over
a field, the elementary matrices are enough for this, but we do not have
a Euclidean algorithm in a general PID. Now, let A € M,;x»(R). Define
gcd(A4) € R be the greatest common divisor of all the elements in A4, taken
up to units. Now, we claim that if P, Q are invertible R-matrices, then
gcd(PAQ) = ged(A). Well, for any M with entries in R,

(gcd(MA)) < (ged(4))

and
(gcd(AN)) € (ged(A)).



Well, MA = [x;;] generates an ideal contained in (gcd(A4)). We will be done
by the following lemma, by induction.> O

Lemma 6.6.11 For A € M, (R) withm > n, A is similar to one of the form

d 0 0
0 big -+ biaa
0 bu-11 - bm—14—1

such that d divides every entry of B € Mn—1)x@—1)(R).

Proof. For A = 0, we are done. Assume A # 0. Write a for the (1, 1)-entry
of A. Write d := gcd(A). We claim that if (a) # (d), then A is similar to
an A’ whose (1, 1)-entry @’ is so that (a) < (a’).® Thus, we must obtain A’
similar to A with (1, 1)-entry of which is a greatest common divisor of A’
and of A. Using our operations, we get A’ ~ A. Finally, let us prove the
claim. In the first case, a does not divide some element in the first row or
first column, other than itself, of course. Using the Bézout operation, we can
slightly enlargen the top left generated ideal. In the second case, suppose a
divides every element in the first row and column. Well, (a) # (gcd(4)),
there exists an (i, j)-entry m such thata { m.>* O

Proposition 6.6.12 Let R be a PID. Let M be a finitely generated R-module.
Then, there exists a chain of ideals R O (d) 2 -+ 2 (dm) such that

M >~ R/(d) ®---® R/(dn).

Proof. Pick generators x1,...,x, € M. We have the diagram
ker(¢p)
]'\|/ R" —» M
-
with

M ~ R"™/N = R"/g(R").

We can then express ¢ : R" — R™ as a matrix A such that o(f;) = > a;je;.
Then, there exist P, Q such that S := PAQ ™! in Smith normal form. This

gives us new bases
n

fj/izzqijfiGN

i=1
and®

m
! . . m
e; 1= E pijei € R™.
i=1
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52: The proof proceeds by induction on
the number of columns, but I was not
enjoying typesetting the block matrices.

53: If so, we can find a sequence of similar
Aj; whose (1,1)-entries satisfy strict
successive inclusions (a;) € (a; 1), but
the ACC tells us this process must stop.

54: From here, use an elementary row
operation to create a matrix with m’ in
the first row not divisible by a.

55: Take (o(fj/) = Zdje}.
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Thatis, M ~ R™ /¢'(R") via
O’ (x1,...,xp) = (d1x1,...,dpxy,0,...,0).
Really, we have amap ¢’ : R* — R™ = R" @ R™ ™", so
M>~R/(d)® - ®R/(dy) BRPB---R.

Take dpy1 =+ =dpy = 0. O
Let R be a PID and M a finitely generated R-module.

Theorem 6.6.13 (Invariant Factor) There exist t,r > 0 with
R2(a1) 22 (ar) 2(0)

56: The ai,...,a; are called the such that®
“invariant factors.” M ~ R/(al) DB R/(a,) ® R”.

This is unique in the sense that if we have another decomposition with r' and t/,
thenr =r',t =t',and (a;) = (a}).

Example 6.6.2 With R := Z, recall that every nonabelian group of order
120 = 23 -3 - 5 is isomorphic to exactly one of Z/120, Z/2 & Z /60, or
Z/2®7Z/26 Z/30.

Remark 6.6.2 The plfl ey pl,f” of an elementary divisor form are called
elementary divisors.

Proposition 6.6.14 (Uniqeuness of IFD) The invariant factor form is unique.

Proof. If M = R/(a1) ®---® R/(a;) ® R", wherea; | az--- | a; and the
aj are nonzero and non-units. We have that rank(M) = r. Well,

(M) = {j :pk laj}| +r.
Now, note that p is any prime which divides a;. Thus, o, (M) =t + r, so
t = max{o,(M) —rank(M)}

with primes p. O

6.7 Linear Algebra via Modules

If we have U/, an [F-vector space,and a T : ¥ — 7/, an [F-linear operator,
then we get a module U1 over R = F[x]. The underlying set is ¥, and
with f € Rand v € V, then f, = f(T)v. Furthermore, this is a bijective
correspondence:

In particular, Ur >~ Wy as R-modules if and only if there existsa ¢ : ¥ =
W such that o7 = Ug.
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Operators (¥, T : ¥V — V) «—— R = F[x]-modules Tt

T-invariant W C ¥ <—— R-submodules of ¥t

F-linear ¢ : V' — W st T = Up <——> R-module hom 77 % Wy .

Lemma 6.7.1 Given (V', T'), we get dimg V' < oo if and only if Ut is finitely
generated and torsion as an [F[x]-module.

Proof. Suppose v € Y7 is not torsion. Then, Rv € V7. Yet, we get an
R-module isomorphism Rv ~ R, and dimf R = oo, which is impossible.
Conversely, if Ut is finitely generated and torsion as an R-module, then

Vr ~R/(f1)) D ®R/(fa)
as R-modules, with f; # 0. Then,
dimg F[x]/(f) = deg(f) = dimy ¥ < oc.
O

Now, let Ur be a finitely generated torsion [F[x]-module. Consider
Ann(77) = (f).

Theorem 6.7.2 There exists a decomposition

T =~ R/(f1)) @ R/(fa)

with f; # 0and 0 # fi fo--- fa € Ann(Vr) = (f).Y

Proposition 6.7.3 Given (¥, T) with dimg ¥ < oo, let f be the minimal
polynomial of T. Then, with ¢ € [, the following are equivalent:

(i) There exists a nonzero v € V such that Tv = cv.

(i) f(x) = 0.8

Proof. We use that [F[x] is a Euclidean domain. Thus, there exists a form
f =(x—c)g+r,whereg € F[x]and r € [F. Now, we have Tv = cv, where
v # 0.Thus, (x —c)v =Tv—cv =0,500 = f(T)v = g(T)(T —c)v+rv,
meaning r = 0. Thus, f(x) = 0. Conversely, if f(x) = 0, then f = (x—c)g
with g ¢ (f) = Ann(77). There exists w € ¥ such thatv = g(T)w # 0,
soTv = cv. O

Now, let

OVTZMl@"‘@Mm
~R/(f1)® - ® R/(fm)

57: Remember, this f is called the
minimal polynomial of T, the smallest
polynomial killing T'.

58: That is, ¢ is a root of the minimial
polynomial.
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59: We call Cy the companion matrix, for
some reason.

60: That is, we dceompose into
companion  matrices. The  proof
this is precisely the invariant factor
decomposition.

61: The minimal polynomial divides the
characteristic polynomial.

62: We also have Jordan form for when

Vr =~ @ Flxl/((x — 1))

k=1

Pick a basis 8 of ¥ such that
Ay

[T]p =

As

Am

Pick B so that the first bunch is an [F-basis of M, the second is one for M5,
and so forth. If 7 = F[x]/(f), then f = XK b x4 bo with
b; € F. Use the basis f withe; =1,e; =X, e = X2, ande; = X! of

F[x]/(f). Then,*

0 - 0 —bg
0 —b

—
=)

1 —br—

Theorem 6.7.4 (Rational Canonical Form) Any T : V" — U can be written
uniquely as®
Cr, .
/2
(T1p = . :
Cr

where f; is a monic polynomial such that fi | fo |-+ | fm-

Theorem 6.7.5 (Cayley-Hamilton) We have that fr | pr,so pr(T) = 0.5
Proof. Note that det(x] — Cr) = f(x), so if

Ur ~ P Flx)/(fi),
k=1

where is f; is monic for all k, then

pr =det(x] —=T) = fi- fm € Ann(T7) = (/7).

the minimal polynomial.®? O
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Fields

Now that we have developed a working theory of commutative rings,
domains, and modules, we turn our focus to fields. Using our work on
ModfF = VectF, we can prove many things about embeddings of fields.

7.1 Extensions and Towers
Let K be a field. Let F € K be a subfield.

Definition 7.1.1 (Field Extension) We write K/F to mean “K extends [F.”

Remark 7.1.1 If F, K are fields and ¢ : F — K is a ring homomorphism
preserving 1, then ¢ is injective, so «(F) >~ [F. We will abusively write
t : F > K makes K into an extension of a field [F.

Definition 7.1.2 (Prime Subfield) Every field F contains a prime subfield,
isomorphic to either Q or to F, = Z/ p, where p is prime.

Then, recalling our definition of characteristic, we have

char(F) = 0. @

F
p. F, CF.

In 1N

Now, if we have R C §, where S is a commutative ring and R is a subring
with 1g = 1g, then S € Modg.

Definition 7.1.3 (Degree) In particular, if F C K is a field extension, then we
define the degree
[K: F] := dimF K.

Example 7.1.1 We have that [C : R] =2 and [R : Q] > Ry.

Theorem 7.1.1 (Tower Law) Let F C K C L. Then,
[L:F]=][L:K]K:F].

Proof. Let {«;};er be abasis of K over F and {8, } < be a basis of L over K.
We claim that {o; 8 }ie1, s is a basis of L over F. Take x € L. Then,

X = ij'Bj = Z (Zyijai) = Z)ﬁj(aiﬂj),
j i i

so spang{a;fB;} = L. Uniqueness gives us linear independence. O

7.1 Extensions and Towers . . . 105
7.2 Algebraic Extensions . . . . 108
7.3 Splitting Fields . ... ... 111

1: This is certainly not a quotient, just
notation.

K

F

Figure 7.1: Diagram of a field extension
K/[F, voiced “K over [F.”

[L:K]

[K:F]

F

Figure 7.2: Diagram of the tower law
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Definition 7.1.4 (Field Embedding) A field homomorphism is a map ¢ :
K — L is a ring homomorphism between fields preserving 1. In particular, ¢ is
injective, so we can call ¢ an “embedding” of K into L.

As usual, we take
Aut(F) = {¢p : F = F}.

Fix [F. Consider extensions K/F and L/F. We need K — L such that [F
stays fixed.

Definition 7.1.5 (Extension Homomorphism) A homomorphism of
extensions K/F — IL/F is a homomorphism of fields ¢ : K — L such
that ¢|p = idF.

Then, we can define

Aut(K/F) := {p : K= K: ¢|p = idF} € Aut(K).

Definition 7.1.6 (Irreduicble Set) The set of irreducible polynomials over [F
is denoted

Irred(F) := {f € F[x] : f irreducible in F[x] and f monic }.

Let f € Irred(F). Then, K := F[x]/(f) is a field, because f is irreducible
and [F[x] is a PID. Then, we get

F . scalars H‘_[X] b4 [F[x]/(f) =K

extension K/[F

Remark 7.1.2 Let [K : F] = deg f = n, and take K as before. Write

2: This is precisely because F[x] is a a = x + (f) € K. Then, K has an [F-basis?
Euclidean domain.

Given f, g # 0in [F[x], then there are ¢, r € [F[x] such that
g=gqf +r, degr <n=deg/f,

as K < {r € F[x] : degr < n} is an isomorphism of [F-vector spaces.

Now, what has this construction given us? Well, F € K > « has the property

that f(a) = 0. That is, we have “formally adjoined a root of the irreducible
f to the field F.”

Example 7.1.2 Let F := Q. Let f = x? — 2 € Q[x]. We claim that f is
irreducible. If not, f = (x —a)(x—b),soa,b € Q such that f(a) = f(b).
Yet, £4/2 ¢ Q. Then, we can form K := Q[x]/(x? — 2). We will write
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a:=x+(f)eK,soa? =2.Leta,b,c,d € Q,so
(a + ba)(c + da) = (ac + 2bd) + (ad + bc)a.
Well,

(a + ba)(a — ba) = a® — 2b?
a n —b
a2 —2b2 " aZ—2p2

(a+ba)! =

which is not dividing by zero since a®> = 2b? implies 2 = (a/b)?.2 3: This is why we needed an irreducible.

Without proof, we state a nice irreducibility theorem.

Theorem 7.1.2 (Eisenstein’s Criterion) Let f = x" +a,_1x" ' 4---4ag €
Z[x] € Q[x]. Let p € Z beaprime number. If p | a forallk € {0, ... ,n—1},
and p? } ag, then f € Irred(Q).

Example 7.1.3 Let K := Q[x]/(x® — 2). We claim x> — 2 € Irred(Q), as
210,—2,but4 4 2. Now,a® =2,50 [K: Q] = 3.

What does* 4: We have f € Irred(Q).
Homgieg(Q[x]/(f). L)

look like? Here is the answer:

Q
exists iff char L=0
Q[x]
- Figure 7.3: The reason Q@ — L exists if
2 . . -
Qlx1/(f) ————=—————- > L and only if char L = 0 is essentially by
X1/() exists iff f(8)=0 the definition of prime subfield.

Example 7.1.4 Consider K = Q[x]/(x2 — 2). Then, Homgie(K, Q) = @,

since the polynomial has no roots in Q. On the other hand,® 5: With these maps, ¢1(K) = ¢2(K),
which are isomorphic to K in two different

a2 ways.

H eid(K, R) =
On1Feld( ) {a . —\/E.

Example 7.1.5 Consider K’ = Q[x]/(x>® — 2). Then,

Hompieig(K', R) = {Ol > 2.
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6: Here, ¢; (K’) are distinct in R. Then, On the other hand,®
Aut(K’) = {e}.
o = 3/5
Hompie(K',C) = { & > {332
a3 2.

Definition 7.1.7 (Generated Subextension) Let IL/F be a field extension; let

S C L. Then,
F(S) := N K<L
K C L subfield
SUF CcK
is a subfield.

Note that the above gives us an intermediate extension.
Now, let S := {ay,...,a,}. We will write F(aq,...,a,) C L.
Definition 7.1.8 (Finitely Generated Extension) We say that L/ is

F(S) a finitely generated extension if there exists ay,...,a, € L such that
F(og,...,an) = L.

F Definition 7.1.9 (Simple Extension) We say that IL/F is a simple extension
if L = [F(a) for some o € L.

7.2 Algebraic Extensions

Our goal is to classify K = F(«). Consider the homomorphism ¢, : F[x] —
7: The map @, is “evaluation at a” with [F (@) as the unique ring homomorphism ¢y | = idF and gy (x) = o.” Well,
va(f) = f(@). ker gy C F[x]. Now, there are two cases:

(i) ker gy = (0) if and only if « is not the root of any nonzero polynomial
over [F. In this case, we say « is transcendental over [F. Furthermore, if
we have trivial kernel, then ¢y : F[x] — F(«), so F(«) >~ Frac(F[x]).

(ii) kerpy, = (m), where m is monic and irreducible in [F[x]. Well,
8: This is the smallest degree (nonzero) m € Irred(l]-'), and we call m the minimal pOlyTZOﬂ’lilll of o over F.8
polynomial that has & as a root. If & is any Furthermore, F(e) =~ F[x]/(m). In this case, we say F(«) is an

polynomial such that f* € [F[x] such that

(@) =0, thenm | f. algebraic simple extension.

Remark 7.2.1 Take L/F. For o € L, we have a tower F € [F(¢) = K C L.
Either « is transcendental over [F or « is algebraic over [ with minimial
polynomial mg f € Irred([F).

Example 7.2.1 (R/Q) For instance, 7, e € R are transcendental over Q,
whereas ¥/2 € R is algebraic over Q with minimal polynomial

Mm3sq = x3 -2 e Irred(Q).



7.2 Algebraic Extensions | 109

Example7.2.2 (C/R) Wehave thati € Cisalgebraic over R with minimal
polynomial m; g = x2 + 1.

Now, we have a extension diagram

R(V2.V3)
R(V2) Q(V3)
\ /
Figure 7.4: Diagram of extensions via
Q adjoining V2 and ﬁ

To get the degrees, we use

msq= x2 —2 e Irred(Q)

[Q(V2): Q] =2
mzq=x>—3 €lred(@)
[Q(V3): Q] = 3.

What about the upper degrees? Well, let m = m 3 q(/3)- We have that

(m) = {g € RV)x] : g(+/3) = 0}.
We claim x2 — 3 is irreducible in Q(+/2)[x], and if not, v/3 € Q(~/2).
Proof of Claim. Use V3 ¢ Q. We want to show /3 ¢ Q(v/2). If V3 €
Q(v2), then v/3 = a + b/2 for some a,b € Q, 503 = (a + b/2)? =
(a® 4 2b%) + 2ab~/2. Well, dimg Q(+/2) = 2 with a basis 1, v/2 over Q.

We have a system 3 = a? + 2b% and 0 = 2ab.’ [0 9: From here, the proof comes down to
some simple algebra.

Remark 7.2.2 Note that Q(v/2, v/3) = Q(+/2 + /3).

We say that L/ is algebraic if every « € L is algebraic over [F.

Proposition 7.2.1 Let L/F and L = F(ay,...,a,). The following are
equivalent:

(i) [L:[F] < oo.
(ii) IL/FF is an algebraic extension.
(iii) Each oy, is algebraic over [F.

Proof. For (i) = (ii), if B € L, we can consider F € F(B) C L. Then,
oo > [L:F] =[L:F(BIF(B) : F].
so B is algebraic over . We certainly have that (ii) = (iii). For (iii) = (i),

we need a picture:
We claim that [Kg : Ki_q] < oo.



110 7 Fields

K = Ki—1(ox) 3 o

Ki—1

F

Figure 7.5: Note that m = mf o €
[F[x] € K1, so there exists Mg, K;_ -

Flay,a2) = Ki(az) = K;

[F(OC]) = [Kl

O

Lemma7.2.2 LetF € K C L > « bea tower such that « is algebraic over [F and
[K: F] < oo. Then, [K(e) : K] < [F(x) : F]and [K(x) : F(o)] < [K: F].
Proof. It suffices to show that
[K(x) : K] < [F(e) : F].
The LHS is degmq, kx and the RHS is degmq . Since F € K, we get an

inclusion mg,F € (Mg, k) < K[x], so degmg,r > degmq k. O

Definition 7.2.1 (Composite) Define the composite extension KK' of K, K’ to
be the field generated by K U K'. That is, the smallest field containing both.

L

—

K

/

Corollary 7.2.3 If we have a diagram as given, where L = KK’, and all are
finite, then [K : F] > [L : K'] and [K": F] > [L : K].

F

Proof. Just draw the parallelogram of adjoining («;) to K and F to get K
and L, which gives us our inequality by the tower law. O
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Example 7.2.3 (Algebraic Numbers) Let o € C. We call « algebraic if
it is algebraic over Q. That is, « is the root of some f € Q[x] such that
f # 0. Define the set of algebraic numbers

Q¥ := {a € C : « is algebraic}.

Proposition 7.2.4 Q8 is a field.

We will need a proposition.

Proposition 7.2.5 If L /[ is an extension and o, B € IL are algebraic over [F,
then o + B, aff, and —« are algebraic over [F.

Proof. If o, B are algebraic over [, then (equivalently) we have
[F(x) : F] < oo and [F(B) : F] < oo,
so via the tower law we can write

[F(e. B) - F] = [F(a. f) : F(@)][F() : F],

which is less than or equal to! 10: Thatis, every y € F(a, B) is algebraic
over [F. Note that F(a, 8) = F(a)F(8).
[F(B) : FI[F(a) : F] < o.

Exercise 7.2.1 Let p;, ..., p, be distinct prime numbers. Then, we can
form an algebraic extension

[Q(VP1:/P2---- Pr) Q] =2,
and since this is contained in Q'8 , SO [Qalg Q] = o011 11: Thus, we can have algebraic extensions

which are infinite. We will not, however,
say too much about them.

7.3 Splitting Fields

Fix a field F and a polynomial f € F[x] with f # 0.
Definition 7.3.1 (Splitting Field) A splitting field of f, as above, is an
extension X /F such that

(i) f splits over X; i.e., that is
f=clx—0ay)---(x —ay) € Z[x],

for some a;, ¢ € X.

(i) X is generated over F by the roots of f.12 12: Thatis, using the roots from the linear
factors above,

Y =F(ag,...,an).
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13: There are four roots, but we only need
to write two, as —1 € Q.

14: Wehavedeg p > 1 and degg < n.

15: This is precisely because ¢ is primitive.

Lemma 7.3.1 Let IL/F be an extension and nonzero f € [F[x] which splits
over L. Then, ¥ := [F(ay,...,0) € IL, where a; are the roots of f in L, isa

splitting field of f.

Example 7.3.1 Let f = (x? + 1)(x? — 5) € Q[x]. Then, a splitting field
is!3

T = Q(v5,0).
Example 7.3.2 Consider f = x> —2 € Q[x]. Then,
T =Q(V2,032,0*Y2) = Q(V2, ).

Theorem 7.3.2 (Existence of Splitting Field) Every f € [F[x] with f # 0
has a splitting field.

Proof. Proceed by induction on n := deg f. If n = 0,1, then ¥ = F.
Suppose n > 2. Choose a p € Irred(FF) sch that p | f. Then, since F[x] is a
PID, f = pg where g € F[x]." Construct F(«)/F such that

Mg, F = p € Irred([F),

and define F («) := F[x]/(p), where @ = X. We take f = h(x — «), where
h € F(a)[x]. Now, degh # n — 1 < n, so by induction, & has a splitting
field X/ (r). We claim that X /[ is a splitting field of f. O

Corollary 7.3.3 If X /[ is a splitting field of f € [F[x] with deg f = n, then

[Z:F] <nl
Example 7.3.3 Let f = x? —3x +2 = (x — 1)(x — 2) € Q[x]. Then, the
splitting field ¥ = Q.

We now discuss cyclotomic extensions, taking IL/[F.

Definition 7.3.2 (Primitive nth Root of Unity) We say ¢ € L is a primitive
nth root of unity if || = n in IL*.

Note that ¢ is a root of the polynomial f = x" — 1 € F[x].

Proposition 7.3.4 Define X := [ () C L to be a splitting field of f.

Proof. Note that
1,{,(2,...,§”_1 el
are all roots of f. Furthermore, they are all different.’® Thus,
M=l=x-Dx=0-(x=¢""),

so f splits over X = F(?). O
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Note that [[F(¢) : F] < n, which is usually far less than n!.

Definition 7.3.3 (Cyclotomic Extension) We call such an extension, adjoining
roots of unity, a cyclotomic extension.

Example 7.3.4 The standard example is to take ¢, := e2mi/n ¢ C, where
[¢z| = nin C*, forming Q(gy).

Proposition 7.3.5 If n = p, a prime, then
me,@=x"""+xP 4 x+ 1,
where degme, @ = p — 1. Thus,
Q) :Rl=p—1.

Definition 7.3.4 (Formal Deriviative) Let
f=ao+a1x+ -+ a,x" € Flx].
We define the formal derivative

Df :=ay + 2axx + 3azx® + -+ + na,x" "' € Flx].

Exercise 7.3.1 The formal derivative acts how you think it does.! 16: Thave now proved these rules on two
distinct occasions, so see my Hardt notes
or my Fogel work.

Definition 7.3.5 (Separable) Let f € [F[x]. We have that f is separable if

f. Df are relatively prime in F[x). That is, ( f, Df') is the unit ideal in F[x].

Remark 7.3.1 Let A : bF >~ K be a homomorphism of fields. Then, we
also ket a free homomorphism of rings A : F[x] — K[x]. We precisely
take this new A to be prescribed by the formula

A Zakxk — Zk(ak)xk.

Then, it is an easy check that A(D(f)) = D(A(f)).

Example 7.3.5 For instance, let 1 : F < K. Then, we get a subring
inclusion A : F[x] — K[x].

Proposition 7.3.6 Let A : F >~ K be a field homomorphism. Then, f € [F[x]

is separable if and only if L(f) € K[x] is separable over K. 17: An element f € Q[x] is separable
over Q if and only if f € Q(i)[x] is
separable over Q(i).

Proof. 1If f is separable over [, then 1 = uf + vD(f) for some u,v € F[x].
Well, 1 = A(u)A(f) + A(v)D(A(f)) in K[x]. Thus A(f) is separable over
K. Conversely, if f is not separable over [, then there exists a common,
non-unit factor g of f, Df, so A(g) is a common, non-unit factor of
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18: Thatis,ifi 7# j, theng; t g;.

19: Note that g | Df if and only if g |
(Dg)h.

20: Note that this polynomial factors by
xP —a=x-a)?

in [F, [x] so this is not a contradiction to
our result.

A(f), D(A(f)), meaning A( f) is not separable. O

Proposition 7.3.7 A nonzero polynomial f € [F|[x] is separable if and only if
for some irreducible factorization

f =g1---gn, the g areirreducible,

then

(i) each gy is separable.
(ii) there are no repeated factors.'®

Proof. We will show that an irreducible factor g of f divides the formal
derivative Df if and only if g2 | f, or g is not separable. Suppose g is
irreducible in F[x] and g | f. Then,” f = gh:

Df = D(gh) = (Dg)h + g(Dh).

Then, equivalently, g | Dg or g | h, since g is irreducible (and thus, prime).
Well, the latter is the same as saying g2 | f, whereas the former is the same
as saying g is not separable. O

Corollary 7.3.8 Let L /[F be any extension over which nonzero f € [F[x] splits.
Then, f is separable if and only if f has no repeated roots in L[x].

Proof. Note that separability over [ is equivalent to separability over L.
Then, without loss of generality, take L = [F, writing

f=cx—ay) - (x—ay),

where ¢ € L*. An easy fact is that x — « is always separable: D(x —a) = 1,
so f is separable if and only if it has no repeated roots. O

Proposition 7.3.9 Let [ € [F[x] be irreducible. Then, f is separable if and
only if Df # 0.

Proof. Assume Df # 0. Let deg f = n. Then, —oc # deg Df < n. Then,
Df ¢ (f) € Flx], so (Df. f) = F[x]. If Df = 0, then (f. Df) = (f) #

[F[x], as desired.

Example 7.3.6 LetF :=F, =Z/p.Let f = x? —a, wherea € [F,. Then,
Df = pxP~! —0 = 0is not separable.?’

Theorem 7.3.10 There exists a field K such that charK = p > Oand a € K
so that a = b? for every b € K, meaning f = x? — a is irreducible and not
separable.

Corollary 7.3.11 If char F = 0. Then, all irreducible polynomials are separable.
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Suppose we are given a simple, finite extension of fields [ () /[F. This must
be algebraic. We get a minimal polynomial mqF = f € Irred(F). Now,
suppose we have

Figure 7.6: We take a simple, finite
extension, map the ground field over
isomorphically to another field with an
associated parent extension. We show how
to construct a new homomorphism ¢

A ’
—_—
F ~ F between the parents.

Then, we get a bijective correspondence

{homs ¢ : F(a) > L:p|p =A} «——{felL: f'(B) =0}

bijection

where f':= A(f) € F'[x].

Corollary 7.3.12 The # of homs ¢ : [F(a) — L is < deg f.

Corollary 7.3.13 (Uniqueness of Splitting Field) If X/ and X'/ are
splitting field of f € F|[x] then ¥/ ~ E//ﬂ'_.zl 21: Recall that an isomorphism of

extensions is a field isomorphism which

. . restricts to the identity on the ground
We will need to prepare some tools for this. field. Y &

Proposition 7.3.14 Consider an isomorphism A : F = [F', a nonzero
polynomial f € F|[x], a splitting field /F of f, and an extension L/’
such that f' := A(f) splits over IL. Then, there exists a homomorphism of field
¢ 1 X — L such that ¢|f = A, and ¢(X) is a splitting field of f'.

-2 5L
F—2 > F

Proof of Corollary. Take F = F’. Then, A = idf, meaning L = ¥'. Then, the
proposition gives us a triangle

y —% Sy
F

Note that ¢ must send roots of f to roots of f. Thus, & = %'.2 O 22: We use that both are splitting fields
of f.

Proof of Proposition. We proceed by induction on n = deg f. Forn = 0,
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23: Note that splitting fields are not
unique up to unique isomorphism. We
made lots of choices.

then ¥ = . Suppose n > 1. Let @y € X be aroot of f, then
m = mg, f € Irred(F)
som | f, meaning f = mg for some g € F[x]. We get A : F[x] = F'[x]

with A(f) = f/ =m'g’, withm’ = A(m). Well, f’ splits over L, so m has
aroot B1 € L. We get a diagram

D S

Then, f = (x — a1)h over F(a;). We get an isomorphism of fields ¢; :
F(a1) = F’(B1),anonzero polynomial i € [F(aq)[x], £/F (o) isasplitting
field of h, and L/F’(B;) is so that ¢; (h) splits over it. Thus, we have all
elements of our proposition. O

Remark 7.3.2 We have determined that the splitting field of f in [F[x] is
unique up to isomorphism. We write X/ for any such splitting field.
Galois theory is about the group G := Aut(Z /¢ /F).?



Galois Theory

Recall that if we have a field K, then we can form the corresponding
automorphism group Aut(K). In turn, if we have an extension K/F, then we
can form the automorphism group Aut(K/F) < Aut(K) of automorphisms

fixing .

8.1 Automorphisms

Suppose G < Aut(K). Then, the fixed field

={xeK:g(a)=aforall g € G}

is a subfield of K.! Then, suppose we have an extension K/F and f € F[x].

For any ¢ € Aut(K/F), if « € K such that f(«) = 0, then f(¢(x)) = 0.

Proposition 8.1.1 Let K/[F be an extension and f € F[x]. Let
={axeK: f(x) =0}.

Then, ¢ € Aut(K/[F) restricts to a permutation of the set Ry. We get a group
homomorphism ¢ : Aut(IL/K) — Sym(Ry). Furthermore, if K = [F(Ry), then
L is injective.?

Proof. We show injectivity. Suppose ¢ € Aut(K/[F) such that ((¢) = idg,.

Thatis, ¢ : @ = o for all @ € Ry. Then, Ry C K¢, where G := (p) <
Aut(K/F). We have F € F(Rs) € K%, butif F(Ry) = K, then K¢ = K, so

o(B) =B forall B €K,

meaning ¢ = idk. O

Example 8.1.1 Let K := Q(+/2)/Q. What is Aut(Q(+/2)/Q)? We know
how to do this. The extension is degree three with minimal polynomial
mssq = x3 —2 € Irred(Q). This polynomial only has one root in K, so

Aut(K) is such that ¢(~v2) = v/2, meaning Aut(K) = {e}.

Example 8.1.2 Let L = Q(X/2, ® ¥/2, ®*¥/2). This is generated by the
roots of x3 — 2 € Q[x]. Then, G = Aut(L) = Aut(L/Q) < Sym{w'a} ~
S3. We claim G ~ S3.3 Using the tower law, we can deduce that the
degree [L : Q] = 6.

Now, we get our answer by the following diagram.

8.1 Automorphisms . . .. ... 117
8.2 Normality . . ... ...... 118
8.3 Galois Extensions . . . . . . 120

8.4 Galois Correspondence . . 122

1: Showing that this is a field is easy.

2: That is, Aut(KK/[F) is isomoprhic to a
subgroup of Sym(R ).

3: Here, w is the primitive third root of
unity and o = 2.
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4: As an exercise, show thatif [L : F] =
2, then L/ is normal.

5: This actually works for infinite
extensions, but that is not what we are
interested in.

2 choi
L = Qe wa) —---- 20
A
/
7/
2 e
//
//
Q(O{) ________ ~="" 3 choices
3
Q Q

Example 8.1.3 Let g = (x? — 2)(x? — 3) with roots ++/2, +£4/3. Then,
¥ = Q(+/2, v/3). Then,

Aut(Z, Q) < Sym{++2, +v3} ~ S,

has order at most 4. We claim that Aut(X/Q) >~ C, x Cs.

Again, we reason via the diagram.

Q(v2,4/3) ——--- ‘Zg_'i’f:_“/_g_____) 9

7
2 ///
Q(V2) - - //x;i/'—):i:\/i
2
Q Q

8.2 Normality

Definition 8.2.1 (Normal Extension) An extension IL/F is normal if for all
f € Irred(F), if f has aroot in L, then f splits over L.*

Theorem 8.2.1 A finite extension IL/IF is normal if and only if it is a splitting
field of some f € F[x].°

Proof of =. Suppose L/F is finite and normal. Then, L = F(a1,...,am),
algebraic over [F. We can form the product of the minimal polynomials

S = ma, F Moy F Mg, F € FX].

Since each minimal polynomial splits over L, via normality, f also splits
over IL, meaning L = F(Ry), the roots of f. O



To get the other direction, we need to do some work.

Lemma 8.2.2 Let F C L C M. Define L := Xy /. If a, B € M are roots of
the same g € Irred(F), then

[L(e): L] = [L(B) : L].
That is, we have the picture

M

N

L(a) L(B)

~

F(a) F(B)

N

F

Proof of <. Suppose L = X7/f. Suppose g € Irred([F) such that g(a) =0,
where « € L. Form M := X,/ . Let B € M such that g(8) = 0. Applying
the lemma,

[L(): L] = [L(B) : L].

O
Proof of Lemma. We claim we have the diagram
L(@) —-----fms 1 ()
F@) ~-—---Z-----= F(§)
F
We know ¢ exists, because «, 8 are roots of g € Irred(F).° O

Proposition 8.2.3 Let F C K C I be a finite extension. If IL/[F is normal,
then L /K is normal.

Proof. Let L := X/ for some f € F[x] € K[x]. Then, L = X¢/k, so L/K
is normal. O

8.2 Normality

119

6: This is a harder proof, but we make a
few uses of our theorems about splitting
fields and the tower law.
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7: In positive characteristic, that is
certainly not true.

8: That is, the theorem is the case A =
idf.

8.3 Galois Extensions

Definition 8.3.1 (Separable Extension) An extension K/[F is separable if
every o € K is such that mq, F € [F[x] is separable.

Remark 8.3.1 The observation is that in char 0, every algebraic extension
is separable.”

Definition 8.3.2 (Galois Extension) An extension is called Galois if it is both
normal and separable.

Proposition 8.3.1 A finite extension L/ is Galois if and only if it is a splitting
field of separable polynomial over [F.

Proof. In char 0, this is clear. O

Now, we need a theorem relating the notion of a Galois extension to the
theory of embeddings.

Remark 8.3.2 Recall that if we have extensions K/F, L/[F, then we have

the set

IK—(L—>I]_

Embg (K, L) :=
such that ¢|fp = idF

Theorem 8.3.2 (On Embeddings) Let K, L be extensions over F. Let [K :
F] < oco. Then,
[Embg (K, L)| < [K: F]

with equality saturated if and only if

(i) K/FF is a separable extension, and
(ii) forall f € Irred(F) such that f has a root in K, f splits over L.

We can generalize slightly and use an induction argument. Given an
isomorphism A : F = [’ and extensions K/F and L/F’. Then, we can
define the set
®
K— L
Emb, (K,L) :=
such that | = A

Then, our statement is in terms of A, and we want A( f) to split over L in
(ii).2 We now give a useful lemma for proving our theorem.

Lemma 8.3.3 Let K/F and L/F’ be extensions, and A : F = [’ an
isomorphism. Then, for any a € K, we have

|Emb; (F (). L)| < [F(a) : F] = degmaF =:m,



with equality saturated if and only if

(i) « is separable over F, and
(i) m’ := A(m) splits over L.

Proof. Via our diagram, we see that there is a correspondence

{¢ € Emb, (F(x),L)} «—— {B L :m'(B) =0}.

O

Proof of Theorem. We will inductonn := [K: F]. If n = 1, then K = F,
so Emb, (F,L) = {A}. Suppose n > 2. Pick ¢ € K\ F so F & F(x).
Define d := [F(a) : Fland e := [K : F(x)], so n = de > e. To give
¢ € Emb, (K/L), choose

(@) pu: F(a) > L extending A, as by the lemma, our number of choices
is less than or equal to d, and then

(b) given u, we choose our ¢ : K > [ extending p. Since e < n, by
induction, there are at most e.

K-----—-- A > L
Fla) ——=—> pu(F(a))
F = F
Our choices amount to
|Emb; (K, F)| = > |Emb,, (K. L)| < de = n.

MEeEmb) (F(),[F)

We now need to show equality for saturation. Suppose (i) and (ii) hold. We
want to show that

(i) @ € K is separable over [F; i.e., m = mq[ is separable, so that
m’ = A(m) is a separable polynomial.

(i) m’ splits over L, so d = |[Emb, (F (), L)|. We have that (i) implies
K/[F (@) is separable (remember, this is easy in char 0). Also, if f €

Irred(F («)) has a root B € K, then f’ := u(f) must split over L.
Because f | mg, F, we know A(mg k) splits over L, by the hypothesis.

Thus, p(mg F@)) = f,so the hypothesis of the theorem applies to

K/[F(x), meaning }EmbM[K, [I_)‘ = e. We now need the converse.

Suppose
|[Emb, (K,L)| =n = [K: F].

Consider a € K, giving us a tower

F C F(a) € K.

8.3 Galois Extensions

121
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Define d to be the degree of the left-hand side degree, and e for the
right-hand side degree. Then,

0 < [Emb; (F(e),L)| <d

and
0 < |[Emb, (K, L)| < e.

Well, we have

de =n = |Emb, (K, L)| = > |Emb,, (K, F),
WEEmb) (F(a),L)

meaning |Emb, (F(x),L)| = d, so mq,F is separable and so is its
image A(mq,F) over L.

O
K--Y-> L
Corollary 8.3.4 Let IL/F be finite. Then, |Aut(L/F)| < [L : F], with equality
I I saturated if and only if L /F is Galois.
F—F
Proof. We take the theorem with K = L. O

Figure 8.1: Diagram for new embedding
set

Remark 8.3.3 We essentially just showed that finite IL /[ is Galois if and
only if
|[Aut(L/F)| = [L : F].

In general, we only have <.

Definition 8.3.3 (Galois Group) In the case of a Galois extension, we write
Gal(L/[F) := Aut(LL/F).

Note that if we have F € K C L, then we get sub extensions K/[F and L /K.
It turns out that if the big extension is Galois, so is the top sub extension:

Remark 8.3.4 Let K be an intermediate field. Then, L /K is Galois, with
Galois
Gal(L/K) < G,
K Galois

where H < G implies
sep, not norm

L :={ael:h(e)=aforallh e H}
F

is an intermediate field.

8.4 Galois Correspondence

Recall that we have |Gal(L/K)| = [L : K]. We need one further lemma,
9: We may omit this. which says that G < Aut(L) and |G| < oo implies [L : L¢] = |G|



Theorem 8.4.1 (Basic Galois Correspondence) Let L/ be a finite Galois
extension. Define G := Gal(IL/F). Then, we have a correspondence

intermediate fields

{H <G} +— of L/F ,

with operations of the bijection given by H + L in the forward direction,
and K — Gal(LL/K) in the backward direction.

Remark 8.4.1 (Order Reversal of Galois Correspondence) Note that H €
H' implies L7 > LA Thus, K € K’ implies Gal(L/K) > Gal(L/K’).

Proof of Theorem. 1If we have H < G, then L7 C L/F, so we have
Gal(L/L#) D> H. Then, using the embedding theorem and the technical
lemma,

’Gal(l]_/I]_H)‘ —[L:LH] = |H|

On the other hand, if K € L/F, then Gal(L/K) < G, so LS/ ¢
L/F. Note that K € L GalL/Ky, Well, again via the technical lemma and
embedding theorem,

[L: LS00 = |Gal(L/K)| = [L : K].

Then, K € LGL/K < L, so by the tower law, we are done. O

Theorem 8.4.2 (Degree Correspondence) If K C IL/F, then [L : K] =
|Gal(LL/K)|, and with H < G corresponding to K, we have [L : K] = |H|.
Finally, [K : F] = |G : H|, the index of the corresponding groups.

Theorem 8.4.3 (Lattice Correspondence) If Hy <> Ky and H, <> K, then
H] n H2 <> IK1IK2 and (Hl U Hz) <> [Kl n |K2.

Proposition 8.4.4

(i) Ifg € Gand K C L/F, then K' = g(K) ifand only if H' = gHg ™!,
where H < Kand H' < K'.1°
(ii) Aut(K/F) ~ N (H)/H.
(iii) K/ is Galois if and only if H < G. If so, then Gal(K/F) ~ G/H.

Example 8.4.1 Let f := (x? —2)(x? — 3) € Q[x]. The roots are a; » =
+4/2 and 034 = +4/3. We have a field L = Q(\/E, \/5), then

G =Gal(L/Q) = ((12),(34)) < S4.

Note that o := +/2 4 /3 is not fixed by any of the 3 non-identity elements
of G. Thus, Q(x) = L.

8.4 Galois Correspondence | 123

10: Thatit, we can move between the fields
if and only if the corresponding Galois
groups are conjugate.
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Figure 8.2: Lattice of intermediate
subgroups, inverted

Figure 8.3: Lattice of intermediate fields

Figure 8.4: Lattice of intermediate groups
(left), inverted, and lattice of intermediate
fields (right)

11: Then, G = Gal(Q()/Q) =~
(Z/7)* = Cg < Se. Our best way to do
thisisp(¢) =¢3 < (132645) =

{e}

TN

(B4) (12)(34) ((12)

A
AN

\

G

L

\/

Q(V?2) Q(V6) QV3)

s

Q

/

Example 8.4.2 Let f := x*+ x>+ x2 + x + 1. We have that (x — 1) f =
x° — 1. The roots are {s, {2, {3, (2, labeling these a1, . . ., a4, respectively.
Now, L = Q(¢),and [L : Q] = ¢(5) = 4.If g € G,and g : { > ¥ for
some k € [4], then g : ¢/ > ¢¥/. Clearly, we have a four-cycle g : ¢ > 2,
meaning G = ((1234)) ~ C4 < Ss4.

{e} L=Q©

2 2
((14)(23)) Q(a)

2 2

G Q

How do we find «? We can write « := { + ¢!, and doing some algebra,
we can show that it must satisfy «® + « — 1 = 0, taking the positive root

a=(1++5))2

Example 8.4.3 Let f := x2 -2 € Qx. Take @1 = a, 0y = aw, and
o3 = aw?. Then, G = S;.

Example 8.4.4 Define the polynomial f := x®+x>+x*+x3+x24+x+1 €
Irred(Q). If we write ¢ := {7, then the roots are oy := ¥, for k € [6]."



| \\\

((23)) ((13)) ((12))

((123)) //

Qa,w)

Q) Q(aw) Q(aw?)

@(w)
{e}
X
/ )
((pz) 3
T
G = (p)
Q)
X
y Qe+
QU+ +¢% ;
T
Q = (p)
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Figure 8.5: Lattice of intermediate
subgroups, inverted

Figure 8.6: Lattice of intermediate field

Figure 8.7: Lattice of subgroups, inverted

Figure 8.8: Lattice of intermediate fields
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