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We review some of the basic facts and notations of group theory. Most
results are given without proof, but are worthwhile exercises if you do
not remember their demonstrations. Some results are presented with a bit
more (categorical) abstraction.

1.1 Review and Notations

We usually write a group in the form .G; �/, where G is the underlying set
and � W G �G ! G is a binary operation.1 We take these such that2 1: That is, it takes .x; y/ 7! x � y D xy.

2: If we just have (i) and (ii), then .G; �/
is a monoid. If we just have (i), then .G; �/
is a semigroup. If none hold, then .G; �/ is
a magma.

(i) the binary operation is associative, so .xy/´ D x.y´/.
(ii) there exists a unique e 2 G which is an identity: ex D x D xe for all

x 2 G.
(iii) for all x 2 G, there exists a unique inverse x�1 2 G such that

xx�1 D e D x�1x:

Remark 1.1.1 We generally prefer juxtaposition over explicit use of the
operation, when context suffices. We also, by abuse of notation, will refer
to the underlying set G as the group.

Definition 1.1.1 (Abelian Group) If we have xy D yx for all x; y 2 G, then
G is called abelian.3 3: An additive group is an abelian group

written withC as the binary operation.

Definition 1.1.2 (Order) The order of a group is jGj, the cardinality of the
underlying set G.

Example 1.1.1 There are a few quintessential groups which we will need
to be familiar with.

(a) Cn´
˚
e; a; a2; : : : ; an�1

	
.4 4: This is the finite cyclic group of order

n, written multaplicatively.(b) Z=nZ´ f0; 1; 2; : : : ; n � 1g.5

5: This is the set of congruence classes
modulo n, which is isomorphic toCn, but
is written additively.

(c) D2n is the symmetries of a regular n-gon in space.6

6: jD2nj D 2n.

(d) Sym.�/ D S� is the symmetric group of a set �; i.e., the set of
permutations/bĳections � W �! �.

(e) Sn is the symmetric group on n letters: Sym.Œn�/.
(f) GLn.F / is n � n invertible matrices with entries in a field F .
(g) Q8´ f˙1;˙i;˙j;˙kg.

Definition 1.1.3 (Subgroup) Given a groupG, a subgroup is a subsetH � G
such that

(i) H ¤ ¿.7 7: We can equivalently write e 2H .
(ii) x 2 H implies x�1 2 H .
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(iii) x; y 2 H implies xy 2 H .

In this case, we writeH � G.

Given a group G with a subset S � G,88: Proving that this is, in fact, a group, is
not very difficult.

hSi ´
\
H�G
S�H

H � G

is the ”smallest subgroup” of G which contains S .99: That is, if H � G such that S � H ,
then hSi �H . This is called the subgroup
generated by S .

Proposition 1.1.1 We can equivalently write

hSi D

‚

a1; : : : ; ak W

for all i 2 Œk�;
either ai 2 S
or a�1i 2 S;
with k � 0

ƒ

;

where k D 0 implies e 2 S .1010: The contents of hSi are precisely the
words written in S .

Sketch of Proof. Let K ´ the RHS. We need to show that (1) K � G such
that S � K, and (2) ifH � G and S � H , then K � H .

Remark 1.1.2 If we have a group G and S D ¿, then h¿i D feg.

We often say G is “generated” by the subset S if hSi D G.

Definition 1.1.4 (Cyclic Group) A group G is called cyclic is when there
exists1111: This ”generator” a is not unique. a 2 G such that G D hfagi D hai.

Example 1.1.2 Consider C8. Note that we can write

C8 D hai D
˝
a3
˛
D
˝
a5
˛
D
˝
a7
˛
:

Definition 1.1.5 (Cosets) LetH � G. Then, a left coset ofH inG is a subset
of the form

xH D fxh W h 2 H g;

for some x 2 G.1212: A right coset is written Hx, defined
similarly. Note that xH D Hx when G
is abelian.

The collection of all left cosets partitions G into pairwise disjoint sets.1313: The same is true for right cosets.

Proposition 1.1.2 Given x; y 2 G, withH � G, the following are equivalent:

(i) xH D yH .
(ii) x 2 yH .
(iii) y 2 xH .
(iv) xy�1 2 H .
(v) yx�1 2 H .
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Example 1.1.3 Let xH and yH be cosets. Suppose ´ 2 xH\yH . We want
to show that xH D yH . Well, ´ 2 xH \ yH means ´ D xh1 D yh2 for
some h1; h2 2 H . Well, this means x D yh2h�11 and y D xh1h�12 . Hence,
x 2 yH and y 2 xH . In general, if xh 2 xH , then xh D yh2h�11 2 yH ,
so xH � yH .14 14: The other direction is the same, since

the demonstration is symmetric.

Definition 1.1.6 (Index) The index ofH � G is the cardinality of the set of
left cosets:15 15: We write G=H for the set of left H

cosets inG.jG W H j ´ jG=H j:

Remark 1.1.3 There exists a bĳection16 16: We writeHnG for the set of rightH
cosets inG.

G=H
bĳection
 ����! HnG;

taking the prescription

xH 7�����! Hx�1:

Theorem 1.1.3 (Lagrange’s Theorem) There exists a bĳection of sets17 17: TakeH � G.

G
bĳection
 ���! H �G=H;

where we have the identity18 18: This is theH �G=H ! G direction.
From here, it is probably best to just show
injectivity and surjectivity.jGj D jH j � jG W H j:

We pick for each coset a representative element.19 19: Note that this works for infinite sets.

Definition 1.1.7 (Group Homomorphism) A group homomorphism is a
function ' W G ! H between groups which “preserves structure.” That is,

'.xy/ D '.x/'.y/;

for all x; y 2 G.

This definition, as you should know, implies '.eG/ D eH . Additionally, the
same is true for inverses: '.x�1/ D '.x/�1.20 20: Interestingly, for a monoid

homomorphism ' WM ! N , we define

'.xy/ D '.x/'.y/

and '.eM / D eN . That is, we actually
need to ensure the identity preservation
holds, because it is not implied by the
operation preservation.

1.2 Groups Form a Category Grp

We can get some neat results about groups by now thinking from a
categorical perspective.

Definition 1.2.1 (Category) A category C consists of21 21: Assume NBG instead of ZFC.

(i) a class ob C of “objects.”
(ii) a class Hom.X; Y / of “morphisms” for each pair X; Y 2 ob C.
(iii) a ”composition” operation given f 2 Hom.X; Y / and g 2 Hom.Y;Z/
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such that g ı f 2 Hom.X;Z/.
(iv) identity morphisms idX 2 Hom.X;X/ such that

(a) given morphisms f; g; h, we have

.h ı g/ ı f D h ı .g ı f /;

if these are all defined.
(b) f ı idX D idY ıf D f , for all f 2 Hom.X; Y /.

X Y

Z

 !

idX

 

!
f

 

!gıf

 !

idY

 

! g

 !

idZ

Figure 1.1: The identity and composition
morphisms acting between X;Y;Z 2
ob C.

Example 1.2.1 There are a few examples of concrete categories which we
are already familiar with.

(a) The category Set has objects which are sets S; T; : : : and

Hom.S; T / D fall functions f W S ! T g:

(b) The category Grp has objects which are groups and morphisms
which are homomorphisms.

(c) The category Top has objects which are topological spaces and
morphisms which are continuous maps.

(d) The category Vectk has objects which are k-linear spaces and
morphisms which are linear maps.

Definition 1.2.2 (Isomorphism) An isomorphism is a morphism f W X ! Y

in C such that there exists a morphism g W Y ! X such that g ı f D idX and
f ı g D idY .

Definition 1.2.3 (Inverse) We call g, as above, the inverse of f and write
f �1´ g.

Proposition 1.2.1 In a category, if an inverse exists, it is unique.

Proof. Let f 2 Hom.X; Y / and g; g0 2 Hom.Y;X/ such that gf D idX D
g0f and fg D idY D fg0. Then,2222: This is essentially the same method of

proof that we would use if we were simply
considering groups. g0.fg/ D .g0f /g

g0 idY D idX g;

so g0 D g.

Example 1.2.2 Let M be a monoid. Then, we can define a category
Cwith ob C´ fXg and Hom.X;X/ ´ M , where composition in C

directly corresponds to multiplication inM .

Remark 1.2.1 In general, if C is a category and X 2 ob C, then the set
Hom.X;X/ has the structure of a monoid. This is called the endomorphism
monoid End.X/.
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Remark 1.2.2 The set Iso.X;X/ � Hom.X;X/ of isomorphisms in C

has the structure of a group called Aut.X/, which is the automorphism
group.

Definition 1.2.4 (Groupoid) A groupoid is a category C such that every
morphism is an isomorphism.23 23: As an observation, a groupoid with

one object is a group, in the same way that
a category with one object is a monoid.
Inverses is what we needed!If C is a category, it contains a groupoid Ccore where ob Ccore D ob C,

and HomCcore.X; Y /´

�
f 2 HomC.X; Y / W

f is an isomorphism
in C

�
Remark 1.2.3 (Arrow Notation) We will use the following convention,
when we remember:

(i) injection: X � Y

(ii) surjection: X � Y

(iii) inclusion: X ,! Y

(iv) bĳection/isomorphism X ��! Y or X
'
�! Y

Now, Grp is a category, so let us take a look at isomorphisms of groups.

Proposition 1.2.2 A homomorphism f W G ! H of groups is an isomorphism
if and only if it is a bĳection.

Definition 1.2.5 (Isomorphic Groups) Given groupsG;H , we sayG andH
are isomorphic, writtenG ' H , if there exists an isomorphism ' W G ��! H .24 24: Note that these isomorphisms are

usually not unique.

S3 and D6 are isomorphic groups.25 If we label each of the vertices of4 25: Remember, S3 is the permutations of
f1; 2; 3g andD6 is the symmetries of4.by 1; 2; 3, counterclockwise starting from the RHS, then each symmetry

˛ 2 D6 can correspond via ' to '.˛/ 2 S3. The rotation r D 120ı gets

r
'

7������!

�
1 2 3

2 3 1

�
;

and the reflection s D 180ı gets

s
'

7������!

�
1 2 3

1 3 2

�
:

Proposition 1.2.3 We claim ' is an isomorphism of groups.26 26: Note that our labeling is arbitrary, so
relabeling the vertices gives a different
isomorphism. There are actually six
isomorphisms between these groups, one
for each labeling.

What about Aut.S3/? Well,

Aut.G/ D
�
set of isomorphisms

' W G ��! G

�
;

as a group under composition. SinceS3 is generated by its transpositions, the
elements of Aut.S3/ sending transpositions to transpositions is equivalent
to permuting the elements of S3, so Aut.S3/ ' S3.27 27: There is some more leg work to be

done here, but this is a good sketch of the
proof.
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1.3 Normality and Quotients

Definition 1.3.1 (Normal Subgroup) A subgroup H � G is normal if
xHx�1 D H for all x 2 G. We writeH E G. 2828: This is an equality of sets. The LHS is

a shorthand for

xHx�1 D fxhx�1 W h 2Hg:

This operation is called conjugating by x.
Example 1.3.1 In D6, we have the elements fe; r; r2; s; sr; sr2g. Now,
hri � D6, which is fe; r; r2g, and hsi � D6, which is fe; sg. Only hri E D6.
Remember there is a relation sr D r�1s, so sr�1 D rs. To show hsi µ H ,
note that

rsr�1 D sr�1r�1 D sr�2 D sr;

so
rHr�1 D fe; srg ¤ H:

Proposition 1.3.1 A subgroup N � G is normal if and only if Nx D xN for
all x 2 G.

Remark 1.3.1 That is, a subgroup is normal if and only if all left cosets are
right cosets. This characterization of normality can be great for intuiting
whether or not a subgroup is normal.

Definition 1.3.2 (Kernel) If ' W G ! H is a homomorphism, the kernel

ker.'/´ fg 2 G W '.g/ D eg

is a normal subgroup of G.

Proof. This is a straightforward verification.

Definition 1.3.3 (Quotient Group) If N E G, we can form the quotient
group G=N , where2929: The multiplication is defined by

xN � yN ´ .xy/N:

We have to check that this is well-defined,
but we will not. Notably, we need N to
be normal in order for the operation to be
well-defined.

G=N ´ fxN W x 2 Gg D set of all left cosets:

If we write the operation in terms of set multiplication, we find

xNyN D x.yN/N D xyN;

as desired.

Definition 1.3.4 (Quotient Homomorphism) There exists a surjective
homomorphism � W G� G=N , defined by '.x/´ xN .3030: Note that ker.�/ D N , so normal

is exactly the right condition to form a
quotient group.

Example 1.3.2 For instance, consider .Z;C/. Given n � 1, the group
nZ E Z. Their quotient Z=nZ is precisely the integers modulo n, as we
hoped.3131: Sometimes, we will also write Z=n,

though I am not a fan of this notation.
The elements of the quotient group are written

x C nZ D fx C ny W y 2 Zg � Z:
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1.4 Isomorphism Theorems

The isomorphism theorems are quite well-known, but we state the
“homomorphism theorem” first, which is the building block of the others.
In turn, the isomorphism theorems, while convoluted at first glance, are
one of the many “universal” threads which appear in standard algebraic
objects. We will return to variants of these theorems two more times.

G H

G=N

 

!
'

 ��

 

!
9Š

 

Figure 1.2: This diagram commutes if
'.N/ D feg, or equivalently, N �

ker.'/.

Theorem 1.4.1 (Homomorphism Theorem) Given N E G and � W G�
G=N , the quotient homomorphism, if ' W G ! H is a homomorphism such
that '.N / D feg, then there exists a unique homomorphism  W G=N ! H

such that  ı � D '.

Corollary 1.4.2 Given N E G, with � W G ! G=M , then

Hom.G=N;H/ ������! Hom.G;H/

via
 7������!  ı �

is injective, with image subset

f 2 Hom.G;H/ W  .N/ D fegg

Theorem 1.4.3 (First Isomorphism Theorem) Given a homomorphism ' W

G ! H , we have an isomorphismG= ker.'/ ' '.G/ � H . That is, ' factors
through an isomorphism.32 32: The corresponding diagram has

'.xN/ D '.x/ 2 '.G/ �H;

whereN D ker.'/.
G H

G= ker.'/ '.H/

 

!
'

 

�
�

quotient

 

!
'

�

�

!�

inclusion

Figure 1.3: Commutative diagram of the
first isomorphism theorem

Let us do some setup for the second theorem. Well, given A;B � G as
subgroups, we have the product subset33 33: We may hope that this is a subgroup,

but it is not always.
AB ´ fab 2 G W a 2 A; b 2 Bg � G:

Example 1.4.1 LetG D D6 D fe; r; r2; s; sr; sr2g. Recall that r3 D e D s2
and rs D sr�1. We have the subgroups A ´ hsi D fe; sg and B ´
hsri D fe; srg. The product subset is then

AB D fe; s; sr; rg — D6;

as 4 − 6.

Proposition 1.4.4 Given any two subgroups A;B � G, then AB � G is a
subgroup if and only if BA � AB .34 34: This is not in most textbooks, and is

surprisingly hard to find anywhere.
If this is the case, then AB D BA.
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Proof. We begin with the forward direction. Suppose AB � G. Then, for
a 2 A and b 2 B , we have a D ae; b D eb 2 AB . Hence, ba 2 AB .3535: AB is closed under the operation.
Thus, BA � AB . To show AB � BA, suppose x 2 AB . We also have
x�1 2 AB , so we can write x�1 D ab, for some a 2 A and b 2 B . However,
.x�1/�1 D .ab/�1 D b�1a�1 2 BA. Thus, AB � BA, so AB D BA. Now,
for the other, more interesting direction, suppose BA � AB . If a 2 A and
b 2 B , then .ab/�1 D b�1a�1 2 BA � AB , so AB is closed under inverses.
It is also certainly not empty with e 2 AB . Suppose we have a1; a2 2 A
and b1; b2 2 B . Then, BA � AB implies b1a2 D a02b01 for some a02 2 A and
b02 2 B :

.a1b1/.a2b2/ D a1b1a2b2 D .a1a
0
2/.b

0
1b2/ 2 AB;

so it is closed under multiplication.3636: There you go. Under specific
conditions,AB is a subgroup.

Example 1.4.2 IfA;B � G andB E G, thenBA � AB and soAB � G.3737: This is pretty trivial, becasue if a 2 A,
then aB D Ba, since B is normal.

Definition 1.4.1 (Normalizer) Given a subset S � G, the normalizer of S is

NG.S/´ fx 2 G W xSx
�1
D Sg;

where
xSx�1 D fxsx�1 W s 2 Sg:

Clearly, we have NG.S/ � G.

Proposition 1.4.5 IfH � G, thenH ENG.H/.3838: This is a very easy exercise.

Remark 1.4.1 Note that NG.H/ is the largest subgroup of G which has
H as a normal subgroup.3939: Notably,H E G if NG.H/ D G.

Corollary 1.4.6 If we have A;B � G and A �NG.B/, then AB D BA is a
subgroup of G.

G

NG.B/

AB

A B

A \ B

 
-!

 
-!

!

 -

E

 -

!

!

 -

E

 -
!

Figure 1.4: We have '.a.A\B// D aB .

Theorem 1.4.7 (Second/Diamond Isomorphism Theorem) Let A;B � G
with A �NG.B/. Then,

(i) AB � G.
(ii) B E AB .
(iii) A \ B E A.
(iv) A=.A \ B/ ' AB=B .

(i) Proof. This is immediate from the corollary.
(ii) Proof. We have that A �NG.B/ implies B E AB .

(iii) Proof. If a 2 A and x 2 A \ B , then axa�1 2 A, as A is a subgroup,
and axa�1 2 B , as a 2NG.B/.
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(iv) Proof. We can define the isomorphism

A=.A \ B/
 

������! AB=B

x.A \ B/ 7������! xB:

Apply the homomorphism theorem to the diagram of  , as
x 2 A \ B implies x 2 B , so xB D eB .

A AB AB=B

A=.A \ B/

�

!
x 7!x

 

!

�

 �x 7!xB

 

!
 

x.A\B/7!xB

Figure 1.5: Diagram of the isomorphism
 W A=.A\B/! AB=B .

Now, we have
�  is injective:  .x.A \ B// D eB implies xB D eB .40 40: That is, x 2 B when x 2 A\B , so

x.A\B/ D e.A\B/:�  is surjective: given an element abB 2 AB=B , where a 2 A
and b 2 B , we have abB D aB , so  .a/ D a.

1.5 Free Group

A free group is a construction F.S/, dependent on a given set S . We begin
with a definition, and then we will construct it.

Definition 1.5.1 (Free Group) A free group is a pair .F; �/ where F is
a group and � W S ! F is a function41 41: The set S is a “set of generators.”such that, for every group G and
function ' W S ! G, there exists a unique homomorphism ˆ W F ! G so that
ˆ ı � D '.

S G

F

 

!
'

function
 
-

!

�

 

!

ˆ

9Š hom.

Figure 1.6: Diagram characterizing the
free group of S

Example 1.5.1 Consider S ´ fag. Let F be C1 ´ fan W n 2 Zg and
� W S ! F prescribed by �.a/ D a1. Then, .F; �/ is a free group.

Proof. Given a function ' W S ! G prescribed by '.a/ D g, there exists a
unique homomorphism ˆ W F ! G defined by ˆ.an/ D gn.

Remark 1.5.1 Note that if .F; �/ is a free group, then we get a bĳection

HomGrp.F;G/
�

������! HomSet.S;G/;

where ˆ 7! ˆ ı �.

Proposition 1.5.1 If .F; � W S ! F / and .F 0; �0 W S ! F 0/ are free groups,
then F ' F 0. We claim we can even build the isomorphism.42 42: The construction makes the statement

a bit more precise. The general idea,
though, is there is only one free group
for a set S .
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Proof. Via the universal property, we may construct homomorphisms in the
correct directions. There exists a unique group homomorphism ' W F ! F 0

such that the following diagram commutes:

F

S

F 0

 

!

'

 

!�

 

!�0

That is, ' ı � D �0. Similarly, we may construct a unique homomorphism
 W F 0 ! F such that the following diagram commutes:

F 0

S

F

 

!

 

 !
�0

 

!�

That is,  ı �0 D �. Now, we may compose these two homomorphisms into
maps  ı ' W F ! F and ' ı  W F 0 ! F 0. By our construction, we may
glean the relations

 ı ' ı � D  ı �0 D �

and
' ı  ı �0 D ' ı � D �0:

Yet, we know idF and idF 0 , the identity morphisms in Grp, also satisfy

.idF W F ��! F / ı � D idF

and
.idF 0 W F 0 ��! F 0/ ı �0 D idF 0 :

Thus, via the uniqueness of our universal property for free groups, we
must have that  ı ' D idF and ' ı  D idF 0 . Therefore, '; are inverse
isomorphisms yielding F ' F 0, as desired.

Example 1.5.2 There is one easier example of a free group than we did
before: S D ¿ implies F ' feg.

Theorem 1.5.2 For every set S , there exists a free group .F; � W S ! F /.

Proof. We begin by developing some terminology:

I We call elements s 2 S “symbols.”
I Choose a new set S� disjoint from S , but in bĳective correspondence

with S .4343: This is via s 2 S 7! s� 2 S�.
I Let S

`
S� be the set of “letters.”

I Given s� 2 S�, let .s�/�´ s 2 S .
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Now, a word is a finite sequence

x D .x1; x2; : : : ; xn/

of letters xi 2 S
`
S�, where i 2 Œn� and n � 0. Note that the “empty word”

corresponds to the n D 0 case, which we write as ./.44 The length of x is 44: That is, ./ is of length 0.
precisely n. A reduced word x D .x1; : : : ; xn/ is one such that x�

k
¤ xkC1

for all k 2 Œn � 1�. Let us define F as the set of all words. Then, let us take
the function

� W S ! F W s 7! .s/;

where .s/ is a word of length 1 in F .45 Given x ´ .x1; : : : ; xm/ and 45: Our goal is to define an operation
via concatenation, but this may give us
unreduced words. Our solution is simply
to remove any problems, moving from the
center of the concatenated word, out.

y ´ .y1; : : : ; yn/ 2 F , where xi ; yj 2 S
`
S�, define

x � y ´

„
.x1; : : : ; xm�k ; ykC1; : : : ; yn/; k < min.m; n/
.ymC1; : : : ; yn/; k D m < n

.x1; : : : ; xm�n/; k D n < m

./; k D m D n;

where k is the largest integer such that x�m�j D yjC1 for all 0 � j < k and
0 � k � min.m; n/.46 46: All cases except the first in the

definition of the group law are morally
“edge cases,” but they should be written
down.At this point, we only know that .F; �/ is a magma.

Proposition 1.5.3 If G is a group and ' W S ! G is a function, then there
exists a unique function ˆ W F ! G such that47 47: This is what we use to prove the

universal property, even though we do
not actually know that F is a group yet.(i) ˆ..s// D '.s/ for all s 2 S .

(ii) ˆ.x � y/ D ˆ.x/ˆ.y/.

Proof. For existence, let us extend the definition of ' W S ! G to ' W
S
`
S� ! G, setting '.s�/´ '.s/�1. Now, define

ˆ W F ! G W .x1; : : : ; xn/ 7! '.x1/'.x2/ � � �'.xn/:

This is a function which satisfies (1).48 Now, given x; y 2 F of length m 48: That is, it extends '.
and n, respectively, let us compute

x � y D .x1; : : : ; xm�k ; ykC1; : : : ; ym/;

where k is such that x�
m�k
¤ ykC1, but x�m�j D yjC1 for j < k. Then,

ˆ.x/ˆ.y/ D ˆ.x1/ � � �ˆ.xm�k/ˆ.xm�kC1/ � � �ˆ.xm/ˆ.y1/ � � �ˆ.yk/

up to ˆ.ykC1/ � � �ˆ.yn/. If j < k, then x�m�j D yjC1, which is precisely

'.x�m�j / D '.xm�j /
�1
D '.yjC1/;

so

ˆ.x/ˆ.y/ D '.x1/ � � �'.xm�k/'.ykC1/ � � �'.yn/

D ˆ.x � y/;

proving (2). Now, why is this unique? Well, if ˆ W F ! G satisfies (1) and
(2), note that ./ � ./ D ./ in F , so '..//'..// D '..// D e 2 G. Likewise,
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.s/.s�/ D ./ D .s�/.s/, then

'..s//'..s�// D e D '..s�//'..s// D '..s�// D '..s//�1:

Now, we know, in general, a word x of length n is a product of a word .x1/
of length 1 and a word .x2; : : : ; xn/ of length n � 1 in F . Then, we have4949: This is just (2).

ˆ..x1/.x2; : : : ; xn// D ˆ..x1//ˆ..x2; : : : ; xn//;

and induction on nwill show5050: This shows that the formula we made
is the unique correct one.

ˆ..x1; : : : ; xn// D '..x1// � � �'..xn//:

Finally, we need to show that F is a group. The easy part is taking ./ D e,
as it acts as an identity element. If x D .x1; : : : ; xn/, then define x�1 ´
.x�n ; x

�
n�1; : : : ; x

�
1 /.51 We now need to show that .F; �/ is associative.5251: As an exercise, check that x � x�1 D

./ D x�1 � x.
52: We use a trick here. For some
reason, many algebra texts, at this point,
give a monologue about how difficult
associativity is to show for F . Rezk
strongly disagrees.

Let G ´ Sym.F /. Given a 2 S
`
S�, let �a W F ! F be defined by

�a.x/´ .a/ � x. Now, we have that

�a.x/ D

(
.a; x1; : : : ; xn/; a� ¤ x1

.x2; : : : ; xn/; x� D x:

We can calculate that �a.�a�.x// D x and �a�.�a.x// D x. Hence,
�a; �a� 2 G D Sym.F /, as �a� D ��1a . This is nice, because we have just
constructed a function

Figure 1.7: This is by what we showed:
there exists a unique functionˆ such that
ˆ..s// D �s andˆ.x � y/ D '.x/'.y/.

S G

F

 

!
a 7!�a

�

!

�

 

!

ˆ

We claim that ˆ is an injection. Well, ˆ.x/..// for ˆ.x/ 2 G D Sym.F /
and ./ 2 F , so plug this into ˆ.x/. Then, we have ˆ.x/ D �x1 ı � � � ı �xn
and .�x1 ı � � � ı �xn/./ D .x1; : : : ; xn/. We have F

ˆ
 ! .F / � G by

ˆ.x � y/ D '.x/'.y/.5353: This ending is more of a sketch, due to
time constraints, but we get associativity
because it isomorphic as a magma to the
image ofˆ inG.

1.6 Group Presentations and Sn

As notation, we will write F.S/ to be “the free group on the set S ,” and
� W S � F.S/ is essentially inclusion.

Definition 1.6.1 (Group Presentation) A group presentation is a pair .S;R/,
where S is a set and R � F.S/.

Now, given a presentation .S;R/, we can form a group5454: This is called the group presented by
.S;R/.

G ´ hS jRi ´ F.S/=N;
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where55 55: The normal subgroupN is called the
normal closure.

N ´

* [
g2F.S/

gRg�1

+
E F.S/:

Definition 1.6.2 (Finitely Presentable) We call a groupG finitely presentable
if there exist finite sets S;R � F.S/ such that G ' hS jRi.

Example 1.6.1 We have hS j¿i ' F.S/.

Example 1.6.2 Consider hajani. In this case, S D fag and R D fang �
F.S/. Hence, hajani ' Cn

Example 1.6.3 Now, consider
˝
a; b

ˇ̌
aba�1b�1

˛
. This “forces” aba�1b�1 D

e, so ab D ba. This is isomorphic to C1 � C1 ' Z �Z.

Example 1.6.4 Here is a fun example. Consider˝
a; b

ˇ̌
aba�1b�2; bab�1a�2

˛
:

Interestingly, this is isomorphic to feg.56 56: This shows that a group can have
multiple presentations.

Remark 1.6.1 Note that we can write any group as G D hGjRi D
F.G/=N , where N D ker.F.G/! G/, and set R D N .

Example 1.6.5 We have
˝
r; s
ˇ̌
rn; s2; srsr

˛
' D2n.

How would we show something like that? Well, we have to construct an
isomorphism from F.r; s/=N ! D2n � GL3.R/.57 We construct 57: Note that this is the correct direction,

since the quotient is specifically built for
constructing homomorphisms.

F.r; s/ D2n � GL3.R/

r

0@cos.2�=n/ � sin.2�=n/
sin.2�=n/ cos.2�=n/

1

1A D R

s

0@1 �1

1

1A D S

 �'

 �

!

 �

!

F.s; r/ D2n

F.s; r/=N

 �'

 �

 

!

'

‹

Figure 1.8: We need '.

Let N ´
˝
fgrng�1; gs2g�1; g.sr/2g�1g

˛
. We need to check that

N � ker', so we need to show rn; s2; srsr 2 ker'. We get that
grng�1; etc 2 ker' E F.S/, so

˝
fgrng�1; : : : g

˛
� ker'. Thus, we have a

surjective homomorphism hS jRi� D2n. We can complete this argument
by showing that every element in the given presentation is equal to one of
e; r; : : : ; rn�1; s; sr; : : : ; s; srn�1. To do this, (1) we know in G we can
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always move s past a power of r .58 Hence, we can reduce every element to58: This is because rs D sr�1.
the form sirj . Then, (2) we use the relations rn D e and s2 D e.

Remark 1.6.2 It is very difficult to work with presentations. It is not a
calculational tool that you can always find an answer for. This is why we
need the tool of building homomorphisms.

Remark 1.6.3 (Word Problem) Given S;R finite and a presentation
G D hS jRi. Provide an algorithm to decide for each w 2 F.S/, whether
the image in G is id.

Theorem 1.6.1 There exist finite group presentations which are undecidable.5959: That is, there is not an algorithm.

Example 1.6.6 The symmetric group Sn can be presented as

Sn D

*
s1; s2; : : : ; sn�1

ˇ̌̌̌
ˇ̌ sisi ;

.sisiC1/
3;

.sisj /
2 if ji � j j � 2

+
:

Proof. We leave out the proof, but the idea is to use si D .i i C 1/.6060: See Rezk’s notes.
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Now that we have reviewed the structure of groups, we will begin to
investigate the consequences of this structure within a broader context.
Topics will vary, but include a discussion of group actions, the simplicity
of An, and the automorphism groups Inn.G/ and Out.G/

2.1 Group Actions

Definition 2.1.1 (Group Action) A group action is the triple .G;X;G�X !
X/, where G is a group, X is a set, and .g; x/ 7! gx, such that

(i) g1 � .g2 � x/ D .g1 � g2/ � x.
(ii) e � x D x.

We say that “G acts onX .” Some alternate notation is to define 'g.x/´ gx,
then 'g W X ! X is a function.

Proposition 2.1.1 Defining ' W G ! Sym.X/ by g 7! .'g W X ! X/ is a
homomorphism of groups.1 1: We would need to check that 'g is a

bĳection and a group homomorphism:

'g ı 'h D 'gh:Conversely, given a homomorphism ' W G ! Sym.X/, define gx ´
'.g/.x/. Then, this defines a group action .G;X; .g; x/ 7! '.g/.x//.

Example 2.1.1 Let G D G and X D G. Then, define g � x.2 2: This is called the left action of G on
itself.

Example 2.1.2 TakingH � G, let G D G and X D G=H . We define the
action by g � xH ´ .gx/H , which corresponds to the homomorphism
G ! Sym.G=H/with g 7! .xH 7! gxH/.3 3: This is the left coset action.

Definition 2.1.2 (Transitive Action) An action by G on X is transitive if for
all x; x0 2 X there exists a g 2 G such that g � x D x0 and X ¤ ¿.

Definition 2.1.3 (Kernel of Action) We define the kernel of the action

kerŒG
'
�! Sym.x/�´ fg 2 G W g � x D x for all x 2 Xg:

Note that since we have any action corresponding to a homomorphism
' W G ! Sym.X/, we have that the kernel of the action is precisely
ker' E G.

Definition 2.1.4 (Stabilizer Subgroup) Given an action by G on X and
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x 2 X , the stabilizer44: This is not the kernel. Look carefully.

stab.x/ D Gx ´ fg 2 G W g � x D xg � G:

Example 2.1.3

(a) For any set X , we can take the tautological action by G ´ Sym.X/,
so g � x´ g.x/.55: In this case,

' D idG W G! Sym.X/: (b) Another example is the action on right cosets, where we take X ´
HnG D fHxg. Then, we define the action by g �Hx´ Hxg�1.66: Convince yourself that we need g�1.

Otherwise, it will not work. (c) We also have the conjugation action, where we take X ´ G and

conjg.x/´ gxg�1;

with g; x 2 G, so conjg 2 Aut.G/ � Sym.G/.77: The operator conj defines a
homomorphism fromG! Sym.G/ via

G
conj
��! Aut.G/.

(d) The trivial action for a G-set X is g � x D x for all g 2 G, x 2 X .

Exercise 2.1.1 Prove that\
x2X

stab.x/ D kerŒG
'
�! Sym.x/�:

Definition 2.1.5 (Faithful Action) An action is faithful if ker' D feg.

Definition 2.1.6 (Free Action) An action is free if stab.x/ D feg for all
x 2 X .88: The trivial group acting on the empty

set is an example of an action which is
free but not faithful.

Proposition 2.1.2 If X is a G-set, then if x; y 2 X such that y D g � x for
some g 2 G. Then, Gx ' Gy . In fact,99: That is, the isomorphism is given by


 W a 7! gag�1, conjugation.
Gy D gGxg

�1
´ fgag�1 W a 2 Gxg:

Proof. We must first show that 
 is well-defined. That is, if a 2 Gx , then

.a/ D gag�1 2 Gy . In fact, gag�1 �y D ga �x D g � .ax/ D g �x D y. This
actually shows that gGxg�1 � Gy . Since x D g�1 � y, the same argument
give g�1 � Gy.g�1/�1 � Gx , which shows that 
 has an inverse function
given by sending b 7! g�1bg.

2.2 Applications of Actions and Orbits

Theorem 2.2.1 (Cayley) Every group G is isomorphic to a subgroup of some
Sym.X/ for some set X . Furthermore, if G is finite, then we can choose
jX j <1.1010: It turns out, this is not very useful. It

is, however, historically important.

Proof. We have the left action by G on X D G, given by

' W G ! Sym.X/;
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where '.g/.x/ D gx. This is a faithful action; i.e., the kernel of ' is trivial.11 11: It is also free.
Thus, ' W G ��! '.G/ � Sym.X/.

Proposition 2.2.2 Let jGj < 1, and let p be the smallest prime such that
p j jGj. Then, any subgroupH � G with jG W H j D p is a normal subgroup.12 12: You already know this for p D 2.

Proof. The proof is that there is the left action by G on X D G=H . We have
a homomorphism ' W G ! Sym.G=H/ ' Sp . Let K ´ ker' � G. Note
that K � H , as if '.g/ D id, then '.g/.eH/ D gH D eH , so g 2 H . We
know, by the first isomorphism theorem, that G=K ' '.G/ � Sp . We also
know that

j'.G/j D jG=Kj D jG W Kj D jG W H j D jH W Kj D pjH W Kj:

Now, '.G/ � Sp so j'.G/j dives pŠ, so jH W Kj divides .p � 1/Š. Yet,
Lagrange actually tells us that jH W Kj D jH j=jKj j jGj. We know that
p is the smallest prime factor dividing jGj. Hence, jH W Kj D 1, so K D
ker' D H E G.

Definition 2.2.1 (Orbit) Given aG-setX , we can define a relation� onX by
the recipe x � y if and only if there exists a g 2 G such that g � x D y under
the action.13 13: Show that this is an equivalence

relation onX .
The orbit G � x is an equivalence class of this relation:

G � x´ fg � x W g 2 Gg:

Note that the equivalence relation partitions X into pairwise disjoint and
non-empty subsets (the orbits).

Definition 2.2.2 (Transitive Action) An action is transitive if there is exactly
one orbit.14 14: This is equivalent to the prior

definition.

Remark 2.2.1 Recall that if x � y, then Gx and Gy are conjugate
subgroups of G.

Theorem 2.2.3 (Orbit/Stabilizer) For any actionG onX , and for any x 2 X ,
there is a bĳection

G= stab.x/
g stab.x/7!g �x
���������!

bĳection
G � x:

As a consequence, for any orbit O� X , we have that jOj D jG W stab.x/j, for
any x 2 O.15 15: We essentially proved this on the

second problem set.

Proposition 2.2.4 If X is a G-set, with jX j <1, then

jX j D

rX
kD1

jG W stab.x/j;

where x1; : : : ; xr 2 X are representative elements of the distinct orbits of the
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action.1616: In other words,G � xi \G � xj D ¿
if xi ¤ xj , and

r[
iD1

G � xi D X: Proof. X is partitioned into pairwise disjoint sets via the orbits, and using
the orbit/stabilizer theorem, we have a way to count.

2.3 Cauchy’s Theorem

Definition 2.3.1 (Fixed Set of Action) Define

XG ´ fx 2 X W g � x D x for all g 2 Gg:

Example 2.3.1 Let us consider actions by G ´ Cp , where p is prime.
Suppose X is a G-set, jX j <1. The orbits can have size 1 or p. Letm be
the number of orbits of size 1, and write n as the size of orbits of size p.
Then, jX j D mC pn. That is,

jX j D mC pn � m D
ˇ̌̌
XG

ˇ̌̌
.mod p/:

Theorem 2.3.1 (Cauchy) Let G be a finite group, and let p be a prime such
that p j jGj. Then there exists a g 2 G with jgj D p.1717: We give a more recent proof, due to

McKay, which is a lot more clever than
the standard proof you will see in algebra
texts.

Proof. Consider the set

X ´ f.g1; : : : ; gp/ 2 G
p
W g1 � � �gp D eg:

Then, we have that jX j D jGjp�1µ np�1. This is because gp is the inverse
of .g1 � � �gp�1/�1. In particular, p j jX j. Now, define a function

X
'

������! X

.g1; : : : ; gp/ 7������! .g2; : : : ; gp; g1/:

We need to verify that .g1; : : : ; gp/ 2 X implies '.g1; : : : ; gp/ 2 X . Well,
if g1g2 � � �gp D e, then conjugating by g�1 tells us that g2 � � �gpg1 D e.1818: In fact,'�1 also takesX intoX . Thus,

' is actually a permutation of the setX . Also, if we compose 'p D id, so if H D Cp D h'i, then we get an action
byH on X . Explicitly,

H D h'i ������! Sym.X/

' 7������! ':

Now, recall that ifH D Cp acts on a finite set, then jX j �
ˇ̌
XH

ˇ̌
.mod p/.

Now, in our case, we have thatˇ̌̌
XH

ˇ̌̌
� jX j � 0 .mod p/:
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What is XH ? SinceH is cyclic, the fixed set

XH D fx 2 X W '.x/ D xg;

which is precisely the set

XH D f.g1; : : : ; gp/ 2 G
p
W g 2 G; gp D eg

Since .e; : : : ; e/ 2 XH , we have that
ˇ̌
XH

ˇ̌
� p, so any g 2 G with g ¤ e

has .g; : : : ; g/ 2 XH with order p.

2.4 A Note on Cycles and An

Given G ´ Sym.X/, and given a sequence x1; : : : ; xk of distinct elements
in X , define19 19: Note that we can cylically permute the

elements of � freely, as long as we do not
change the cyclic order. Also, .x1/ D id.

� ´ .x1 x2 � � � xk/ 2 G;

where

�.x/ D

�
x; if x … fx1; : : : ; xlg
xiC1; if x D xi ; i 2 Œk � 1�
x; if x D xk :

Any cycles � D .x1; : : : ; xk/; � D .y1; : : : ; y`/ are disjoint if the sets

fx1; : : : ; xkg \ fy1; : : : ; y`g D ¿:

If so, then �� D �� .

Proposition 2.4.1 If jX j <1, then every g 2 Sym.X/ is equal to a product
of disjoint, nontrivial cycles. Furthermore, this representation is unique up to
reordering the cycles.

Proof Outline. The idea is that H D hgi � Sym.X/ acts tautologically on
X . We know that when we have a group action, we can decompose it into
the orbits of the action byH on X .20 20: These are basically the cycles.

For instance, consider g 2 S9 defined by

1 5 2 7 6

3 8 4 9

 

!

 

!

 

!

 

!

 

!

 

!

 

!  

!  

!

In this case, we can decompose21 g D .1 3 8 5/.2 4 7/.6 9/. 21: The picture gives us all the
information about the disjoint cycles that
we need.We also have the cycle conjugation formula. If we have

� D .x1 x2 � � � xk/ 2 Sym.x/

and g 2 Sym.X/, then

g.x1 x2 � � � xk/g
�1
D .g.x1/ g.x2/ � � � g.xk//:
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Now, given sgn W Sn ! f˙1g.22 Then,22: This is the sign homomorphism. One
“formula” is

sgn.�/ D det
�
e�.1/ � � � e�.n/

�
: ker.Sn

sgn
��! f˙1g/µ An � Sn:

Theorem 2.4.2 An is simple if n � 5.2323: A group is called simple if it only has
two normal subgroups.

Proof. Use the cycle conjugation formula to show that any nontrivial
N E An contains every element of An.

Example 2.4.1 One example of a simple group is Cp for prime p.

2.5 Category SetG of G-Sets

Now, fix a group G. We can define a category of G-sets called SetG . We
define the objects ob SetG to be .X;G

'
�! Sym.x// and the morphisms

HomSetG ..X; '/; .X
0; '0// to be functions of sets f W X ! X 0 such that for

all g 2 G and x 2 X , then2424: If we write both actions as g � x, then
the condition is

f .g � x/ D g � f .x/: f .'.g/.x// D '0.g/.f .x//:

Given this language, we can now talk about isomorphisms of G-sets.

Proposition 2.5.1 If we have

f 2 HomSetG ..X; '/; .X
0; '0//

is an isomorphism if and only if it is a bĳection X ! X 0.2525: Note that there are categories, such
as the category of topological spaces,
where the isomorphisms are not simply
bĳections. Proposition 2.5.2 Fix G. Any transitive G-set is isomorphic in SetG to an

object of the form G=H for someH � G.2626: Here,G=H is precisely the set of left
cosets with the standard left coset action.

We also have thatH is unique up
to conjugation in G; i.e., there is a bĳective correspondence between transitive
G-sets up to isomorphism and subgroups of G up to conjugacy.

Proof. If X is a transitive G-set, pick an element x 2 X , and let

H ´ stab.x/ � G:

Then, define a function

G=H
f

������! X

gH 7������! g � x:

We claim that f is a well-defined bĳection. Now, we show that f is a
morphism in SetG . Well, for all g 2 G, f .g � aH/ D g � f .aH/, and
f .g � aH/ D f .g � aH/ D ga � x, and g � f .aH/ D g � .a � x/.27 Note27: This last statement is true, so f is a

morphism by symmetry. that we can show that if f W G=H ! X is any isomorphism of G-sets,
then let x0 ´ f .eH/. We can calculate that stab.x0/ D H . If g 2 G and
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g � x0 D x0, then f �1.g � x0/ D f �1.x0/, and we can pull the g out to give
us g � eH D g � f �1.x0/ D eH , so g 2 H .28 28: Use the same argument, but

backwards, to show the other direction of
inclusion.

Whereas the orbit/stabilizer gives us a way to count, this proposition about
SetG gives us a way to classify.

2.6 Conjugation Action

Recall that if we have g; x 2 G, then conjg.x/ D gxg
�1. This gives a group

action G ! Sym.G/.

Definition 2.6.1 (Conjugacy Class) The orbits of the conjugation action are29 29: Recall that these partition G by
subsets.

Cl.x/´ fgxg�1 W g 2 Gg;

called the conjugacy classes.

Definition 2.6.2 (Centralizer) The stabilizer of the conjugation action is

CG.x/´ fg 2 G W gxg
�1
D xg D fg 2 G W gx D xgg;

called the centralizer subgroup.30 30: We have that CG.x/ � G.

Remark 2.6.1 The kernel of conj W G ! Sym.G/ is precisely

Z.G/´ fg 2 G W gx D xg for all x 2 Gg E G;

the center of G.31 31: This is precisely the intersection of all
the centralizers.

Now, recalling the orbit/stabilizer theorem, we know that

jCl.x/j D jG W CG.x/j:

Example 2.6.1 We have that Cl.e/ D feg, and CG.e/ D G.

Example 2.6.2 Now, if G is abelian, then CG.x/ D G and Cl.x/ D fxg.
It is not very informative in this case.

Let G ´ D2n. We can write

D2n D
˝
r; s
ˇ̌
rn; s2; .sr/2

˛
D fe; r; : : : ; rn�1; s; sr; : : : ; srn�1g:

Since there are two generators r; s, all we need is the following:32 32: Note thatD4n always has a center of
order 2.

conjr .r
k/ D rk

conjr .sr
k/ D srk�2

conjs.r
k/ D r�k

conjs.sr
k/ D sr�k :
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Remark 2.6.2 The general method forD2n is to conjugate each element
by r and s, via the formulae computed, after chasing the conjugation
diagrams.3333: We can use the orbit/stabilizer

theorem to deduce the order of the
centralizers. In D4nC2, it is typical to
have all reflections in the same conjugacy
class. Theorem 2.6.1 (Class Equation) Let jGj <1. Then,

jGj D jZ.G/j C

rX
kD1

jG W CG.gk/j;

where g1; : : : ; gk are representative elements of distinct conjugacy classes of G,
which are not contained in Z.G/.3434: Recall that g 2 Z.G/ if and only if

Cl.g/ D g . Note that each term on the
RHS divides jGj, and

1 < jG W CG.gk/j < jGj:

Proof. There are two types of orbits O of conj:

I jOj D 1 if and only if jG W CG.x/j D 1 if and only if x 2 Z.G/.
I jOj � 2 if and only if jOj D jG W CG.x/j for any x 2 O.

Now, for any group action on X , we have

jX j D
X
jOjD1

jOj C
X
jOj�2

jOj;

and grouping view counting and our observations above yields the class
equation.

Despite this being a seemingly silly result, we can actually get some nifty
results out of it.

Definition 2.6.3 (p-group) A p-group is a finite group with jGj D pd ,
where d � 1.

Theorem 2.6.2 Every p-group has a non-trivial center.

Proof. Use the class equation:we know that jGj D pd , and the indices
mi j p

d , and 1 < mi < pd , so p j jGj and p j mi for all i . Thus, p j jZ.G/j,
which means the center is nontrivial.3535: This tells us that p-groups can “de-

structured” by using this fact about their
centers.

Corollary 2.6.3 If we have jGj D p2, then G is abelian.

Proof. For any group G, if G=Z.G/ is cyclic, then G is abelian.36 Now, if36: Why is this true? Well, pick hgi 2
G=Z.G/. Lift g to an element g 2 G. We
claim that every element y of G can be
written as y D gkx, where x 2 Z.G/,
and k 2 Z. Thus, if we have gkxg`x0 D
g`x0gkx.

jGj D p2, then jZ.G/j 2 fp; p2g, by the theorem, so jG=Z.G/j 2 f1; pg, so
G=Z.G/ is cyclic.



2.7 Automorphism Groups 25

2.7 Automorphism Groups

Recall that an endomorphism of a group G is a homomorphism ' W G ! G,
and an automorphism is an isomorphism ' W G ! G. Note that in general,

Aut.G/—
group

� End.G/˜
monoid

D HomGrp.G;G/:

Now, recall that we have a homomorphism

conj W G ! Aut.G/ � Sym.G/;

and ker.conj/ D Z.G/.

Definition 2.7.1 (Inner Automorphisms) The image37 37: That is, the image of conjugation is
the group of inner automorphisms.

conj.G/µ Inn.G/ � Aut.G/;

is the inner automorphism group, and by the first isomorphism theorem,
Inn.G/ ' G=Z.G/.

Example 2.7.1 If G is abelian, then Inn.G/ D fidg.38 38: Once again, abelian groups make our
tools useless.

Example 2.7.2 Let G ´ D6. What is End.D6/? Fix H . Well, there is a
bĳection

˚
homomorphisms
D6

'
����! H

	
�

�����!

�
.R; S/ 2 H �H

R3 D S2 D SRSR D e

�
:

Suppose H D D6. Then, R3 D e implies R 2 fe; r; r2g and S2 D e

implies S 2 fe; s; sr; sr2g, such that .SR/2 D e.39 39: There will be 10 distinct
endomorphisms. What if we were,
instead, checking for automorphisms?
We know that if ' 2 Aut.G/, then
R 2 fr; r2g and S 2 fs; sr; sr2g, so we
have an upper bound

jAutj.D6/ � 6:

We also have Inn.D6/ ' D6=Z.G/,
which is of order 6. Thus, there exists
an isomorphism

D6
��! Aut.D6/;

via conj.

Proposition 2.7.1 Let ' 2 Aut.G/. Then, with g 2 G, we can write

' conjg '
�1
D conj'.g/ :

As such, Inn.G/ E Aut.G/.

Proof. Let x 2 G. Then,

.' conjg '
�1/.x/ D '.conjg.'

�1.x///

D '.g'�1.x/g�1/

D '.g/'.'�1.x//'.g/�1

D '.g/x'.g/�1 D conj'.g/.x/:
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Definition 2.7.2 (Outer Automorphisms) Seeing as the inner automorphisms
form a normal subgroup, we can form the outer automorphism group4040: Note that there are not “outer

automorphisms.” Rather, Out.G/
contains equivalence classes of
automorphisms.

Out.G/´ Aut.G/= Inn.G/:

Recall that Inn.G/ ' G=Z.G/. How do you find “outer automorphisms”
of G? We want to embed G as a normal subgroup in someH . Take G E H .
We get4141: That is, �.h/.g/ D hgh�1.

H
�

������! Aut.G/

h 7������! conjh
ˇ̌
G
:

Proposition 2.7.2 The kernel of �, as above, is

ker � D CH .G/´ fh 2 H W hx D xh for all x 2 G g;

the centralizer of G inH .4242: This is immediate from the definiton.

Proposition 2.7.3 We can also write

��1.Inn.G// D CH .G/G E H:

Proof. Note that �.CH .G// D fidg and �.G/ � Inn.G/. Suppose ´ 2 H , so
that �.´/ 2 Inn.G/. Then, there exists a g 2 G such that �.´/ D �.g/ D

conjg . If we take
�.´g�1/ D �.´/�.g/�1 D id;

so y D ´g�1 2 CH .G/. Thus, ´ D yg 2 CH .G/G, which means
��1.Inn.G// D CH .G/G.

Figure 2.1: We have that

H=CH .G/G ' K � Out.G/:

H Aut.G/

H=CH .G/G Aut.G/= Inn.G/ D Out.G/

 

!
�

 

�  � �

�

!

Consider
H ´ D16 D

˝
r; s
ˇ̌
r8; s2; .sr/2

˛
:

Then, G D
˝
r2; s

˛
E H .43 Now, � W H ! Aut.G/, and43: As an exercise, show thatG 'D8.

ker.�/ D CH .G/ D fe; r
4
g � G:

Doing this shows that

��1.Inn.G// D CH .G/G D G:

Thus, we have an injective homomorphism � W H=G � Out.G/, where
H=G '

˝
r
ˇ̌
r2
˛

and Out.G/ ' D8. Thus, conjr
ˇ̌
G

defines an “outer
automorphism” of G ' D8.
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Proposition 2.7.4 Let us look at another standard example, Sn. Well, Z.Sn/ D
feg if n ¤ 2.44 44: In the case wheren D 2,Sn is abelian,

so the center is certainly not trivial.

Proof. Let � 2 Z.Sn/. Then, �.a b/��1 D .a b/, but we also know that
�.a b/��1 D .�.a/ �.b//. This implies that �.a/ 2 fa; bg. If there exists a
c … fa; bg, the same argument gives us �.a/ 2 fa; cg. Since we can run this
for any two elements, �.a/ D a.

Remark 2.7.1 Because of the above, if n � 3, we have that Inn.Sn/ ' Sn.

Remark 2.7.2 We have that Out.Sn/ D feg unless n D 6, in which case
Out.S6/ ' C2.45 45: We omit proof for when n ¤

6. However, note that ' 2 Aut.G/
preserves a lot of structure. For instance,
'.Cl.g// D Cl.'.g//, and if ' 2
Inn.G/, then

'.Cl.g// D Cl.G/:

In the case of the symmetric group, let

T ´ Cl..1 2// � Sn:

Then, '.T / is a conjugacy class of
elements of order 2. We would then show
that if '.T / D T , then ' is innner, and
then we count the sizes of conjugacy
classes of elements of order 2 in Sn. We
can show that the only class with the same
size is T .

Example 2.7.3 In the alternating group An, we can show that Z.An/ D
feg if n ¤ 3. The proof is very similar to Z.Sn/. In fact, An E Sn, so
we can show that CSn.An/ D feg if n � 5. As a consequence, we get
an injective homomorphism Sn=An ' C2� Out.An/, meaning there
always exists a non-trivial automorphism of An for all n.

2.8 Automorphisms of Cyclic Groups

Recall that if G is abelian, then Inn.G/ D fidg, so Aut.G/ D Out.G/.
Consider G D C1 D haj¿i ' .Z;C/. Then, the endomorphisms in

End.C1/ D Hom.C1; C1/ ��! Z;

where we just take ' 7! n, taking '.a/ D an.

Remark 2.8.1 Define 'n 2 End.C1/ such that 'n.a/ D an, meaning
'n.a

k/ D ank . Then, since End.C1/ is a monoid, 'mı'n.a/ D 'm.an/ D
amn D 'mn.a/. Thus, we have an isomorphism of monoids End.C1/ '
.Z; �/. Thus, Aut.C1/ ' f˙1g.

Example 2.8.1 Let Cn D hajani ' .Z=n;C/. Well, End.Cn/ D
Hom.Cn; Cn/ ��! Z=n. Then, we can take ' 7! Œk�, where '.a/ D ak .46 46: This k is only defined up to

modulo n. Like before, we have
an isomorphism of monoids, where
.Z=n; �/ ' Hom.Cn; Cn/. As a
consequence, Aut.Cn/ ' .Z=n/�, the
group of units.

For instance,

Aut.C2/ D .Z=2/� D fŒ1�g
Aut.C3/ D .Z=3/� D fŒ1�; Œ2�g
Aut.C4/ D .Z=4/� D fŒ1�; Œ3�g
Aut.C5/ D .Z=5/� D fŒ1�; Œ2�; Œ3�; Œ4�g
Aut.C6/ D .Z=6/� D fŒ1�; Œ6�g:

Additionally, j.Z=7/�j D 6, and .Z=8/� ' V4.
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Proposition 2.8.1 In general,

jAut.Cn/j D j.Z=n/�j D '.n/;

where ' is Euler’s totient function.4747: Recall that the totient counts the
number of elemenets f0; : : : ; n�1gwhich
are relatively prime to n.

Given this work, you might wonder if we could generalize this work on
cyclic groups to abelian groups.

Example 2.8.2 Consider

G ´ Cp � Cp � � � � � Cpœ
m products

;

where jGj D pm. Then,4848: This is partially because G is
isomorphic to the vector space .Z=p/m,
under addition. Aut.G/ ' GLm.Z=p/:

This is, of course, not abelian if m � 2.

Example 2.8.3 The automorphism group

Aut.C2 � C2/ ' GL2.Z=2/ ' S3:
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Recall that a p-group is a group of order pa, where a � 1 and p is prime.

3.1 Sylow Theorems

Definition 3.1.1 (p-Sylow Subgroup) A subgroup P � G such that P is a
p-group and p − jG W P j is called p-Sylow.

Note that this is actually equivalent to saying that jGj D pam, where p − m,
and jP j D pa where a � 1.

Remark 3.1.1 We have a notation for the set

Sylp.G/´ fP � G W P is a p-Sylow subgroupg:

Now, G acts on Sylp.G/ via conjugation, as for g 2 G and P 2 Sylp.G/,
we have that gPg�1 D P 0 2 Sylp.G/.

1 1: The notation for cardinality here is

np.G/´
ˇ̌̌
Sylp.G/

ˇ̌̌
:

Now, fix a finite group G and a prime p such that p j jGj.

Theorem 3.1.1 (Sylow I) There exists a p-Sylow subgroup of G.

Theorem 3.1.2 (Sylow II) Any two p-Sylow subgroups of G are conjugate.2 2: That is, Sylp.G/ is a singleG-orbit.
Thus, a p-Sylow subgroup P E G if and only if np.G/ D 1.

Theorem 3.1.3 (Sylow III) If P 2 Sylp.G/, then

np D jG WNG.P /j

and np � 1 .mod p/.

We will give proofs for the Sylow theorems, but we will start with some
applications.

Remark 3.1.2 Fix primes p < q. Suppose jGj D pq. Then, np 2 f1; qg.
Similarly, nq D 1.3 3: We can have np D q if and only if

q � 1 .mod p/, and nq D p if and only
if p � 1 .mod q/, which does not work.

Proposition 3.1.4 If jGj D pq, then there exists P � G such that jP j D p,
and A E G such that jQj D q. If we also have that p − q � 1, then G is cyclic.

Proof. In this case, np D 1, so P E G. Also, because p; q are primes,
P D hxi, Q D hyi, and P \ Q D feg. Thus, xy D yx, so the group is
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abelian. Why? Well,

xyx�1y�1 D x.yx�1y�1/ 2 PP D P

and
.xyx�1/y�1 2 QQ D Q;

so xyx�1y�1 D feg. Thus, ´ D xy has order pq, where ´k D xkyk , and
D e if and only if xk D y�k 2 P \Q D feg, so p j k, q j k. As such, we
must have pq j k.

Example 3.1.1 (Groups of Order 30) Let jGj D 30 D 2 � 3 � 5. We can
write that44: We use Sylow III.

n2 2 f1; 3; 5; 15g

n3 2 f1; 10g

n5 2 f1; 6g:

We claim that we cannot have n3 D 10 and n5 D 6, as n3 D 10 impliesG
has 2 � 10 elements of order 3, and n5 D 6 implies G has 4 � 6 elements
of order 5.55: That is too many elements. Choose jP j D 3 and jQj D 5. One of these is normal in G.
Consider

PQ D fxy W x 2 P; y 2 Qg:

We have that PQ � G, since either P orQ is normal. Thus, jPQj D 15,
meaning jG W PQj D 2, and PQ E 2. Yet, 3 − 5 � 1, so by the previous
proposition, PQ is cyclic. Thus, every G of order 30 has a normal
subgroup C15 ' N E G.

Example 3.1.2 (Groups of Order 12) If jGj D 12 D 3 � 22, then

n3 2 f1; 4g

n2 2 f1; 3g:

If G has no normal 3-Sylow subgroup, then it is isomorphic to A4.66: We omit the proof for brevity. Check
Rezk’s notes. The idea is that if n3 D 4,
then we have an action by G on the set
Syl3.G/ which has size 4. Thus, there is
a homomorphism

G
'
���! Sym.Syl3.G// ' S4:

The exercise here is to show that ' is
injective, and '.G/ D A4.

Now, let us prove the Sylow theorems.

Proof of Sylow I. We claim (�) that

(i) there exists a properH < G such that p − jG W H j or
(ii) there exists N E G such that jN j D p.

We will use the claim (�) to prove Sylow I, proceeding by induction on
jGj. For the base case, jGj D p implies P D G. For the inductive step, by the
claim, either (i) or (ii). If (i), then by induction, there exists P � H which
is p-Sylow in H . Then, jH j D pam0, where m0 j m. Thus, P 2 Sylp.G/.
If (ii), then consider G ´ G=N . Then,

ˇ̌
G
ˇ̌
D pa�1m < jGj, and via

induction, there exists P � G, where
ˇ̌
P
ˇ̌
D pa�1. Write � W G� G for

the canonical quotient homomorphism. Let P ´ ��1.P /. Then P � G,
and jP j D

ˇ̌
P
ˇ̌
jN j D pa, so P 2 Sylp.G/.
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Proof of Claim (�). Via the class equation, we will show that if not (i), then
(ii). Not (i) implies that for all H < G, p j jG W H j. In particular, p j
jG W CG.xk/j for all k 2 Œr�. The class equation implies that p j jZ.G/j. By
Cauchy, there exists an x 2 Z.G/ such that jxj D p. SetN ´ hxi E G.

Lemma 3.1.5 LetH;K � G. We have an action K onto G=H by k � gH ´
kyH . Then, this action has a fixed point if and only if there exists x 2 G such
that K � xHx�1.

Proof. Suppose there exists xH 2 G=H such that k � x D xH for all k 2 K.
Then, for all k 2 K, kx 2 xH , which means k D kxx�1 2 xHx�1. Thus,
K � xHx�1. Conversely, if x 2 G such that K � xHx�1, then for all
k 2 K, k 2 xHx�1. As such, kx � xH , meaning kxH D xH . Thus, xH is
a fixed point of the action K onto G=H .

Proposition 3.1.6 If P 2 Sylp.G/, and Q � G such that Q is a p-group,
then there exists an x 2 G such thatQ � xPx�1.7 7: Equivalenetly, x�1Qx � P .

Proof. We have Q;P � G and jP j D pa and jGj D pb � pa. Remember
that jG W P j D m, where p − m. Consider the action of Q onto G=P . We
want to show that this has a fixed point, which by the lemma, would show
thatQ � xPx�1. We do some counting:

jG=P j D

dX
iD1

jOi j;

where each Oi � G=P is an orbit of theQ-action. Then, each jOi j j jQj D pb .
In other words, we have

jOi j 2 f1; p; p
2; : : : ; pbg:

Then, jG=P j D m, so there exists an i such that p − jOi j, so Oi D fxP g,
which is a fixed point.

Corollary 3.1.7 If Q is also p-Sylow, then jQj D
ˇ̌
xPx�1

ˇ̌
D pa, so Q D

xPx�1. This is Sylow II.

Corollary 3.1.8 [
P2Sylp.G/

P D fy 2 G W jyj D pk ; k � 0g:

Proof of Sylow III. Sylow II tells us that Sylp.G/ is a transitive G-set. Well,
the orbit/stabilizer gives us that8 8: Let P 2 Sylp.G/.

np D
ˇ̌̌
Sylp.G/

ˇ̌̌
D jG WNG.P /j:
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Suppose P 2 Sylp.G/. Then, P inherits an action onto Sylp.G/, where for
x 2 P and Q 2 Sylp.G/, x acts onQ by xQx�1. What are the fixed points
of the action? Define

c´
ˇ̌̌
fQ W Q 2 Sylp.G/ is fixed by P g

ˇ̌̌
:

Well, c � 1, as P is fixed by P , and c � np .mod p/, as jP j D pa implies
orbits of any P -action have sizes 1; p; p2; : : : ; pa. We will show that c D 1.
SupposeQ is a p-Sylow subgroup such that

xQx�1 D Q

for all x 2 P . Then, P normalizesQ.9 Yet,Q ENG.Q/ � G. Furthermore,9: That is, P �NG.Q/.
Q is a p-Sylow subgroup in NG.Q/. Well, Sylow II tells us that if Q is a
normal p-Sylow subgroup, then it is the only p-Sylow subgroup in NG.Q/.
Thus, P D Q.1010: See Rezk’s notes for an outer

automorphism of S6.

3.2 Ascending Chain Condition

We now begin our discussion of finitely generated groups.

Definition 3.2.1 (Finitely Generated) A groupG is finitely generated if there
exists a finite subset S � G such that G D hSi.

We can make some observations about finite generation:

I jGj <1 implies G is finitely generated.
I jS j <1 implies the free group F.S/ is finitely generated.1111: This is clear from the reduced word

construction of F.S/. I G ' H implies G is finitely generated if and only if H is finitely
generated.

I G being finitely generated and N E G implies G=N is finitely
generated.1212: IfG D hSi, thenG=N D

˝
S
˛
, and we

have the canonical map � W G� G=N ,
where S D �.S/.

Remark 3.2.1 Note that there is absolutely no reason for subgroups to
preserve this property, generally. Keep this in mind; it is a common pitfall
students make when studying finitely generated groups.

Proposition 3.2.1 If S is a set and G D F.S/ is the free group on S , then G
is finitely generated if and only if jS j <1.

Proof. We have that jS j < 1 implies F.S/ is finitely generated.1313: This is easy: take F.S/ D hSi.
Conversely, we claim that if F.S/ D hT i for some T � F.S/, jT j < 1,
and then jS j <1. We can write

T D fx1; : : : ; xng � F.S/;

where each xk is a reduced word in symbols on S . If Sk � S is the finitely
subset of symbols such that xk is a reduced word in Sk , then let

S 0´

n[
kD1

Sk � S;
ˇ̌
S 0
ˇ̌
<1:
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We have that F.S/ D hT i D hS 0i. Therefore, S D S 0 is finite.

Example 3.2.1 Consider G ´ F.a; b/, the free group on 2 elements.
Write xn ´ anbaa�n 2 G, for any n 2 Z. Let H ´ hxn; n 2 Zi � G.
We claim thatH is not finitely generated.

Proof. Let S be the set of symbols fXn; n 2 Zg. Define a homomorphism14 14: Remember, it is easy to build
homomorphisms out of free groups.

F.S/
'

������! G

Xn 7������! xn D a
nba�n:

Note that '.F.S// D H , meaning we have a surjective homomorphism
' W F.S/� H , and we claim that ' W F.S/ ��! H . By the proposition,H
cannot be finitely generated. Why is ' injective? A typical element w in
F.S/ can be written as

w´ X
c1
k1
X
c2
k2
� � �X

cr
kr

with r � 0; ki 2 Z; ci 2 f˙1g;

so that if ki D kiC1, then ci D ciC1.15 We compute 15: This condition is what makes it a
reduced word. Note that this is a unique
expression.'.w/ D ak1bc1a�k1 � ak2bc2a�k2 � � � � � akr�1bcr�1a�kr�1akrbcra�kr :

The question is: is this e? Cancellation can occur only if ki D kiC1 and
ci D �ciC1. However, this cannot happen, so if '.w/ D e, then w D ./.16 16: Thus, the kernel is trivial, meaning '

is an injection.

Remark 3.2.2 Without proof, we note that every subgroup of a free
group is a free group.

Now, moving towards the ascending chain condition, let .P;�/ be a poset.

Definition 3.2.2 (Ascending Chain Condition) We say that .P;�/ has
the ascending chain condition (ACC) if for every ZC-indexed sequence fxk 2
P g1

kD1
such that xk � xkC1 for all k 2 ZC, then there exists an N 2 ZC

such that xk D xN for all k � N .

Equivalently, .P;�/ does not have the ACC if there exists a sequence in P
of the form

x1 < x2 < x3 < � � � fxk 2 P gk2ZC ;

where xk < xkC1 for all k.

Definition 3.2.3 (ACC for Subgroups) A groupG has the ACC for subgroups
if .Subgroups.G/;�/ has the ACC.

Proposition 3.2.2 Let G be a group. Then, the following are equivalent:

(i) G has ACC for subgroups.
(ii) Every subgroup of G is finitely generated.
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Proof. We start with (i)) (ii). We will show that :(ii)) :(i).17 If G0 is17: That is, every subgroup is not finitely
generated, then ACC fails. not finitely generated, then we can choose a sequence of elements xk 2 G0,

k 2 ZC, such that
xk 2 G

0
n hx1; : : : ; xk�1i :

LetHk ´ hx1; : : : ; xki � G0 � G; i.e.,

H1 < H2 < H3 < � � � � G;

so we are done. Now, conversely, suppose every subgroup of G is finitely
generated. Consider an ascending chain

H1 � H2 � H3 � � � � � G:

LetH ´
S1
kD1Hk . Then,H � G. By hypothesis,H is finitely generated,

so H D hy1; : : : ; ymi, and each yi 2 Hki for some ki . Now, defining
k ´ max.k1; : : : ; ki / implies fy1; : : : ; ymg � Hk . Thus, H � Hk � H ,
meaningHk D H .1818: As such, G has the ACC for

subgroups.

Proposition 3.2.3 Let N E G. The following are equivalent:

(i) G has the ACC for subgroups.
(ii) Both N and G=N have the ACC for subgroups.

Proof. Start with (i)) (ii). Suppose G has the ACC for subgroups. Then, it
is immediate that N does too. Suppose

H 1 � H 2 � � � � � G=N:

We have the quotient homomorphism � W G� G=N . Let

Hk ´ ��1.H k/;

so via the ACC, there exists an N such thatHk D HN for all k � N . Well,
then �.Hk/ D �.HN /, and so the H k stabilize. Conversely, consider a
chain

H1 � H2 � � � � � G:

Then, we get a new chain

H1 \N � H2 \N � � � � � N;

and
H1N=N � H2N=N � � � � � G=N;

where HkN=N D �.Hk/. By hypothesis, there exists an n for all k � n,
Hk \ N D Hn \ N and HkN=N D HnN=N . Therefore, Hk D Hn for all
k � n.1919: Suppose x 2 Hk . Then, xN 2

HkN=N D HnN=N , so xN 2 HnN .
Thus, there exists k 2 N such that
xn 2 Hn. We have that x D yk�1,
y 2Hn, so

y�1x D n�1 2Hk \N DHn \N:

Theorem 3.2.4 Every subgroup of a finitely generated abelian group is finitely
generated.

Proof. Suppose G is an abelian group which has a generated set of size n.
We proceed by induction on n that G has the ACC for subgroups. In the
n D 0 case, G D feg. Now, for a proper base case n D 1, we have G D hxi.
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Since subgroups of cyclic groups are cyclic, the base case holds. Now, for
n � 2,

G D hx1; x2; : : : ; xni :

LetH D hx1; : : : ; xn�1i, and by induction,H has the ACC for subgroups.
Well, G=H D hxni,20 so it has the ACC for subgroups, meaning G has the 20: SinceG is abelian,H E G.
ACC for subgroups.21 21: Thus, by the equivalence, every

subgroup ofG is finitely generated.

3.3 Torsion and Products

Hereafter, assume G is abelian.

Definition 3.3.1 (Torsion) An element a 2 G is torsion if jaj <1. We write

Gtors ´ fa 2 G W jaj <1g

for the set of torsion elements.

Proposition 3.3.1 Since G is abelian, Gtors � G is a subgroup.22 22: This is easy, but we need G to be
abelian.

Definition 3.3.2 (Torsion Group) We say that a group G is a torsion group
if it is abelian and Gtors D G.

Example 3.3.1 For instance, Cm1 � � � � � cmr . In fact, any finite abelian
group is torsion.

Example 3.3.2 Take the group G ´ .Q=Z;C/. This group is countably
infinite and abelian. However, it is a torsion group. Every element

x D
a

b
CZ 2 G;

and take the “bth power” yields

bx D b
�a
b
CZ

�
D aCZ D 0CZ;

which means jxj divides b.

Definition 3.3.3 (Torsion Free) An abelian group G is torsion free if its
torsion group is trivial: Gtors D feg.

Proposition 3.3.2 If G is abelian, then G=Gtors is torsion free.

Proof. Suppose x 2 G=Gtors, where jxj D n < 1. Let x 2 G such that
�.x/ D x. Well, xn 2 Gtors, so jxnj D m for some m < 1, which means
xmn D e. Thus, x 2 Gtors, meaning x D e.23 23: If you kill the torsion elements, the

elements that are left are torsion free.
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Proposition 3.3.3 If G is abelian, finitely generated, and torsion, then G is
finite.

Proof. SupposeG D ha1; : : : ; ani, where jai j D mi <1. SinceG is abelian,
every x 2 G can be written as

x D a
k1
1 a

k2
2 � � � a

kn
n

for some ki 2 Z, where ki 2 f0; 1; : : : ; mig. Thus, jGj � m1m2 � � �mk .

Corollary 3.3.4 Both Q=Z and Q are not finitely generated.2424: Recall that finite generatoin is
preserved by taking quotients.

Definition 3.3.4 (Direct Product) We define the direct product

G D G1 � � � � �Gn´ f.g1; : : : ; gn/ W gi 2 Gig:

Definition 3.3.5 (Projection Homomorphism) We get the projection
homomorphism

�k W G ! Gk ;

where
�k W .g1; : : : ; gn/ 7! gk :

Proposition 3.3.5 For any groupH and product G ´ G1;� � � � �Gn, then
there is a bĳection

Hom.H;G/ ��! Hom.H;G1/ � � �Hom.H;Gn/;

where ' W H ! G becomes .'1; : : : ; 'n/, taking 'k ´ �k ı ' W G ! Gk ,
and we also get

'.h/ D .'1.h/; : : : ; 'n.h//:

Remark 3.3.1 (Free/Co Product) GivenG1; : : : ; Gn, there exists a group2525: We will not constrct this here, but
the construction parallels that of the free
group. G0´ G1 � � � � �Gn

called the coproduct, such that

Hom.G0;H/ D Hom.G1;H/ � � � � �Hom.Gn;H/:

Example 3.3.3 We have that V4 D C2 � C2, the Klein 4-group.

Remark 3.3.2 We can regard Gk as a subgroup of G ´ G1 � � � � �Gn.
For specifically, we have an injective homomorphism

Gk
�k

������! G;
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where
�k W x 7! .e; : : : ; x; e/:

We have fGk ´ �k.Gk/ E G.

Theorem 3.3.6 Let G be a group with normal subgroups G1; : : : ; GN E G
such that

(i) G1G2 � � �Gn D G.
(ii) Gk \ .G1G2 � � �Gk�1/ D feg for all k 2 f2; : : : ; ng. Then,

G1 �G2 � � � �Gn
'

������! G

.g1; g2; : : : ; gn/ 7������! g1g2 � � �gn

is an isomorphism of groups.

Sketch of Proof. We have Gi ; Gj E G. We claim that if Gi \Gj D feg, then
for all x 2 Gi and y 2 Gj , we have xy D yx.26 Well, (ii) inplies if i > j , 26: We can write

xyx�1y�1 D .xyx�1/y 2 GjGj :

On the other hand,

xyx�1y�1 D x.y�1x�1y/ 2 GiGi :

Thus, the commutator is in the
intersection, so it is trivial, giving us the
result.

then
Gi \ .G1G2 � � �Gi�1/ D feg;

and we use this to prove ' is a homomorphism. Note that we need the
second property for injectivity.

Proposition 3.3.7 Let G D G1 � � � � �Gk . Let g 2 G. Then,

jgj D lcm.jg1j; : : : ; jgkj/;

or1 if any jgi j D 1.

Proof. We have the formula

gn D .gn1 ; g
n
2 ; : : : ; g

n
k/;

so gn D eG if and only if gni D eGi for i 2 Œk�. In other words, the order of
Gi divides n for all i 2 Œn�.27 27: By definition, the smallest of these is

the lcm.

Proposition 3.3.8 Let

G ´ Cm1 � Cm2 � � � � � Cmk ;

where Cmi ´
˝
xi
ˇ̌
x
mi
i

˛
. Then, if

x D x
a1
1 x

a2
2 � � � x

ak
k
; ai 2 Z;

then
jxj D lcm

�
m1

d1
;
m2

d2
; : : : ;

mk

dk
;

�
where di ´ gcd.mi ; ai /.
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Corollary 3.3.9 If m D m1m2 � � �mk , then

Cm1 � � � � � Cmk ' Cm;

if and only if gcd.mi ; mj / D 1 for all i ¤ j .

We have a nice consequence. If

m D p
e1
1 p

e2
2 � � �p

ek
k
;

where pi are distinct primes, then2828: We call the decomposition the primary
decomposition.

Cm ' Cpe1
1

� C
p
e2
2

� � � � � C
p
ek
k

:

Remark 3.3.3 We have a classification of finitely generated abelian
groups, which states that all such groups are isomorphic to a finite
product of cyclic groups.2929: This is nontrivial, and we will discuss

it later when we have developed more
structural tools.

3.4 Extensions and Semidirect Products

LetH;K;G be groups.

Definition 3.4.1 (Group Extension) We say G is an extension3030: Dummit and Foote do not use this
language, but it is common in the
literature.

of K byH
if there existsH 0 E G such thatH 0 ' H and G=H 0 ' K.

Definition 3.4.2 (Split Extension) A split extension is an extension, as above,
if there exists K 0 � G so that

K 0
�

,���! G
�
����! G=H 0 ' K

is an isomorphism: K 0 ' G=H .

We have an alternate formulation of extensions. We have a homomorphism

Figure 3.1: This sort of thing is called a
short exact sequence of groups. H G K

�

!
j  �p

such that j is injective, p is surjective, and kerp D j.H/.3131: Note:H 0 D j.H/ andG=H 0 ��! K.

Remark 3.4.1 (Extension Problem) GivenH;K, find all groupsGwhich is
an extension ofK byH . This is hard, but we can give such a classification
by group cohomology.

Example 3.4.1 If G ´ H �K, then we have the trivial extension of K
byH , whereH 0´ H � feg. Then, the projection map � W G=H 0 ��! K

via .h; k/ 7! k. Alternatively, we also have a trivial extension ofH by K.

Trivial extensions are always split.
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Example 3.4.2 Consider H D K D C2. Let G1 ´ C2 � C2 D H � K,
which is the trivial extension of K by H . Let G2 ´ C4 D

˝
a
ˇ̌
a4
˛
. Then,

H D
˝
a2
˛
, and G=H '

˝
a
ˇ̌
a2
˛
D K.32 32: The latter extensionG2 is not split.

Example 3.4.3 LetH ´ C3 and K ´ C2. We have one extension

G1´ C6´
˝
a
ˇ̌
a6
˛
;

and we haveH D
˝
a2
˛
' C3, so the quotient gives usG=H D

˝
a
ˇ̌
a2
˛
' C2.

Let K 0 ´
˝
x3
˛
. Then, K 0 ��! C6=

˝
a2
˛
.33 33: Thus,G1 is a split exttension. In fact,

since C6 ' C3 � C2, so it is a trivial
extension.

Now, let G2 D S3 ' D6. Then,
H D hri ' C3 and G2=H ' C2. This is a split extension. For instance,
take K 0 D hsi, hsri,

˝
sr2

˛
.

Example 3.4.4 Similarly, let us writeH D c2 and K D C3. We still have
a trivial extension of G1 ' C2 � C3 ' C6.34 34: It turns out this is the only extension

of C3 by C2.

It turns out, split extensions correspond exactly to semidirect products.

Theorem 3.4.1 To identifyG as a split extension, it is enough to find subgroups
H;K � G such that35 35: This is an equivalency.

(i) H E G.
(ii) G D HK.
(iii) H \K D feg.

Proof. Condition (i) gives us �.K/ ´ kH , taking the K ! G ! G=H

short exact sequence, as before. Thus, ker� D H\K. Finally,� is surejctive
if and only if G D KH .36 36: That is, the second two conditions

force � to be an isomorphism.

In particular, every g 2 G can be written uniquely as g D hk for unique
H 2 H and K 2 K. That is, there is a bĳection G ��! H � K where
hk 7! .h; k/.

Remark 3.4.2 We get a homomorphism

K
˛

�������! Aut.H/

k 7������! ˛k

defined by ˛k.h/´ khk�1 2 H .37 37: That is,

˛k D conjk
ˇ̌
H
2 Aut.H/:

Remark 3.4.3 We can reconstruct the group structure onG fromH;K; ˛.
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Let g1 D h1k1; g2 D h2k2 2 G, where hi 2 H and ki 2 K. Well,

g1g2 D h1k1 � h2k2

D h1k1h2k
�1
1 k1k2

D h1 � ˛k1.h2/ � k1k2

D h � k;

where h D h1˛k1.h2/ 2 H and k D k1k2 2 K.3838: We can actually proceed in reverse.
Proving the construction is exceptionally
tedious. At least, as an exercise, check that
G is a group as defined. Theorem 3.4.2 Given groupsH;K and ˛ 2 HomGrp.K;Aut.H//. LetH ´

H �K as a set. Define a product on G by

.h1; k1/ � .h2; k2/´ .h1˛k1.h2/; k1k2/:

Then,

(i) G is a group with identity .e; e/ and inverse

.h; k/�1 D .˛k�1.h
�1/; k�1/:

(ii) G is a split extension of K byH with

H ��! H 0´ f.h; e/ W h 2 H g � G

and
K ��! K 0´ f.e; k/ W k 2 Kg � G:

We have H 0 E G, H 0 \ K 0 D feg, G D H 0K 0, and for h 2 H 0 and
k 2 K 0, we have khk�1 D ˛k.h/.

Definition 3.4.3 (Semidirect Product) We call .G; �/, as above, the semidirect
product ofH and K using ˛, and we write3939: Dummit and Foote do not include ˛

in the notation, which makes no sense.
G D H Ì˛ K:

Every split extension of K byH arises as a semidirect product.

Exercise 3.4.1 If ˛.K/ D fidg � Aut.H/, thenH Ì˛ K D H �K.

Example 3.4.5 (Infinite Dihedral Group) let H ´ F.a/ D haji ' C1.
let K ´

˝
b
ˇ̌
b2
˛
' C2. Define

˛ W K ! Aut.H/ D fid; invg

by ˛.b/ D inv. Then, considering G D H �K as a set is

fanek W n 2 Zg or fanb W n 2 Zg

Then if ˛b D inv, we have ˛b.a/ D a�1. Thus, there is a presentation

G '
˝
a; b

ˇ̌
b2; bab�1a

˛
' D1:
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Example 3.4.6 Note that we haveD2n ' Cn Ì˛ C2, where we have

C2 ! Aut.Cn/ ' .Z=nZ/�:

If you chase through the definition, we haveCn´ hr jrni andK ´
˝
s
ˇ̌
s2
˛
,

where we have ˛ W s 7! .r 7! r�1/.

Example 3.4.7 Let G D C8 Ì˛ C2. We could have

˛ W C2 ! Aut.C8/ ' .Z=8Z/�:

There are four different semidirect products here.

Example 3.4.8 (Groups of Order 30) We have thatG ' N Ì˛H for some
˛ W C2 ! Aut.C15/.40

40: We use what we have learned about
groups of order 30 from the Sylow
theorems.

Let us presentH D
˝
a
ˇ̌
a2
˛
and N D

˝
b
ˇ̌
b15

˛
. Since

Aut.C15/ ' .Z=15Z/�, we know this group is of order eight. We have
four different ˛s:41 41: Note that there is an isomorphism of

rings Z=15Z ' Z=3Z�Z=5Z, so their
groups of units is isomorphic toC2 �C4.

˛a W b 7! b; b4; b�4; b�1:

For each of these, we can deduce a presentation:42 42: We can try to use conjugacy classes to
distinguish these groups.

G1 D
˝
a; b

ˇ̌
a2; b15; aba�1 D b

˛
' C30

G2 D
˝
a; b

ˇ̌
a2; b15; aba�1 D b4

˛
G3 D

˝
a; b

ˇ̌
a2; b15; aba�1 D b�4

˛
G4 D

˝
a; b

ˇ̌
a2; b15; aba�1 D b�1

˛
' D30:

Well, for G4, the conjugacy classes are

feg; fb; b�1g; fb2; b�2g; : : : ; fb7; b�7g

and
fa; ab�2; ab�4; ab�6; : : : ; ab�1; : : : g:

On the other hand, for G2,

feg; fb; b4g; fb2; b8g:fb3; b12g; fb5g; fb6; b9g; fb10g; fb11; b14g; fb7; b13g

Interestingly, Z.G2/ D fe; b5; b10g.43 43: Note that

bab�1 D ab4b�1 D ab3;

b.abi /b�1 D abiC3:

For the as, we get

fa; ab3; ab6; ab9; ab12g; fab; ab4; ab7; ab10; ab13g;

fab2; ab15; ab8; ab11; ab14g:

The hard question is to determine whether G2 ' G3. In G3, we have
ab D b�4a and ba D ab�4. Then, bab�1 D ab�5, so we get a class

Cl.a/ D fab�5; ab�10; ag:

It looks like these conjugacy classes are of size three. Then, note that

Cl.b3/ D fb3; ab3a�1 D b�12 D b3g;

so Z.G3/ D
˝
b3
˛
. Thus, G2 § G3.44 44: Thus, there are four distinct groups of

order 30 up to isomorphism, and they
are all semidirect products C15 Ì C2,
distinguished by their centers.
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Now, we need to distinguish between the standard definitions of rings,
those having unity and not. To avoid a clash with Dummit and Foote, who
take the classical approach, we define rings to not inherently have unity.

4.1 Basic Definitions

Definition 4.1.1 (Ring) A ring is a triple .R;C; �/ such that .R;C/ is an
additive group, � W R2 ! R is associative, and multiplication distributes over
addition from either side.

Definition 4.1.2 (Ring With Unity) A ring with unity is a ringR with 1 2 R
such that 1 � a D a D a � 1 for all a 2 R.

Definition 4.1.3 (Commutative Ring) A commutative ringR has a �b D b �a
for all a; b 2 R.

Proposition 4.1.1 (Easy Facts) We have some easy facts about rings.1 1: If you do not know how to prove these
immediately, sit down and do them. They
are easy exercises.(i) a � 0 D 0 D 0 � a.

(ii) .�a/b D �.ab/ D a.�b/.
(iii) .�a/.�b/ D ab.
(iv) If 1 2 R, it is unique, and

.�1/a D �a D a.�1/:

Example 4.1.1 (Trivial Ring) The best ring is R ´ f0g, which is
commutative and unital.2 2: This is the only ring in which 1 D 0.

You will find that some people disallow
such a ring. This is stupid. We need the
zero ring if we use categories.Definition 4.1.4 (Unit) Let 1 2 R. A unit is an element in a 2 R such that

there exists b 2 R so that ab D 1 D ba, and a�1 D b.3 3: Such an inverse b is unique.

Definition 4.1.5 (Group of Units) We write

R�´ fa 2 R W a is a unitg:

We have that R� is a group under multiplication, which is a quick proof.

Example 4.1.2 (Matrix Ring) Say R is a ring and n � 1. Let S ´Mn.R/.
Then, S is a ring via the matrix operations. The corresponding group of
units, S�µ GLn.R/, the group of invertible n � nmatrices over R.4 4: Assume 1 2 R.
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Definition 4.1.6 (Zero Divisor) An element 0 ¤ a 2 R is a zero divisor if
there exists b 2 R such that ab D 0 or ba D 0.

Definition 4.1.7 (Non Zero Divisor) We say 0 ¤ a 2 R is a non zero divisor
(or cancellable) if it is not a zero divisor.55: That is, for any b 2 R, either ab D 0

or ba D 0 imply b D 0.

Definition 4.1.8 (Integral Domain) An integral domain (or, simply domain)
is a commutative ring with 1 such that 1 ¤ 0 and ab D 0 implies either a D 0
or b D 0, for all a; b 2 R.66: It has no zero divisors.

Proposition 4.1.2 If R is commutative and unital, then R is a domain if and
only if (R n f0g; �/ is a monoid.

That is, for all r 2 R n f0g and 1 ¤ 0, x 7! rx is an injection.

Definition 4.1.9 (Field) A field is a commutative, unital ring such that 1 ¤ 0
and for all 0 ¤ a 2 R, the element a is a unit.

In this case, for all r 2 R n f0g and 1 ¤ 0, x 7! rx is a bĳection.

Proposition 4.1.3 We have that a commutative, unital ring R is a field if and
only if (R n f0g; �) is a group.

Example 4.1.3 (Fields) We have the usual examples R;Q;C; Fp .

Proposition 4.1.4 Every finite domain is a field.77: Injective for a finite set implies bĳective.

Definition 4.1.10 (Division Ring) A division ring (or skew field) is a unital
ring R such that every r 2 R n f0g is a unit, and 1 ¤ 0.88: Division rings are precisely

“noncommutative” fields.

Definition 4.1.11 (Subring) A subring of a ring R is a subset S � R which
inherits a ring structure from R.99: In other words, S is closed under C,

�, and with those operations .S;C; �/ is a
ring.

Remark 4.1.1 (Subring Equivalent Definition) A subset S � R is a
subring if

(i) .S;C/ � .R;C/.
(ii) S is closed under multiplication.

Example 4.1.4 Let R´M2.R/ 3 1, but

S ´

��
� 0

0 0

�
2 R

�
;

is a subring, yet 1S ¤ 1.
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Now, when we talk about unital rings, we usually want its subrings to have
the same 1. In practice, when people are discussing rings with unity, they
are considering the case where the subrings inherit the identity.10 10: The issue is that Dummit and Foote

do not define subring this way.

Example 4.1.5 Let R´ Z. We have that S D 2Z is a subring, but 1 … S

Example 4.1.6 There are some classic examples of rings.

(a) Z=nZ for n � 1
(b) The quaternions

H´ faC bi C cj C dk W a; b; c; d 2 Rg;

where i; j; k are symbols which satisfy11 11: Here, ij D k D �j i , jk D i D
�ki , and ki D j D �ik. We know H
is a divison ring. What is the formula for
inverses? Well, the conjugate

x´ a � bi � cj � dk;

and

xx D a2 C b2 C c2 C d2 2 R;

so we can divide by it. Thus,

x�1 D
x

xx
:

i2 D j 2 D k2 D �1

(c) Function rings

F.X;R/ D ff W X ! R functionsg;

where
.f C g/.x/ D f .x/C g.x/

and
.fg/.x/ D f .x/g.x/;

taking X to be a set and R to be a ring
(d) Given a ring R; S , the product ring R � S has component-wise

operations.

4.2 Quadratic Integer Rings

TakeD to be a square-free integer.12 Define a subring Q.
p
D/ � C which 12: That is, it is nonzero and has no

repeated prime factor.can be written as the set

faC b
p
D W a; b 2 Qg:

We actually have that Q.
p
D/ is a field. Well,

.aC b
p
D/�1 D

a

a2 � b2D
C

�b

a2 � b2D

p
D:

If a2�b2D D 0, thenD D .a=b/2, which is impossible if a; b 2 Q, because
D is square-free.13 Now, let ZŒ

p
D� be the integral coefficient subset of 13: In fact, if D is square-free, then the

expression aC b
p
D is unique.Q.

p
D/. It is a subring. In fact, it is a domain, inheriting the lack of zero

divisors from C. The famous example is the Gaussian integers ZŒi � D ZŒ
p
i �.

If D � 1 .mod 4/, then let ! D .1 C
p
D/=2 2 C. Well, we can always

write

!2 D
.1C

p
D/2

4
D
1C 2

p
D C 1C 4k

4
;
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which is just �
1

2
C k

�
C
1

2

p
D D ! C k:

Now, define

OD OQ.
p
D/
´

(
ZŒ
p
D�; D � 2; 3 .mod 4/

faC b! W a; b 2 Zg; D � 1 .mod 4/:

We claim OQ.
p
D/

is a subring of Q.
p
D/.14 We call this the ring of integers14: Closure under multiplication comes

from !2 D ! C k. inside Q.
p
D/. For instance, whenD D �3,

OQ.
p
�3/ D faC b! W a; b 2 Zg;

where

! D
1

2
C
1

2

p
�3 D

1

2
C

p
3

2
i:

This ring is known as the Eisenstein integers.1515: An exercise is to show

OD

n
aC b

p
3i

2

o
;

where a; b 2 Z and a � b .mod 2/.
Proposition 4.2.1 Let D be square free with D � 1 .mod 4/. Then, if
x D a C b

p
D 2 Q.

p
D/, then x 2 OQ.

p
D/

if and only if a � b 2 Z and
2a 2 Z.

Definition 4.2.1 (Norm Map) We have a norm

Q.
p
D/! Q

defined by

N.aC b
p
D/ D .aC b

p
D/.a � b

p
D/ D a2 � b2D 2 Q:

The norm above has the properties N.˛/ D 0 if and only if ˛ D 0,
N.˛ˇ/ D N.˛/N.ˇ/, and ˛ 2 OQ.

p
D/

implies N.˛/ 2 Z.

Proposition 4.2.2 An element ˛ 2 OQ.
p
D/

is a unit if and only if N.˛/ 2
Z� D f˙1g.

Proof. Since N is multiplicative and N.1/ D 1, it is easy to see that if
˛ 2 O�, then N.˛/ 2 Z�. Conversely, if ˛ D a C b

p
D and N.˛/ 2 Z�,

then a2 � b2D D ˙1. Well, by our formula for reciprocals, ˛�1 2 O.

Remark 4.2.1 (Pell’s Equation) This means ˛ D x C y
p
D 2 O� for

x; y 2 Q if and only if x2 �Dy2 D ˙1.

Example 4.2.1 Consider the Gaussian integers. Then, OD ZŒi �, so

O� D faC bi W a; b 2 Z; a2 C b2 D 1;g D f˙1;˙ig ' C4:
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Example 4.2.2 Consider the Eisenstein integers. It turns out,16 16: Here, ! is a primitive sixth root of
unity.

O� D f˙1;˙!;˙!2g ' h!i ' C6:

Remark 4.2.2 If D is square-free and D < 0, then O�
Q.
p
D/

is finite. If
D > 0, then O�

Q.
p
D/

is infinite.

4.3 Monoid and Group Rings

Usually you will hear about “group rings,” but it is worth considering a
slightly more general object. Let G be a monoid and R be a commutative
unital ring.

Definition 4.3.1 (Monoid Ring) We define the set of formal sums

RŒG�´

˚
finiteX
g2G

ag Œg� W ag 2 R

	
:

This is the monoid ring RŒG�.17 17: Really, an element ofRŒG� is a tuple
of .ag/g2G , where ag 2 R, such thatˇ̌

fg 2 G W ag ¤ 0g
ˇ̌
<1:

Then, Œh� D .ag/ such that ah D 1 and
ag D 0.

Proposition 4.3.1 RŒG� is a ring via the “obvious” formulae:X
g

ag Œg�C
X
g

bg Œg� D
X
g

.ag C bg/Œg�

and �X
g1

ag1 Œg1�
��X

g2

bg2 Œg2�
�
D

X
g

� X
g1g2Dg

ag1bg2

�
Œg�:

The idea is that
Œg1�Œg2� D Œg1g2�:

Proposition 4.3.2 RŒG� is unital, where 1 D Œe�, where e 2 G is the identity.18 18: If G is not commutative, there is no
reason to expectRŒG� to be, either. IfG is
a group, thenRŒG� is called a group ring.

Example 4.3.1 If jGj D n <1, where G D fg1; : : : ; gng, then

RŒG� D

(
nX
kD1

ak Œgk � W ak 2 R

)
:

Example 4.3.2 Let G D fe; gg ' hgjg2i. Let R D Q. Then,

QŒG� D fa0Œe�C a1Œg� W a0; a1 2 Qg;

where the operations are

.a0Œe�C a1Œg�/C .b0Œe�C b1Œg�/ D .a0 C b0/Œe�C .a1 C b1/Œg�
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and

.a0Œe�C a1Œg�/.b0Œe�C b1Œg�/ D .a0b0 C a1b1/Œe�C .a0b1 C a1b0/Œg�:

Since G is abelian, QŒG� is commutative. Is this a field/domain? No:

.Œe�C Œg�/.Œe� � Œg�/ D 0:

Exercise 4.3.1 QŒG� ' Q �Q.1919: This is an isomorphism of rings.

Example 4.3.3 (Polynomial Ring) Let G D fe; a; a2; a3; : : : g D

fangn2Z�0 . This is a monoid, but not a group.2020: In particular, it is the free monoid on
one generator.

Then, we could form
RŒG�. We will write x´ Œa�, and a short exercise shows us xk D Œak �. A
typical element in RŒG� can be seen as

fa0 C a1x C � � � C arx
r
W g � 0; ai 2 Rg :

As such, RŒG� is the ring of polynomials in one generator x with
coefficients in R. Usually, we will write RŒx� for this.

4.4 Homomorphisms and Isomorphisms

Let S;R be rings.

Definition 4.4.1 (Ring Homomorphism) A homomorphism ' W R! S is a
function which “preserves all the structure.” That is,

'.aC b/ D '.a/C '.b/

and
'.ab/ D '.a/'.b/;

for all a; b 2 R.

Remark 4.4.1 Even if 1R 2 R and 1S 2 S , a homomorphism of rings
' W R! S might or might not have '.1R/ D 1S .2121: These are the consequences of

following Dummit and Foote here.

Example 4.4.1 Let R1; R2 be unital rings. Define S ´ R1 �R2, where
1S D .1R1 ; 1R2/. Now, ' W R1 ! S defined by '.r/ ´ .r; 0/ is a ring
homomorphism, but '.1R1/ ¤ 1S .2222: Check that this is a ring

homomorphism. It will be quick.

Definition 4.4.2 (Unit-Preserving Homomorphism) We will often specify
a homomorphism to be unit-preserving, sending 1 to 1.

Definition 4.4.3 (Image) Given ' W R! S , a homomorphism, '.R/ � S is
a subring of S .
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Definition 4.4.4 (Kernel) We have that ker' ´ fr 2 R W '.r/ D 0g is a
subring of R.23 23: Usually this does not contain 1.

According to Rezk, this means it really
is not a ring.

Definition 4.4.5 (Ring Isomorphism) An isomorphism is a homomorphism
' W R! S such that '�1 exists.24 24: Isomorphisms of rings certainly have

to preserve unity, if it exists.

4.5 Ideals and Quotients

In some sense, ideals are the parallel of normal subgroups in rings. However,
there are instances where this inherited intuition fails.

Definition 4.5.1 (Ideal) Let R is a ring and I � R be a subset. Then, if
r 2 R, write

rI ´ frx W x 2 I g

and
I r ´ fxr W x 2 I g:

Then, I � R is a left ideal if I � .R;C/ and rI � I for all r 2 R. Similarly,
a right ideal I � .R;C/ and I r � I for all r 2 R. Then, a two-sided ideal (or,
just ideal) is I � R which is both a left and a right ideal.

Proposition 4.5.1 If R is commutative, then left ideals are the same as right
ideals, so we just call them ideals.25 25: For the moment, only worry about

two-sided ideals.

Example 4.5.1 (Unit Ideal) Let I ´ R.

Example 4.5.2 (Trivial Ideal) Let I ´ f0g � R.

Remark 4.5.1 Any ideal is a subring using Dummit and Foote’s definition
of subring. In particular, if 1 2 R, then the only ideal I � R with 1 2 I
is the unit ideal.

Given I � R which is a left, right, or two-sided ideal, we can form

R=I ´ faC I W a 2 Rg;

where aC I D faC x W x 2 I g is a coset of I in the group .R;C/. If I is
two-sided, then R=I is a ring such that the quotient map � W R! R=I is a
ring homomorphism.

Definition 4.5.2 (Quotient Ring) Our ring structure for the quotient ring
R=I is defined by

.aC I /.b C I /´ .ab/C I:

Exercise 4.5.1 Show that the operation above makes R=I into a ring if I
is two-sided.26 26: In particular, we need to show that

the operation is “well-defined.” This fact
absolutely uses that I is two-sided.
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Remark 4.5.2 Note that � is certainly surjective, by construction, and
ker� D I . Note further that if ' W R ! S is any homomorphism of
rings, then I ´ ker' � R is always a two-sided ideal.

Lemma 4.5.2 (Homomorphism Theorem) Let ' W R ! S be a
homomorphism of rings. Let I � R be a two-sided ideal. If I � ker',
then there exists a unique ring homomorphism ' W R=I ! S such that
'.aC I / D '.a/.

R S

R=I

 

!
'

 

�

�

 

!

9Š

'

Figure 4.1: Diagram of the
homomorphism theorem, which
holds if I � ker'. We omit the proof,
since it mirrors the theorem for groups.

Theorem 4.5.3 (First Isomorphism Theorem) If ' W R ! S is a ring
homomorphism, then ker' is an ideal in R, '.R/ is a subring of S , and we
have an isomorphism of rings

' W R= ker' ��! '.R/:

R S

R= ker' '.R/

 

!
'

 

��

 

!
�

'

 
-

!

�

Now, let R be a general ring with a subring A � R and ideal I � R.

Theorem 4.5.4 (Second Isomorphism Theorem) We have the following:

(i) AC I is a subring of R.
(ii) I is an ideal in AC I .
(iii) A \ I is an ideal in A.
(iv) A=.A \ I / ' .AC I /=I is an isomorphism of rings.2727: In fact, we have the map x C .A \

I/ 7! xC I .

Proof. Both the first and second isomorphism theorems for rings have
proofs akin to the group theorems. Prove them as an exercise.

R

AC I

A I

A \ I

 

 

!

 
-

ideal

!

 
-ideal

  

  

Figure 4.2: Diagram of the second
isomorphism theorem

Theorem 4.5.5 (Lattice Isomorphism Theorem) Let I � R be an ideal in a
ring. Then, there is a bĳective correspondence�

ideals J � R
st I � J

�
�

 �����!

�
ideals in
R=I

�
J ´ ��1.J / 7������! �.J / � R=I

The opposite map is J 7! ��1.J /.

4.6 Polynomial Rings

Let R be a unital ring. We define the polynomial ring

RŒx�´ set of formal expressions
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f D
X
k2Z�0

akx
k ;

where ak 2 R and almost all of the ak are 0.

Definition 4.6.1 (Degree of Polynomial) The degree degf of an f 2 RŒx�
is the largest n such that an ¤ 0, or it is �1 if no such n exists. That is,28 28: We take �1 since that is certainly

less than 0, giving us a nice ordering.
deg W RŒx�! Z�0 [ f�1g:

Definition 4.6.2 (Constant Polynomial) A polynomial f 2 RŒx� is constant
if degf 2 f0;�1g.

Note that �
constant

polynomials

�
subring

,������! RŒx�;

where we have an isomorphism of the LHS with R, taking a 7! a � x0.29 29: This is so canonical, that we usually
just writeR � RŒx�.

Proposition 4.6.1 Let R be a domain. Then,

(i) f; g 2 RŒx� implies deg.fg/ D deg.f /C deg.g/.30 30: Assume �1C k D �1 for any k.
(ii) .RŒx�/� D R�.
(iii) RŒx� is a domain.

(i) Proof. Let f D amx
m C lower deg polynomials, am ¤ 0 and g D

bnx
n C � � � , where bn ¤ 0. Then,

fg D .ambn/x
mCn
C � � � ;

where ambn ¤ 0.31 31: We use thatR is a domain.
(ii) Proof. We know that deg 1 D 0. If fg D 1, then degf C degg D 0,

so degf D degg D 0, meaning f; g 2 R � RŒx�. Thus, RŒx�� D
R�.

(iii) Proof. If f; g 2 RŒx� and f; g ¤ 0, then degf;degg 2 Z�0. Then,
degfg 2 Z�0, so fg ¤ 0.

Note that given R, we can form

R RŒx� .RŒx�/Œy� ..RŒx�/Œy�/Œ´� � � � ;

so we usually write .RŒx�/Œy� D RŒx; y� ' .RŒy�/Œx�.32 32: If R is a domain, so is
RŒx1; x2; : : : ; xn�.

Proposition 4.6.2 (Universal Property of Polynomial Rings) Let R; S
be commutative rings with 1. For every .'; a/, where ' W R ! S is a ring
homomorphism, '.1R/ D 1S , and a 2 S , then there exists a unique ring
homomorphism e' W RŒx� ! S which preserves 1, so that e'.r/ D '.r/ if
r 2 R � RŒx�, ande'.x/ D a.33 33: The universal property is our recipe

for forming new ring homomorphisms.
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Proof. Given '; a, define

RŒx�
e'

������! S

f D

finiteX
ckx

k
7������!

X
'.ck/a

k :

Verify thate' is a ring homomorphism preserving unity. Uniqueness is the
observation that the rulese' must satisfy force this formula:

e'�finiteX
ckx

k

�
D

Xe'�ckxk� DXe'.ck/e'.x/k ;
forcing our formula.

Consider the special case S D R and ' D idR W R! R.

Corollary 4.6.3 LetR be commutative and unital. Let a 2 R. Then there exists
a unique ring homomorphism e' W RŒx� ! R such that e'jR D idR, where
R � RŒx�, ande'.x/ D a. We have the formula3434: This homomorphism of rings is

called evaluation at a, which is a neat
fact: evaluation of a polynomial is a
homomorphism. This is nice because
.f C g/.a/ D f .a/ C f .b/ and
.fg/.a/ D f .a/g.a/.

e'�X ckx
k
�
D

X
cka

k
µ f .a/:

Remark 4.6.1 Given R as commutative and unital, we get a function
RŒx� ! F.R;R/, where the latter is the set of all functions R ! R,
which is a ring under pointwise operations. The map is

RŒx�
ev

������! F.R;R/

f 7������! .a 7! f .a//;

so ev is a ring homomorphism preserving 1.

Observe that ev W RŒx�! F.R;R/ can fail to be injective.

Example 4.6.1 Consider R D Z=p D Fp , where p is a prime. Then,
we have ev W FpŒx� ! F.Fp; Fp/. Define f ´ xp � x 2 FpŒx�. Then,
ev.f / D 0, because ap D a for all a 2 Fp .3535: We use Fermat’s Little Theorem. This

is precisely why algebraists do not think
of polynomials as functions.

4.7 Particular Ideals and Zorn’s Lemma

Given a ring R and a subset A � R, then we can form

.A/´
\

ideals I�R
stA�I

I:

Note that the intersection of ideals is an ideal, so .A/ � R is the smallest
ideal of R which contains the set A. We call .A/ the ideal generated by A.
Notationally, if A D fa1; : : : ; ang, then .A/ D .a1; : : : ; an/.36 Now, define36: We use parentheses, which is mostly

standard. Sometimes you will see hAi.
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RA´ fr1a1 C � � � C rkak W ri 2 R; ai 2 A; k � 0g

AR´ fa1r1 C � � � C akrk W ri 2 R; ai 2 A; k � 0g

RAR´ fr1a1r
0
1 C � � � C rkakr

0
k W ri ; r

0
i 2 R; ai 2 A; k � 0g:

Proposition 4.7.1 If R is unital, then .A/ D RAR. If R is commutative and
unital, then .A/ D AR D RA. If 1 … R, then37 37: We only care about unital rings, so do

not worry about this.
.A/ D hAi CRAC ARCRAR:

Proof. Prove the above as an exercise.38 38: We need to (1) verfiy thatRAR is an
ideal. Then, (2) show that A � J , which
uses that 1 2 R. Finally, (3) show that if
I � R is an ideal such thatA � R, then
J � I .

Definition 4.7.1 (Principal Ideal) We define a principal ideal I to be I D .a/,
where a 2 R.

In a unital ring, we have a formula I D .a/ D RaR, and ifR is commutative,
then I D .a/ D Ra.

Example 4.7.1 Let R´ ZŒx�, the integral polynomial ring. Define an
ideal I ´ .2; x/ � ZŒx�. We claim that I is not a principal ideal.

Proof. Recall that

I D fg � 2C h � x W g; h 2 ZŒx�g:

Suppose I D .p/ for some p 2 ZŒx�. Since 2; x 2 I , there exist f; g 2 ZŒx�
such that 2 D pf and x D pg. Then, deg.2/ D deg.p/ C deg.f / and
deg.x/C deg.p/C deg.g/, meaning deg.p/C deg.f / D 0 and deg.p/C
deg.g/ D 1. Hence, deg.p/ D deg.f / D 0 and deg.g/ D 1. That is,
p; f 2 Z � ZŒx�; i.e., 2 D pf implies p; f 2 f˙1;˙2g. For instance, if
p D ˙2, then x D ˙2g D ˙2.aCbx/�˙2aC˙2bx, implying˙2b D 1.39 39: This is a contradiction to b 2 Z.
We are left with the case p D ˙1, which give us I D ZŒx�. We claim this
is not true, either. If 1 2 I , then 1 D 2mC xn, where m; n 2 ZŒx�

ev0
���! Z,

which sends us to 1 D 2m.0/C0n.0/, which is impossible, sincem 2 Z.

Example 4.7.2 If R ´ F is a field, then consider F Œx; y�. Then, I ´
.x; y/ � F Œx; y� is not principal.

Proposition 4.7.2 Let R be commutative and unital. Then, R is a field if and
only if R has exactly two ideals (which necessarily are R ¤ .0/.)40 40: The wording here cleverly exlcudes

the zero ring, which is not a field.

Proof. An element a 2 R� if and only if .a/ D R. If R is a field, then 1 ¤ 0.
If I � R and I ¤ .0/, then pick any a 2 I n f0g. Since R is a field, a 2 R�
so Ra D R � I , meaning I D R. Conversely, if R ¤ f0gwith only ideals
R; .0/, then if a 2 Rnf0g, then I D Ra � R is an ideal. We see that .0/ ¤ I ,
so I D R, meaning a 2 R�.41 41: You will hear algebraists call fields the

simplest kind of ring, since they are sparse
in ideals.

Corollary 4.7.3 Any nonzero ' W F ! R ring homomorphism from a field is
injective.
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Proof. If ker' � F as an ideal, then ker' D .0/ so ' is injective

Definition 4.7.2 (Maximal Ideal) Let R be unital. An idealM � R is called
maximal if M ¤ R and if M � N � R, where N is an ideal in R, either
N DM or N D R.4242: That is,M is maximal among proper

ideals.

Proposition 4.7.4 Let R be commutative and unital. An ideal M � R is
maximal if and only if R=M is a field.

Proof. Via the lattice isomorphism theorem, we have a correspondence
between ideals in R=M and ideals in R which containM .

Definition 4.7.3 (Prime Ideal) Let R be commutative with 1. Then, an ideal
P � R is prime if P ¤ R and if ab 2 P , then either a 2 P or b 2 P .

Remark 4.7.1 We can restate the definition above as R=P is a monoid
under multiplication.

Proposition 4.7.5 P is a prime ideal if and only if R=P is a domain.4343: Note that, as a corollary,R is a domain
if and only if .0/ is prime.

Corollary 4.7.6 Every maximal ideal is prime.

Proof. All fields are domains.

Example 4.7.3 Let R´ Z. The only ideals in Z are of the form .n/. We
have that .n/ is maximal if and only if n D ˙ prime. It is prime if and
only if n D ˙ prime or n D 0.

Theorem 4.7.7 (Maximal Ideal Theorem) LetR be unital. Every proper ideal
is contained in some maximal ideal.4444: In particular, every nonzero unital

ring has at least one maximal ideal.

Corollary 4.7.8 If R is unital and commutative, then R ¤ .0/ implies there
exists a quotient ring which is a field.

Definition 4.7.4 (Partial Order) A partial order � on X is a relation such
that x � x, x � y; y � x implies x D y, and x � y; y � ´ implies x � ´.

Definition 4.7.5 (Chain) In a poset .X;�/, a chainC � X is a totally ordered
subset.4545: That is, for all x; y 2 C , either x � y

or y � x.

Definition 4.7.6 (Upper Bound) For S � X , an upper bound of S is u 2 X
such that s � u for all s 2 S .
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Definition 4.7.7 (Maximal Element) A maximal element of X is an element
m 2 X such that if m � x, then m D x for all x 2 X .46 46: In other words, it is maximal among

all things it can be compared to.

Lemma 4.7.9 (Zorn’s) Let .X;�/ be a nonempty poset. If every nonempty
chain in X has an upper bound in X , then X has a maximal element.

Proof. It is equivalent to the axiom choice. We are not studying set theory,
so look elsewhere for the proof.

Lemma 4.7.10 (Zorn’s Equivalent) Let .X;�/ be a poset. If every chain in X
has an upper bound in X then X has a maximal element.47 47: We took out nonempty.

Proof of Maximal Ideal Theorem. Let 1 2 R © I be an ideal. let

X D fJ � R ideals W J ¤ R and I � J g:

By Zorn’s lemma, X has a maximal element which is the desired thing.
Well, I 2 X , soX is nonempty. Suppose we have a nonempty chain C � X .
Let A D

S
J2C J � R. We claim that A is a proper ideal with I � A. Then,

A 2 X and A is an upper bound of C . Well, I � A is easy, since C ¤ ¿.
Clearly A is an ideal. Now, why is A ¤ R? If A D R ,then 1 2 A, but
then 1 2

S
J , so there exists a J 2 C such that 1 2 J , meaning J D R, a

contradiction.

4.8 Rings of Fractions

Dummit and Foote do not give as rigorous of a construction of rings
of fractions, at least until far later in the text. Still, it is an important
construction. Let R be commutative with 1. Let D � R be a multiplicatively
closed48 subset. We can form a ring 48: By this we mean if a; b 2 D, then

ab 2 D, and 1 2 D. That is, D is a
submonoid .D; �/ � .R; �/.

D�1R D
n r
d

sort of W r 2 R; d 2 D
o
;

called the ring of fractions of R with respect toD.49 49: We will construct this object formally,
after discussing some examples.

Definition 4.8.1 (Field of Fractions) Given a domain R andD´ R n f0g,
thenD�1R D Frac.R/, the field of fractions of R.

For instance, the familiar example is Frac.Z/ D Q. You may also see the
notation FZ or FZ, depending on the context.

Definition 4.8.2 (Field of Rational Functions) Given a polynomial ring
F Œx1; : : : ; xn�, where F is a field, we could take Frac.F Œx1; : : : ; xn�/, which is
denoted F .x1; : : : ; xn/.

Example 4.8.1 If 0 2 D, then J D R D D�1R D f0g, the trivial ring.



58 4 Ring Structure

Example 4.8.2 Given an a 2 R, we could form D D fak W k � 0g. We
could form a�1R´ D�1R.

Definition 4.8.3 (Laurent Polynomials) The Laurent polynomials are denoted

F Œx˙1�´ x�1.F Œx�/:

Elements can be uniquely written as

n1X
kDn0

akx
k ; n0 � n1 2 Z; ak 2 F :

Definition 4.8.4 (Localization) Given a prime idealP � R andD´ RnP ,
thenD�1R D RP is called the localization of R with respect to P .5050: The localization finds extreme

importance in commutative algebra and
algebraic geometry.

Example 4.8.3 (p-local Integers) Form the localization

Z.p/ '

na
b
W p − b

o
� Q:

Example 4.8.4 What about in a polynomial ring over a field? Well, we
could form the localization F Œx�.x/ which is precisely�

f

g
W
f .0/

g.0/
is defined

�
:

Our goal is to produce a ring homomorphism  (preserving unity)

R
 

������! D�1R;

where D�1R is the ring of fractions. In particular, D is our set of
“denominators.” Given a 2 R and d 2 D, we want

a

1
�
ad

d
;

but if da D 0, then we need the above to equal 0=1 D 0. This construction,
in general, may kill some elements of R. We end up “giving up” injectivity
of  , despite it being the natural “inclusion” into R. Define

J ´ fr 2 R W there exists d 2 D st dr D 0g:

Note that J D f0g if and only if all elements ofD are non zero divisors.

Proposition 4.8.1 We have that

(i) J is an ideal in R.
(ii) if d 2 D and r 2 R, then dr 2 J implies r 2 J .

Put a relation � on R �D D f.r; d/gwhere .r1; d1/ � .r2; d2/ if and only
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if there exists a d 2 D such that d.r1d2 � d1r2/ D 0. That is, if and only
if r1d2 � d1r2 2 J . We claim that � is an equivalence relation.51 We write 51: Reflexivity and symmetry are

immediate.out transitivity: Suppose .r1; d1/ � .r2; d2/ and .r2; d2/ � .r3; d3/. Then,
r1d2 � r2d1 2 J and r2d3 � r3d2 2 J . We want to show .r1; d1/ � .r3; d3/,
or equivalently, r1d3 � d1r3 2 J . Well, we can write

.r1d2 � d1r2/d3 C d1.r2d3 � d2r3/ 2 J;

which after some cancellation gives us r1d3 � d1r3 2 J .

Remark 4.8.1 (Notation) Let Œr=d �be the equivalence class of .r; d/,D�1R
is the set of equivalence classes,  W R! D�1R where  .r/ D Œr=1� is
a ring homomorphism preserving unity. Also, 1 is Œ1=1�. We claim that
D�1R is a commutative unital ring with52 52: We omit the proof, but the long

part is to check that the operations are
well-defined, since they are defined on
equivalence classes.

Œr1=d1�C Œr2=d2�´ Œ.r1d2 C d1r2/=.d1d2/�

and
Œr1=d1� � Œr2=d2�´ Œ.r1r2/=.d1d2/�:

These are standard fraction operations.

Proposition 4.8.2 Given R;D, there exists a commutative ringD�1R and a
ring homomorphism  W R! D�1R such that

(i) if d 2 D, then  .d/ 2 .D�1R/�.
(ii) every element x 2 D�1R has the form x D  .r/ .d/�1 for some

r 2 R, d 2 D.53 53: That is, they are of the form “r=d .”
(iii) ker D J .

(i) Proof. We have

Œd=1� � Œ1=d � D Œd=d � D Œ1=1� D 1:

(ii) Proof. Any element is of the form

x D Œr=d � D Œr=1� � Œ1=d � D  .r/ .d/�1:

(iii) Proof. Note that  .r/ D 0 if and only if Œr=1� D Œ0=1�, which is true if
and only if r � 1 � 0 � 1 2 J .

Thus, our construction is complete and does what we want. Now, rings of
fractions come with a universal property, so let us do some investigation.

Proposition 4.8.3 (Universal Property of Rings of Fractions) Let ' W R!
S be a ring homomorphism preserving 1 between commutative unital rings. Let
D � R be a multiplicatively closed subset, taking  W R! D�1R to the ring
of fractions. If  .D/ � S�, then there exists a unique ring homomorphism
' W D�1R! S such that ' ı  D '.

R S

D�1R

 

!
'

 

!  

!

'

9Š

Figure 4.3: Commutative diagram for the
universal property of rings of fractions

Proof. We start with existence. Let '.Œr=d �/ ´ '.r/'.d/�1. We need to
check that this is well-defined. If Œr1=d1� D Œr2=d2�, then r1d2 � d1r2 2 J ,
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so there exists d 2 D such that d.r1d2 � d1r2/ D 0. hence, we can take

'.d/.'.r1/'.d2/ � '.d1/'.r2// D 0;

but '.d/ 2 S�, so our multiplication by  .d/�1 gets us '.r1/'.d2/ D
'.d1/'.r2/, so

'.r1/'.d1/
�1
D '.r2/'.d2/

�1
D '.r2/'.d2/

�1:

Let us show it is a (unique) ring homomorphism. We have uniqueness,
since every x 2 R has the form  .r/ .d/�1, so

'. .r/ .d/�1/ D '. .r//'. .d/�1/;

which is just '.r/'.d/�1.

Proposition 4.8.4 Let F be a field, R � F a subring with 1F 2 R. Then, R is
a domain. LetQ´ Frac.R/ D .R n f0g/�1R. Then,Q is isomorphic to the
smallest subfield of F which contains R.5454: This is one of the more “usual”

constructions of the field of fractions. We
show that the two definitions coincide,
isomorphically. Proof. Consider the injection ' W R ,! F . Then, '.R n f0g/ � F n f0g.

so there exists a unique ' W Q ! F . Well, ker.'/ � Q is an ideal,
so ker.'/ D f0g. Thus, ' is injective, meaning Q ' '.Q/ � F , and
R D '.R/. If F 0 � F is any subfield with R � F , then Q � F 0, since
Q D frd�1 W r 2 R; d 2 R n f0gg � F 0.5555: We abuse inclusion notation a lot in

this proof.

Remark 4.8.2 A common example of this is Z � R, but we can squeeze
in Z � Q � R.
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Hereafter, all rings will be unital. The idea is that there is an analogy. Given
a group G, recall that we have a category SetG of G-sets. Now, given a ring
R, we get a category of R-modules.

5.1 Category ModR of R-Modules

Definition 5.1.1 (Left R-Module) A left R-module is an ordered triple
.M;C; �/ where .M;C/ is an abelian group and � W R�M !M is a function
sending .r;m/ 7! rm, where1 1: Let r; r1; r2 2 R andm;m1;m2 2M .

Note that these properties force 0Rm D
0M . Also, .�1/m D �m.(i) .r1 C r2/m D r1mC r2m.

(ii) r.m1 Cm2/ D rm1 C rm2.
(iii) r1.r2m/ D .r1r2/m.
(iv) 1m D m.

Definition 5.1.2 (Right R-Module) A right R-module is .N;C; �/, where
.N;C/ is an abelian group and � W N �R! N is a function satisfying similar
axioms.

Definition 5.1.3 (Opposite Ring) Let .R;C; �/ be a ring. Then, the opposite
ring Rop is a ring defined by .R;C; �op/, where a �op b D b � a.

Example 5.1.1 Consider R ´ Mn.F /. Here, Rop ¤ R, since the
matrix ring is not commutative. Nonetheless, R ' Rop as rings. Our
isomorphism is given by ' W A 7! At , the transpose. This works since
.AB/t D B tAt and it preserves addition.

Example 5.1.2 Consider the ring

R´M1.F /´

˚
.aij / W

aij 2 F for i; j 2 ZC st for all j
only finitely many aij

are nonzero

	
:

The transpose definitely does not work. We claim that R § Rop.

Proposition 5.1.1 A left R-module is a right Rop-module. That is, if M 2
LModR, then we an form fM 2 RModR, we can define in fM that m � r ´ rm

inM .2 2: Note that for groups, G and Gop are
always isomorphic via inverses.

We define a category LModR of leftR-modules. The objects ob LModR are left
R-modulesM , and morphisms are homomorphisms of left R-modules.
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Remark 5.1.1 If R is a field F , then LModF D VectF .

Definition 5.1.4 (Module Homomorphism) LeftR-module homomorphisms
are functions ' WM !M 0 such that

(i) '.m1 Cm2/ D '.m1/C '.m2/.
(ii) '.rm/ D r'.m/.

Definition 5.1.5 (Module Isomorphism) An isomorphism ' is an invertible
homomorphism of modules.33: As an exercise, prove that this is true if

and only if ' is bĳection.

Remark 5.1.2 Notationally, sometimes we will write HomR.M;N / or
Homleft

R .M;N / for the set of left R-module homomorphisms.

We also have a category RModR of right R-modules, defined as you might
expect. The morphisms will be denoted like Homright

R .M;N /.

Proposition 5.1.2 (Facts About Homleft
R ) LetM;N;P 2 LModR. Then,

(i) HomR.M;N / is an abelian group, where '; 7! ' C  is defined by
.' C  /.m/´ '.m/C  .m/.44: This is easy to check.

(ii) If R is commutative, then HomR.M;N / 2 ModR. Remember, if R is
commutative, then LModR D RModR, so we usually just write ModR.

(iii) Composition is bilinear:

HomR.N; P / �HomR.M;N / ������! HomR.M;P /

.';  / 7������! ' ı  

is bilinear. That is, ' ı . 1 C  2/ D ' ı  1 C ' ı  2, and the same
reversing ' and  .

Remark 5.1.3 In general, HomR.M;N / need not be an R-module.That
is,  D r' might not form an R-module homomorphism. We have
that  .rr 0m/ is r'.r 0m/ D rr 0'.m/, but r 0 .m/ D r 0r'.m/. These are
generally not the same, unless R is commutative.

Definition 5.1.6 (Endomorphism Ring) We define EndR.M/ ´

HomR.M;M/ of module endomorphisms ofM .

Proposition 5.1.3 EndR.M/ is a ring with unity. The structure is given by:
C being addition of homomorphisms, � is composition of homomorphisms, and
unity given by 1 D idM .

Example 5.1.3 Let F be a field and takeM ´ F n 2 ModF D VectF . Then,
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EndF .F n/. Well, we know that

HomF .F
n; Fm/ ��!Mm�n.F /;

whereC isC of matrices and ı is � of matrices. Hence, the endomorphism
ring EndF .F n/ 'Mn.F /.

Remark 5.1.4 Define

F1´ f.ak/k2ZC W ak 2 F st all but finitely many ak D 0g

is an F -vector space. Then, R´ EndF .F1/ DM1.F / is from earlier.

Definition 5.1.7 (Automorphism Group) We define AutR.M/ to be the
automorphism group of a moduleM .

Remark 5.1.5 Since we just need the invertible endomorphisms, it is
clear that AutR.M/ D EndR.M/�.

Example 5.1.4 We have that

AutF .F
n/ D EndF .F

n/� D GLn.F / �Mn.F / ' EndF .F
n/:

Example 5.1.5 (Free Module of Rank One) If R is a ring with unity, then
M D R is a left R-module by .R;C; �/.5 5: The easiest way to think about this is

when we write F to be a vector space over
itself.

Example 5.1.6 Let R´M2.F /. LetM ´ F 2. Then,M has the natural
structure of a left R-module. Clearly M § R as a module, as it is too
small.

Exercise 5.1.1 What is S ´ EndR.M/ D EndM2.F /.F
2/?

Proof. Well, S D ff W F 2 ! F 2g ofR-module homomorphisms. This is just
the set of abelian group homomorphisms. That is, ' W F 2 ! F 2 such that
'.Av/ D A'.v/ for all A 2M2.F / and v 2 F 2. Note that � 2 F implies we
can form �I2. As a consequence of ' 2 EndR.M/ is '.�I2v/ D �I2'.v/,
so '.�v/ D �'.v/. Hence, ' is an F -linear map, so '.v/ D Bv for a fixed
B 2M2.F /. In order for it to be anR-module map, we need '.Av/ D A'.v/
for all A 2M2.F /. That is, B.Av/ D A.Bv/ for all v 2 F 2 and A 2 R. Thus,
we need BA D AB for all A 2 R, so EndR.M/ D f�I2 W � 2 F g ' F .6 6: This is the center of the matrix ring.

Example 5.1.7 Let F be a field and G a group. Then, set R´ F ŒG�, the
group ring of G over F . What is a module over F ŒG�?
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5.2 Quotients

Definition 5.2.1 (Submodule) A subsetN �M is a submodule if .N;C/ �
.M;C/ and rN � N for all r 2 R.77: As you should expect,N is a module

in its own right.

Example 5.2.1 Note that if R ´ Z, then a Z-module is precisely an
abelian group. Then, a submodule is exactly a subgroup.

Example 5.2.2 LetR´ F , a field. Then, ModF D VectF and submodules
are subspaces.

Example 5.2.3 Consider R´ F Œx�. An F Œx�-module is the same thing
as a pair .V; T /, where V 2 Vect and T W V ! V is an F -linear map. If

f D

nX
kD1

ckx
k and ck 2 F ;

then
f .T / D

X
k

ckT
k

and
f .T /v D

X
k

ckT
k.v/:

Let VT be this R-module. Then, submodules of VT are precisely T -
invariant subspaces.88: Recall that this means W � V such

that T.W / �W .

Example 5.2.4 If R is an R-module over itself, then a submodule of R
is left ideals. This is clear that the ideal properties force the submodule
ideals.

Definition 5.2.2 (Quotient Module) Let R be a ring, M a module, and
N �M a submodule. Then, the quotient moduleM=N has

(i) underlying abelian groupM=N .
(ii) scalar multiplication given by

r.x CN/´ rx CN:

Proposition 5.2.1 (Homomorphism Theorem) Let ' W M ! N be a
homomorphism of R-modules and A � M a submodule. If A � ker', then
there exists a unique homomorphism ' WM=A! N such that ' ı � D '.99: � W M � M=A is the quotient

homomorphism.

M N

M=A

 

!
'

 ��

 

!

'

9Š

Figure 5.1: Here is the standard
homomorphism theorem diagram, where
'.A/ D 0.
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Theorem 5.2.2 (First Isomorphism Theorem) Let ' W M ! N be a
homomorphism of R-modules. Then, we have an isomorphism of modules
M= ker' ��! '.M/. Note that ker' �M is a submodule and '.M/ � N .

M N

M= ker' '.M/

 

!
'

 

��

 

!
�

'

 
-

!

�

Figure 5.2: We have'.xCker'/ D '.x/.

Theorem 5.2.3 (Second Isomorphism Theorem) Let A;B � M be
submodules. Then,

(i) AC B is a submodule.
(ii) A \ B is a submodule of A.
(iii) B is a submodule of AC B .
(iv) A=A \ B ��! .AC B/=B .

Remark 5.2.1 The diamond isomorphism theorem is cleaner for modules
than the other structures we have seen. This is because we can form
quotients by arbitrary submodules, so we do not need a notion of
“normality.”10 10: Remember, for rings we had ideals

acting as “normal” rings.

Theorem 5.2.4 (Third Isomorphism Theorem) Let A;B be sub modules of
M and A � B . Then,

(i) B=A �M=A is a submodule.
(ii) M=B ��! .M=A/=.B=A/.

Theorem 5.2.5 (Fourth Isomorphism Theorem) Let N � M . Then, we
have a bĳection�

submodules A �M
st N � A

�
bĳection
 ���!
�

�
submodules
A �M=N

�
;

where A 7! �.A/ and �.A/ 7! ��1.A/.

LetM be an R-module and S �M a subset. Define11 11: Note thatRS is a submodule ofM .

RS ´ fr1s1 C � � � C rksk W k � 0; ri 2 R; si 2 Sg:Proposition 5.2.6
RS D

\
submodulesN�MS�N

N

That is, RS is the smallest submodule containing S . We say that M is
“generated by” S if RS DM .
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Definition 5.2.3 (Finitely Generated) We sayM is finitely generated if there
exists S �M with jS j <1 such that S DM .1212: In particular, if Rx D M for some

x 2M , thenM is a cyclic module.

Example 5.2.5 It is clear that R is a cyclic R module, as 1 2 R. More
generally, if I � R is a left ideal (submodule), then R=I is a cyclic
module.1313: It is generated by the coset 1C I .

Proposition 5.2.7 Every cyclic module is isomorphic to some R=I

Proof. IfM is cyclic, pick a generator x 2M such that Rx DM . Define a
homomorphism of modules ' W R!M such that ' W r 7! rx.14 SinceM14:

'.r1 C r2/ D .r1 C r2/x

D r1xC r2x

D '.r1/C '.r2/

'.r 0r/ D .r 0r/x

D r 0'.r/

is cyclic, ' is surjective. We get isomorphism fromM ' R= ker' where I
is ker'.

5.3 Coproducts and Products

Let fMigi2I be an indexed set of R-modules.

Definition 5.3.1 (Module Product) Define1515: The module structure on M ´Q
Mi is component-wise.

the (direct) productY
i2I

Mi ´ f.xi /i2I W xi 2Mig:

If I D f1; : : : ; ng, thenY
i2I

Mi DM1 � � � � �Mn D f.x1; : : : ; xn/ W xi 2Mig:

Definition 5.3.2 (Module Coproduct) Define the coproduct (or direct sum)M
i2I

Mi ´ f.xi /i2I W jfi 2 I W xi ¤ 0gj <1g �
Y
i2I

Mi :

This is a module.1616: The definition tells us that finitely
many xi are nonzero.

If I is finite, thenM
i2I

Mi DM1 ˚ � � � ˚Mn:

Remark 5.3.1 By definition, it is clear that

M1 ˚ � � � ˚Mn 'M1 � � � � �Mn:

Let us loosely discuss some universal properties. Consider the set(
N

f
������!

Y
i2I

Mi

)
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of module homomorphisms. Then we can directly build fi W N !Mi of
R-module homomorphisms. Then, f .y/´ .fi .y//i2I . On the other hand,
consider the set (M

i2I

Mi

f
������! N

)
of module homomorphisms. Then, we can build fi W Mi ! N , where
f ..xi /i2I / D

P
fi .xi /.17 Remember, the product of G;H in Grp is just 17: The duality comes from the fact

that we are mapping into our object
for products and out of our object for
coproducts.

G �H . Yet, the coproduct G �H is the “free product,” which does not look
like a product.

Example 5.3.1 The coproduct C2 � C2 ' D1 in Grp. This one can be
done simply in terms of presentations. Let C2 '

˝
a
ˇ̌
a2
˛
and C2 '

˝
b
ˇ̌
b2
˛
.

Then, C2 � C2 '
˝
a; b

ˇ̌
a2; b2

˛
.

5.4 Internal Direct Sums and Free Modules

Fix a module M and consider a collection fNi � M gi2I of submodules.
We can then form the coproduct mapM

i2I

Ni
'

������!M;

where ' is the “tautological map.” That is, '..xi // D
P
xi , where .xi / 2 Ni .

This just means ' is the sum of the inclusions.

Definition 5.4.1 (Internal Direct Sum) We sayM , as above, is an internal
direct sum of submodules fNig if ' is an isomorphism.

Proposition 5.4.1 LetM and fNig be as above. Then, define18 18: The sum is the submodule given byS
Ni , which is not usually a submodule.

N ´
X
i2I

Ni �M

Then, the following are equivalent:

(i) N is an internal direct sum of fNig.
(ii) For every fi1; : : : ; ing � I and j … fi1; : : : ; ing we have

Nj \ .Ni1 C � � � CNin/ D f0g:

(iii) Every x 2 N can be written uniquely as x D x1 C � � � xn, where
xk 2 Nik for pairwise distinct ik .

Example 5.4.1 Let N1; N2 �M . Then,

N1 ˚N2
��!M

via ' if and only if N1 CN2 DM and N1 \N2 D f0g.19 19: Recall that this is precisely how we use
internal direct sums for vector spaces.
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Example 5.4.2 Let N1; N2; N3 �M . You can have Ni \Nj D f0g for all
i ¤ j , but N1 ˚ N2 ˚ N3 ! M is not an isomorphism. For instance,
withM D R˚R, then we could define

N1 D f.r; 0/ W r 2 Rg

N2 D f.0; r/ W r 2 Rg

N3 D f.r; r/ W r 2 Rg:

Now, let R be unital.

Definition 5.4.2 (Free R-Module) A free R-module on a set S is .M; e/
where M is and R-module and e W S ! M is a function sending s 7! es of
“basis elements.”2020: By this, we mean that for all x 2

M there exists a unique collection fas 2
Rgs2S such that

x D
X
s2S

ases ;

where we necessarily have as D 0 for all
but finitely many s 2 S .

For instance, S ´ Œn�, then e W S ! M gives us e1; : : : ; en. Then, every
x 2M can be uniquely written as

x D

nX
kD1

akek

for ak 2 R.

Example 5.4.3 Let R ´ F a field, Then, every F -module admits the
structure of a free F -module.

Proposition 5.4.2 A free module exists for every set S . In fact,

M ´
M
s2S

R

is free on e W S !M by .es/t ´ ıst .2121: This is the Kronecker delta.

Theorem 5.4.3 (Universal Property of Free Modules) Let .M; e W S !M/

be a free module. Then, for a module N and function ' W S ! N , there exists a
unique R-module homomorphisme' WM ! N such thate' ı e D '.

S N

M

 

!
'

 

!e  

!
9Š e'

Figure 5.3: Universal property of free
modules

Warning: Unlike vector spaces, most modules are not free!

Example 5.4.4 For instance, let R ´ Z. Consider the module M D

Z=.3/ 3 e D 1C .3/.

5.5 Simple and Semi-Simple Modules

Fix R.

Definition 5.5.1 (Simple Module) AnR-moduleM is simple if it has exactly
two submodules.2222: Necessarily, f0g ¤M . That is,M is

nontrivial.
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Proposition 5.5.1 Every simple module is cyclic and isomorphic to one of the
form R=I , where I is a “maximal left ideal.”23 23: That is, I is maximal among proper

left ideals inR.

Proof. Let M be simple. Then, M ¤ f0g, so there exists x 2 M such
that x ¤ 0. Pick any such x and define ' W R ! M by '.r/ D rx.
This is an R-module homomorphism. We claim that ' is surjective. Well,
'.R/ �M is a submodule, and since '.R/ is nontrivial, '.R/ DM . Then,
we have � W R ! R= ker', and via our isomorphism theorem we have
' W R= ker' ��!M where '.r C I / D '.r/. I ´ ker' is a left ideal. Since
R=I 'M , R=I is simple.24 Well, submodules of R=I correspond exactly 24: Isomorphisms preserve submodules.
to submodules J � R such that I � J . If we have a submodule J , then we
just take ��1.J /. Simplicity gives us maximality.

Remark 5.5.1 An altered proof via Zorn’s lemma gives us that any ring
has at least one nontrivial maximal left ideal.

Example 5.5.1 Note that ifR´ F orR´ D, a division ring, then there
is only one simple module up to isomorphism.

Example 5.5.2 LetR´ Z. All simple modules are isomorphic to Z=.p/,
where p is prime. That is, the simple Z-modules are the cyclic groups of
prime order. Note that Z, although it is cyclic, is not a simple Z-module.

Example 5.5.3 Let R be Mn.F / for n � 1. Then, we can defineM ´ F n

of “column vectors” as a module over the matrix ring. It is simple as an
R-module, but it is certainly not a simple F -module!25 25: If v 2 Fn with v ¤ 0, then fAv W

A 2Mn.F /g has to be all of Fn. This is
just a bit of linear algebra exercise.

Proposition 5.5.2 (Schur’s Lemma) If S; S 0 are simple R-modules and
f W S ! S 0 is a module homomorphism, then either f D 0 or f is an
isomorphism. In particular,D´ EndR.S/ is a division ring.26 26: Recall that EndR.S/ is always a unital

ring for modules.

Proof. Let f W S ! S 0. We have submodules kerf � S and f .S/ � S 0.
Suppose f ¤ 0. That is, there exists 0 ¤ s 2 S such that f .x/ ¤ 0. Then,
kerf ¤ S , so kerf D f0g, and f .S/ ¤ 0, so f .S/ D S 0. Thus, f is a
bĳection.27 27: The structure theory of simple

modules is quite easy!

Example 5.5.4 Take F n as a Mn.F /-module. Then, EndR.F n/ D F , a
division ring.

Definition 5.5.2 (Summand) A submodule N � M is a summand of M
if there exists N 0 � M so that the tautological map N ˚ N 0 ��! M with
.x; x0/ 7! x C x0 is an isomorphism.28 28: Note thatN 0 is not unique. LetR be

a ring andM D R˚R. LetN D R˚ 0.
Then,N 0 D f.0; r/g andN 00 D f.r; r/ W
r 2 Rg can be used to form

M D N ˚N 0 D N ˚N 00:

Note that N 0 'M=N . This is not equality. Do not confuse them.
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Proposition 5.5.3 Let N �M be a submodule. The following are equivalent:

(i) N is a summand ofM .
(ii) There exists a module homomorphism r WM ! N such that r ı � D idN ,

where � W N ,!M is the inclusion.2929: We will often call r a “retraction.”
(iii) There exists a module endomorphism e WM !M such that e ı e D e

and e.M/ D N .3030: Here, e is idempotent. In linear algebra,
we call such e projection maps or projectors.

Proof. Start with (i) ) (iii). We have that every x 2 M can be written
uniquely as x D y C y0 where y 2 N and y0 2 N 0. We define e.x/´ y,
and we claim that e WM !M is a module homomorphism and e ı e D e
and e.M/ D N . If we have x1; x2 2M , then we can write them uniquely as
x1 D y1 C y

0
1 and x2 D y2 C y02, where y1; y2 2 N and y01; y02 2 N 0. Then,

x1 C x2 D .y1 C y2/C .y
0
1 C y

0
2/;

so
e.x1 C x2/ D y1 C y2 D e.x1/C e.x2/:

Also, rx1 D ry1C ry01, so e.rx1/ D re.x1/.31 It is clear that e.M/ D N and31: Thus, e is a module homomorphism.
e is idempotent. The idea is that

e �

�
idN 0

0 0

�
wrt N ˚N 0:

Now, we prove (iii)) (ii). Given e, define r W M ! N by r.x/ ´ e.x/.
Then, r ı i D idN . Finally, consider (ii) ) (i). We have r W M ! N

such that r jN D idN . Define N 0 ´ ker r . We claim that N ˚ N 0 ��! M

via the tautological action. Define an inverse function M ! N ˚ N 0 by
x 7! .r.x/; x � r.x//, then we are done.

Definition 5.5.3 (Semi-Simple Module) We say that M is semi-simple if
every submodule is a summand.

Remark 5.5.2 Every simple module S is semi-simple, as we have a trivial
decomposition S D S ˚ 0.3232: Occasionally we write 0 � f0g.

Our goal is to prove that every semi-simple module is isomorphic to the
coproduct

L
i Si of simple modules.3333: Note that for “semi-simple”

rings, which includes fields, every
corresponding module is semi-simple.

Example 5.5.5 LetR´ F Œx�. Then,R is not semi-simple as anR-module.
For instance, I ´ .x/ D xF Œx� is a submodule of R, but not a summand.

Proposition 5.5.4 Let M be a semi-simple module. Suppose N � M is a
submodule. Then, both N andM=N are semi-simple.

Proof. Let P � N be a submodule. Then, P is a submodule of M . Since
M is semi-simple, there exists a retraction r W M ! P so that r jP D idP .
Let r 0 ´ r jN W N ! P . Then, r 0jP D idP , so P is a summand of N .
Consider the quotient module N=N . Let � W M ! M=N be the quotient
map. Consider a submodule P �M=N . Let P ´ ��1.P / �M . We have
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that N � P �M is a chain of submodules. SinceM is semi-simple, there
exists a retraction r WM ! P such that r jP D idP . Define r 0 WM=N ! P

by r 0.x CN/´ r.x/CN .34 34: This map is well-defined, since
rjN D idN , sinceN � P . Also, r 0jP D
idP , by construction.

Lemma 5.5.5 Let f W M ! L be a surjective homomorphism from a semi-
simpleM . Then, there exist submodules N;N 0 �M such that

(i) N ˚N 0 ��!M .
(ii) N 0 ' L.

Proof. Let N ´ kerf . SinceM is semi-simple, we can find a submodule
N 0 so that N ˚N 0 DM .35 For (ii), the isomorphism is given by 35: This is (i).

N 0
f jN 0
������! L;

which is injective since kerf D N \N 0 D 0.36 36: It is surjective. If x 2 L, pick x 2M
such that f .x/ D x. Write x D y C
y0 where y 2 N and y0 2 N 0. Then,
f .x/ D f .y0/.Corollary 5.5.6 IfM is a semi-simple module, then ifM has a simple quotient

module, thenM contains a simple submodule.

Proof. See the lemma. Simplicity is preserved under the isomorphism
N 0 ��! L.

Proposition 5.5.7 Every nontrivial semi-simple module contains a simple
submodule.

Proof. The trivial module 0 is always semi-simple.37 Let M ¤ 0. Pick an 37: It is excluded since simple modules
are nontrivial.elementx 2M withx ¤ 0. Then, we get a cyclic submoduleRx �M . Then,

Rx ¤ 0 and semi-simple. Without loss of generality, we can assume the
module is nontrivial and cyclic. We know how to classify cyclic modules.38 38: They are quotients of the ring by left

ideals.We can take M ´ R=I , where I ¨ R is a left ideal. We will construct a
simple quotient module ofM . The�

submodules
J ¨ R=I

�
 �����!

�
submodules J � R

st I � J ¨ R

�
:

We want to take .R=I /=J ��! R=J . The observation is that we need to
find a left ideal J containing I which is maximal among proper left ideals
containing I .39 Apply Zorn’s lemma to the poset on the RHS above. 39: This will imply that R=J is simple

(as there are no intermediate ideals).

Definition 5.5.4 (M SS) LetM be a module. Define

Simp.M/´ fS �M W S simple submodule g:

Then, we take40 40: Really, M SS is the set of all sums of
xi 2 Si for some Si 2 Simp.M/.

M SS
´

X
S2Simp.M/

S ´
submodule ofM

generated by
S

Simp.M/ S
�M:
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Note that ZSS D 0.

Example 5.5.6 Let R´ Z. Remember, ModZ is just abelian groups. Let
M be an abelian group. Then, M SS is the subgroups generated by all
x 2 M such that jxj D p for some prime p. For instance, if we take
.Z=p2/SS D .pZ=p2/ ' Z=p.

Proposition 5.5.8 Consider N � M SS. Then, there exists a subset X �
Simp.M/ such that the tautological map

N ˚
M
S2X

S ��!M SS �
,�!M

is an isomorphism.

Proof. We want to use Zorn’s lemma. Let P be the set of subsets A �
Simp.M/ such that the tautological map

N ˚
M
S2A

S
fA
��!M

is injective.41 It is clear that P is a poset with �. Note that P¤ ¿, since41: As before, Image.fA/ �M SS.
¿ 2 P. We claim that every nonempty chain C� P has an upper bound
in P. The idea is to consider

B ´
[
A2C

A � Simp.M/:

In fact, B 2 P; i.e.,
fB W N ˚

M
S2B

S !M

is injective. An element in the domain of fB can be written

´´ .x; y1; : : : ; yk/ x 2 N; yi 2 Si ; Sk 2 B:

Suppose fB.´/ D 0. Each Si 2 Ai for some Ai 2 C. Since C is totally
ordered, there exists a j so that Ai � Aj , so S1; : : : ; Sk 2 Aj 2 P. Thus,
fAi is injective and fAi .´/ D fB.´/ D 0, so ´ D 0. By Zorn’s lemma, there
exists X 2 Pwhich is maximal. We get

fX W N ˚
M
S2X

S !M SS
�M

which is injective. We claim that Image.fX / DM SS. If fX is not surjective
ontoM SS, then there exists S 0 2 Simp.M/ not in the image of fX . Yet, we
can form

S 0 \ Image.fX / D 0;

since S 0 is simple. Hence,

fX[fS 0g W N ˚
M
S2X

S ˚ S 0 !M

is also injective, which contradicts maximality.
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Corollary 5.5.9M SS is isomorphic to a direct sum of simple submodules.

Proof. Use the proposition with N D 0.

Corollary 5.5.10M SS is semi-simple.

Proof. If N � M SS, use the proposition and take N 0 ´
L
X S . Then,

N ˚N 0 ��!M SS.42 42: That is,N is a summand ofM SS.

Theorem 5.5.11 (Semi-Simple Structure Theorem) LetM be an R-module.
The following are equivalent:

(i) M is semi-simple.
(ii) M DM SS.
(iii) M is isomorphic to a direct sum of simple submodules.

Proof. Start with (i) ) (ii). Let M be semi-simple. Well, M SS � M , so
M SS˚N DM for some submoduleN �M .43 We showed that submodules 43: This is what it means for M to be

semi-simple.of semi-simple modules are semi-simple, soN is semi-simple. IfN D 0, we
are done. If N ¤ 0, then there exists a simple submodule S � N .44 Then, 44: This was proved earlier.
S �M SS \N , a contradiction to the definition of the “direct sum.” Thus,
N D 0. For (ii)) (i), the corollary tells usM SS is semi-simple. Similarly, (ii)
) (iii) comes from M SS being a direct sum of simple submodules. Finally,
(iii)) (ii) is immediate.45 45: The hypothesis literally implies

M D
X

S2Simp.M/

S;

which is justM SS.
Remark 5.5.3 The dimension dim V of a vector space V over F is
precisely the number of summands in a simple direct sum decomposition.
In particular, it is the number of copies of F in the decomposition (since
the only simple submodules of Vare isomorphic to F ).

5.6 Semi-Simple Rings

Let R be unital.

Definition 5.6.1 (Semi-Simple Ring) We say that R is semi-simple as a ring
if R is a semi-simple as a (left) R-module.

Example 5.6.1 Let R´Mn.F /, where F is a field (or division ring). Let
Ik � R be the set of matrices which are nonzero only in the kth column.
Ik ' F n is a simple module.46 46: Fn is the set of column vectors; i.e.,

the space F1�n.
Well,

R ' I1 ˚ � � � ˚ In

as R-modules.
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Example 5.6.2 Let R´ Z or R´ F Œx�. This is not a semi-simple ring,
since neither of these have simple submodules whatsoever.

Proposition 5.6.1 Let R be a ring. The following are equivalent:

(i) R is semi-simple as a ring.4747: That is, R is semi-simple as an R-
module. (ii) Every R-module is semi-simple.

Furthermore, if these hold, then

(a) R is a finite direct sum of simple submodules.
(b) there are only finitely many simple R-modules up to isomorphism.

To attack this, we will need a few lemmas.

Lemma 5.6.2 Let R be a ring. If M is an R-module and M D
L
i Mi for

some fMi �M g. Then,
M SS

D

M
i

M SS
i :

Proof. Clearly eachM SS
i �M

SS, so
P
i M

SS
i �M

SS. Then, the tautological
map M

i

M SS
i !M SS

is injective. We just want to show that it is surjective. Suppose S � M

is a simple submodule.48 Now, simple modules are always cyclic, so48: Of course, this also means S �M SS.
S D Rx ' R=I for some x 2 M with x ¤ 0.49 We can write x D .xi /49: Note, Ix D 0. Thus, IxI D 0.
where xi 2Mi and all but finitely many xi D 0. We claim that each nonzero
xi is contained in some simple submodule ofMi . In fact, Si ´ Rxi �Mi

is a simple submodule. Then,

J ´ ker
inj
��! R

r 7!xi
����! Rxi

leaves Rxi ' R=J , and since I is maximal among left ideals, J D I , so
Si ' S , meaning xi 2M SS

i .

Lemma 5.6.3 LetM be a cyclic module. IfM
i

Mi DM

for some fMi �M gi2I , thenMi D 0 for all but finitely many i .

Proof. Pick a generator x 2 M . Then, M D Rx. The same idea arises,
taking x D .xi /where xi 2Mi and all but finitely many are 0. The claim is
that the direct sum decomposition implies Rxi D Mi for all i 2 I . Write
x D x1 C � � � C xn, where xk ¤ 0 and xk 2 Mki for distinct ki . Suppose
y 2Mj where j … fk1; : : : ; kng. SinceM is cyclic, we can write y D rx for
some r 2 R. On the other hand,5050: We abuse notation in the standard

way, switching back and forth between
tuple and sum notation for the internal
direct sum.
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y�
My

D rx D rx1 C � � � C rxn›
Mk1C���CMkn

;

but there is no overlap, so this forces both sides to be 0.51 Thus,Mj D 0. 51: We use that
L
Mi DM .

Now, we can prove the proposition from earlier.

Proof of Proposition. Start with (ii)) (i). If every R-module is semi-simple,
thenR is semi-simple as a module, soR is semi-simple as a ring. Conversely,
consider (i)) (ii). Suppose R is semi-simple. Then, R D RSS. Consider
M D

L
J R, a free module, It is clear that

M SS
D

M
RSS
D

M
R

implies M is semi-simple. Now, we have a fact that every R module is
isomorphic to a quotient of a free module. We can take the simplest mapM

x2M

R
surj
����!M:

Plus, quotients of semi-simple modules are semi-simple. Finally for (a),
R is a cyclic R-module, so R D

Ln
iD1 Si , by the lemma. What about (b)?

Well, if S is simple then it is cyclic, so S ' R=I .

Lemma 5.6.4 Suppose M D
L
i2I Si , where each Si � M is a simple

submodule. Then, any simple submodule ofM is isomorphic to one of the Si s.

Proof. Consider S �M . Then, S D Rx for some x 2M with x ¤ 0. Then,
x D x1 C � � � C xn, where each 0 ¤ xk 2 Sik and Si1 ; : : : ; Sin are distinct
summands in the direct sum decomposition. In particular, consider the
projection � WM � Si1 . Then, �jS W S ! Si1 is an isomorphism.52 52: Use Schur’s lemma. We know�.x/ D

x1 ¤ 0.

For the finiteness aspect of the proposition, we use the lemma. If S is
a simple submodule and R is semi-simple, then S is isomorphic to a
submodule of R. The lemma says S ' Sk for some k D 1; : : : ; n.

Lemma 5.6.5 Suppose S D S˚N for S simple. Suppose further that S 0 �M
is simple with S 0 › N . Then, the tautological map yields

S 0 ˚N ��!M:

Plus, S ' S 0.

Proof. We have that S 0 \ N D 0, as S 0 is simple and S 0 › N . First, let
� WM � S be the projection. Then, ker� D N . We note that�jS 0 W S 0 ! S

is an isomorphism, again by Schur’s lemma. Givenx 2M , writex D x1Cx2,
where x1 2 S and x2 2 N . Since �jS 0 W S 0 ! S is an isomorphism, there
exists y1 2 S 0 such that �.y1/ D x1. Observe y2 ´ x1 � y1 2 ker� D N .
Thus, y1 2 S and y2 C x2 2 N , so

y1 C .y2 C x2/ D y1 C x1 � x1 C x2 D x;
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so S 0 CN DM . Therefore,

S 0 ˚N ��!M:

Proposition 5.6.6 If we can write

M D

mM
iD1

Si D

nM
jD1

S 0j :

where the Si ; S 0j are simple submodules, then m D n and there exists � 2 Sm
so that Si ' S 0�.j /.

5353: That is, these simple direct sum
decompositions are isomomrphic up to
reordering. We only show this for the finite
case, but it is true for infinite coproducts
too.

Proof. We perform induction on min.m; n/. The base case is 0. Consider
1 � m � n. Write M D S 01 ˚ N , where N D

L
m S
0
j . There exists an i so

that Si › N . Without loss of generality (we use reordering), suppose i D 1.
Then, S1 › N . By the lemma, S1 ˚N ��! M and S1 ' S 01. We also ahve
thatM ' S1 ˚N 0, where N 0´

L
n Si . Yet, N 'M=S1 ' N 0, so

mM
iD2

Si '

nM
jD2

S 0j :

By induction, m � 1 D n � 1, and

fSig
��! fS 0j g

up to reordering.

Example 5.6.3 (Group Ring Modules) Let F be a field and G be a finite
group where jGj D n <1. Define R´ F ŒG�. What are R-modules?5454: For this aside,G does not have to be

finite. Well, they are precisely “representations of G.” That is, let .V; �/, where
V is an F -vector space and

� W G ! AutF .V/:

Let

r D

finiteX
g2G

ag Œg�;

where ag 2 F . Then, with v 2 V, we get

rv D

finiteX
g2G

ag�g.v/ 2 V:

For instance, if G D Cn hxjxni, then F ŒG� 3 a0 C a1x C � � � C an�1xn�1.
We get an automorphism � W G ! GLn.F /, where VD F n. We get

.a0 C a1x C � � � C an�1x
n�1/.v/ D

X
ak�xk .v/:

For instance, take the regular representation, taking VD R D F ŒG�. This



5.6 Semi-Simple Rings 77

has a basis given by group elements in G. If we take our basis F ŒG� D
F fŒg�; g 2 Gg, then � W G ! AutF .V/. If h 2 G, then �h.Œg�/´ Œhg�. As
an example, take G ´ C4 D fe; x; x

2; x3g. Then,

VD F ŒG� D F fŒe�; Œx�; Œx2�; Œx3�g ' F 4:

We have

�x D

0BB@
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1CCA :

Proposition 5.6.7 If G is finite with jGj D n and n�1 2 F .55 55: Recall, we have a ring homomorphism

Z! F

with 1 7! 1 and n 7! “n00. Then, if F D
Q;R;C, this is always true. If F D Fp ,
then it is true only if p − n.

Then, F ŒG�
is semi-simple. As a consequence, every G-representation over F (every F ŒG�-
module) is a coproduct of irreducible representations (simple F ŒG�-modules).

Proof. Let R ´ F ŒG�. Suppose we are given an R-module M and an
R-submodule N � M . We want to show there exists an R-module map
r WM ! N such that r jN D idN .56 Note that N �M is an F -subspace, so 56: Remember, finding a retraction is the

same as finding a summand.there exists an F -linear retraction  WM ! N so that  jN D idN . Define
' WM ! N by

'.x/´
1

jGj

X
g2G

Œg� .Œg�1�x/:

We claim that ' is precisely the retraction we are looking for. Note the
inclusion of '.M/ � N .

We first want to show that ' is anR-module map. Second, we want to show
that 'jN D idN .

Pick h 2 G. We already know ' is F -linear, so we just need to show

'.Œh�x/ D
1

jGj

X
g2G

Œg� .Œg�1h�x/:

Re-index with g D hg0. Then,

1

jGj

X
g2G

Œhg0� .Œ.hg0/�1h�x/ D Œh�'.x/:

Recall that x 2 N implies Œg�x 2 N .

We compute,

'.x/ D
1

jGj

X
g2G

Œg� .Œg�1�x/ D
1

jGj
x D x;

so 'jN D idN .

Let R be a ring and take N;M to be R-modules. Write

N D

nM
jD1

Nj and M D

mM
iD1

Mi :
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The idea to form a homomorphism f W N !M , considering the vectors

x D

0B@x1:::
xn

1CA and y D

0B@y1:::
ym

1CA :
Proposition 5.6.8 Under the identification above, any R-module
homomorphism f W N !M can be written as .fij / as an m � n matrix with
fij 2 HomR.Nj ;Mi /. That is,

f .x/ D

0B@ f11.x1/C � � � C f1n.x/
:::

fm1.x1/C � � � C fmn.xn/:

1CA
We can interpret

P
g
��! N

f
��!M

as matrix multiplication .gkj /.fij /.5757: That is, our method of writing
matrices in linear algebra actually works
because of the direct sum decomposition:
not because we are dealing with vector
spaces. Theorem 5.6.9 (Artin-Wederburn) Every semi-simple ring is isomorphic to

one of the form

R D

rY
kD1

Mnk .Dk/;

whereD1; : : : ;Dr are division rings, taking nk � 1 and r � 0.

Proof. We know that R is semi-simple, so we can write

R D

nM
kD1

Sk ;

where the Sk � R are simple submodules. Note that

Rop
' EndR.R/ D HomR.R;R/:

Let a 2 R, and define 'a W R ! R by 'a.x/´ xa. We claim that 'a is a
map of left modules. Let b; x 2 R. Then,5858: If we had multiplied a on the left,

then it would not be a map of left
modules (though, it would be one of right
modules).

'a.bx/ D .bx/a D b.xa/ D b'a.x/:

Yet,
'a.'b.x// D 'a.xb/ D .xb/a D x.ba/ D 'ba.x/;

as 'a ı 'b D 'ba. We have an isomorphism of rings Rop ' EndR.R/. Now,
we can precisely write

EndR.R/ ��! ffij 2 HomR.Sj ; Si /g:

Schur’s lemma tells us that if S; S 0 are simple, then

Hom.S; S 0/ '

(
0; S § S 0

D; S ' S 0;
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whereD is a division ring. We will now write

R '

nM
kD1

S
˚nk
k

:

Each of the Sk are simple, where Si § Sj if i ¤ j , but we can take nk � 1.
Using our new form of R, we have that59 59: Per Schur’s, we take Dk ´

EndR.Sk/. Note that

Mk.D/ 'Mk.D
op/:

Rop
' EndR.R/ '

nY
kD1

EndR.S˚nkk
/ D

nY
kD1

Mnk�nk .Dk/:

Example 5.6.4 (Complex Group Rings) Consider CŒG�. We can always
write

CŒG� '
nY
kD1

Mnk .C/;

where jGj D n < 1. Note that if we have a division ring D ¤ C and
C � Center.D/, we can pick x 2 D n C. We can consider the ring
R ´ .C; x/. Thus, R is commutative. It turns out, it is really hard to
have larger division rings containing C, since it is algebraically closed.
Putting a finite dimension restriction onD forces equality with C.
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We now return to our standard progression, approaching principal ideal
domains, which have a very satisfying theory. Hereafter, all rings will be
commutative and unital.

6.1 Preliminaries

We have a unique ring homomorphism sending 1 7! 1. Take ' W Z! R,
where ker' D .p/. For instance, ifR D Z=4, then p D 4. IfR D F is a field
(or domain), then ker' � Z is a prime ideal. Either p is a prime number
or p D 0.

Definition 6.1.1 (Characteristic) We define the characteristic of a field to be

char F D p;

as above. For instance, char.Q;R;C/ D 0 and char.Z=p/ D p.

Now, let R1; : : : ; Rn be rings. We can build the product ring

R´ R1 � � � � �Rn:

Let A;B � R be ideals. We get

R
'

������! R=A �R=B

r 7������! .r C A; r C B/:

We have that ' is a ring homomorphism, but it is also an R-module
homomorphism.1 Clearly, ker' D A\B . In fact, we get a homomorphism 1: When is ' an isomorphism? There is

no reason to generally believe that ' is a
surjection.

' W R=A \ B ! R=A � R=B is an injection. If A;B are ideals, recall that
we write AC B to be the set of pairwise sums. We also define

AB ´ fa1b1 C � � � C akbk W ai 2 A; bj 2 B; k � 0g � R;

which is an ideal.2 If we have two sets of generators A D .a1; : : : ; am/ and 2: Note that this is not the product set,
which usually is not an ideal.B D .b1; : : : ; bn/, then

AC B D .a1; : : : ; am; b1; : : : ; bn/

and
AB D .: : : ; aibj ; : : : /:

Definition 6.1.2 (Comaximal) We sayA;B � R are comaximal (or coprime)
if AC B D R. Equivalently, A;B are comaximal if there exists an a 2 A and
b 2 B so that aC b D 1.
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Example 6.1.1 Let .a/; .b/ � Z. We have that .a/; .b/ are comaximal if
and only if gcd.a; b/ D 1.33: This is why you will hear comaximal

referred to as coprime.

Proof. By the standard lemma, .a/C .b/ D .d/, where d D gcd.a; b/, but
.1/ D R.

Theorem 6.1.1 (Chinese Remainder Theorem) If A;B � R are comaximal
ideals, then A \ B D AB . We have that ' induces an isomorphism44: This is both an isomorphism of rings

and ofR-modules.
R=AB ��! R=A �R=B:

Proof. First,AB � A\B via the obvious inclusion. Conversely, if x 2 A\B ,
then use 1 D aC b via comaximality. We get

x D x.aC b/ D xaC xb 2 BA;AB;

so A \ B � AB . We know we have an injection

R=AB D R=A \ B ! R=A �R=B

given by r 7! .r C A; r C B/. Is it surjective. Well, consider .r1; r2/ 2
R=A � R=B . Lift to elements r1; r2 2 R. Using 1 D aC b for some a 2 A
and b 2 B , set

r ´ r2aC r1b;

and moduloAwe get rCA D r2aC r1bCA D r1bCA. We also know that
b D 1�a � 1 .mod A/. We can write r D r2aCr1b D r2a�r1aCr1, so r �
r1 .mod A/. Likewise, r � r2 .mod B/. Thus, ' is an isomorphism.

Example 6.1.2 If a; b 2 Z with gcd.a; b/ D 1, then we get a ring
isomorphism

Z=.ab/ ��! Z=a �Z=b:

Proposition 6.1.2 Let A1; : : : ; An � R be pairwise comaximal.55: That is,Ai CAj D R if i ¤ j . Then,

A1 � � �An D A1 \ � � � \ An

and
R=.A1 � � �An/

��! .R=A1/ � .R=A2/ � � � � � .R=An/:

Proof. Proceed by induction on n. The base case of n D 2 is the Chinese
Remainder Theorem. For n � 3, set A D A1, B D A2 � � �An. We claim that
A;B are comaximal, and we can continue the argument from there. For
each k D 2; : : : ; n, there exists xk 2 A1; ak 2 Ak so that 1 D xk C ak . Then,

a D .x2 C a2/.x3 C a3/ � � � .xn C an/;

which we can expand to

.a2 � � � an/™
B

Cx2.stuff/C x3.stuff/C � � � C xn.stuff/;
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and the latter terms are all in A D A1. Thus, A;B are comaximal.

Example 6.1.3 If we again take R´ Z,

Z=.pk11 � � �p
kd
d
/ ��! Z=.pk11 / � � � � �Z=.pkd

d
/;

where the pi are distinct primes.

6.2 Euclidean Domains and PIDs

Note that, at least within textbook literature, the definition of Euclidean
domains is rather inconsistent. Morally, they reflect the same idea.

Definition 6.2.1 (Euclidean Domain) A Euclidean domain is a commutative
domain R with unity so that there exists a function6 6: We call this function a norm.

N W R n f0g ! Z�0

such that for all a; b 2 R and b ¤ 0, there exist q; r 2 R such that a D qbC r
with either r D 0 or N.r/ < N.b/.7 7: The idea is that in F D Frac.R/,

a=b D qC r=b.

Example 6.2.1

(a) Let R´ Z and N.a/ D jaj.
(b) Let R´ F Œx� and N.f /´ degf .8 8: We use polynomial long division.
(c) Let R ´ ZŒi � and N.a C bi/ D jaC bi j2 D .a C bi/.a � bi/ D

a2 C b2. In this case, note that N.˛ˇ/ D N.˛/N.ˇ/.9 9: See 418 notes for the proof. It is a simple
geometric proof using the interger lattice
in C.

(d) Let R ´ ZŒ
p
�5�. The obvious guess for N is N.a C b

p
�5/ D

a2 C 5b2. This does not satisfy the definition.

Definition 6.2.2 (Principal Ideal Domain) A principal ideal domain (PID)
is a domain so that every ideal is principal.

Proposition 6.2.1 Euclidean domains are PIDs.

Proof. Let R be a Euclidean domain with N W R n f0g ! Z�0. Let .0/ ¤
I � R be an ideal. There exists a d 2 I such that a ¤ 0. We can pick any
d 2 I n f0g for which N.d/ is minimized. We claim that I D .d/. Clearly,
.d/ � I . Let a 2 I . There exist q; r 2 R such that a D qd C r , where either
r D 0 or N.R/ < N.d/. Note that r D a � qd 2 I , but either r D 0 so
a D qd 2 .d/, orN.r/ < N.d/, which contradicts minimality ofN.d/.

Using this implication, some examples of PIDs are Z; F Œx�; F ;ZŒi �. We also
have that OQŒ

p
�3� is a Euclidean domain.

Definition 6.2.3 (Associates) Let R be a domain. We say a; b 2 R are
associates if there exists a unit u 2 R� such that b D ua.10 10: This is an equivalence relation.
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Definition 6.2.4 (Divides) We say a j b (a divides b) if there exists a c 2 R
such that b D ac.

Remark 6.2.1 We have that a; b are associates if and only if .a/ D .b/.

Remark 6.2.2 We have that a j b if and only if .a/ � .b/.1111: Equivalently, b 2 .a/.

Definition 6.2.5 (GCD) Let a; b 2 R. A GCD (greatest common divisor) of
a; b is d D gcd.a; b/ 2 R such that

(i) d j a and d j b.
(ii) if e 2 R, e j a and e j b, then e j d .1212: That is, .d/ is minimal among

principal ideals which contain a; b.

Corollary 6.2.2 The GCD is unique up to associates.

Proposition 6.2.3 If R is a PID, then GCDs always exist. In fact, d D
gcd.a; b/ if and only if .a; b/ D .d/.

Proposition 6.2.4 In a PID, every nonzero prime ideal is maximal.

Proof. Let p 2 R n f0g. We have that .p/ is prime if and only if R=.p/
is a domain. Additionally, .p/ is maximal if and only if R=.p/ is a field.
Consider a prime ideal .0/ ¤ .p/ ¨ R. We want to show .p/ � .a/ � R,
then either .a/ D .p/ or .a/ D R. We will show .p/ ¨ .a/ � R implies
.a/ D R. We do have that a … .p/ � .a/, but p 2 .a/, so p D ab for some
b 2 R. Either a 2 .p/ or b 2 .p/, but a … .p/, so b 2 .p/. Thus, b D cp

for some c 2 R, meaning p D ab D acp, therefore 1 D ac. Thus, a 2 R�,
meaning .a/ D R.

Proposition 6.2.5 O´ ZŒ
p
�5� is not a PID.

Proof. Define
I ´ .3; 2C

p
�5/:

Using the norm function,13 N.˛ˇ/ D N.˛/N.ˇ/ and N.˛/ D 0 if and only13: This is not in the Euclidean sense.
if ˛ D 0. If 1 2 I , then 1 D 3˛ C .2C

p
�5/ˇ. We can multiply through to

get
2 �
p
�5 D 3.2 �

p
�5/˛ C 9ˇ 2 .3/:

We have that 2 �
p
�5 … .3/, a contradiction, so 1 … I . In O, as above,

N.˛/ D 1 if and only if ˛ D ˙1. We have that N.˛/ D a2 C 5b2 D 1, so
O� D f˙1g. Suppose I is principal. Then, we can write

3 D .aC b
p
�5/˛

and
2C
p
�5 D .aC b

p
�5/ˇ
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for some ˛; ˇ 2 O. Take the norm:

9 D .a2 C 5b2/N.˛/

and
9 D .a2 C 5b2/N.ˇ/;

so a2 C 5b2 j 9. Note that since the norm uses squares, we only have
a few choices: f1; 9g. Therefore, either a2 C 5b2 D 1, so a2 C 5b2 2 O�,
meaning I D O, a contradiction. If a2 C 5b2 D 9, then N.˛/;N.ˇ/ D 1, so
˛; ˇ 2 f˙1g. Thus, 3 D .˙1/.aC b

p
�5/ and 2C

p
�5 D ˙.aC b

p
�5/,

which is a contradiction. Thus, I is not principal.

Proposition 6.2.6 Let R be a domain. Elements a of R can be divided into 4
non-overlapping groups:

(i) a D 0.
(ii) a is a unit.
(iii) a is reducible.14 14: That is, a ¤ 0, not a unit, and if a D

bc for some b; c which are not units.(iv) a is irreducible.15

15: This means a ¤ 0, a is not a unit, and
is not reducible.

We can restate these groups in terms of ideals, and prove the irreducibility
equivalence.

Proposition 6.2.7

(i) .a/ D f0g.
(ii) .a/ D R.
(iii) anything else
(iv) .a/ ¤ 0 and .a/ is maximal among proper principal ideals.

Proof. Suppose a is irreducible. Then, a ¤ 0 and a … R�. Suppose .a/ ¨
.b/ � R. Then, a D bc for some c 2 R n R�. Yet, since a is irreducible,
b is a unit, so .b/ D R. Thus, .a/ is maximal among proper principal
ideals. Conversely, suppose .a/ is maximal among proper principal ideals.
If a D bc, with b; c … R�, then .a/ ¨ .b/ ¨ R. This is a contradiction to
maximality, so a is not reducible.

Example 6.2.2 Let R´ F be a field. We have

(i) 0.
(ii) F� D F n f0g.

(iii) ¿.
(iv) ¿.

Example 6.2.3 Let R´ Z. Then,

(i) 0.
(ii) Z� D f˙1g.

(iii) composites.
(iv) ˙p where p is prime.
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Example 6.2.4 Let R´ F Œx�, where F is a field. We get

(i) 0.
(ii) F� � F Œx�.

(iii) f reducible.
(iv) f irreducible polynomials.1616: We need nonzero, non-unit, f ¤ gh

for non-constant g; h of smaller degree
strictly.

Example 6.2.5 If we take a look at CŒx�, then irreducibles are precisely of
the form .x � a/, up to units, where a 2 C. On the other hand, if we look
at RŒx�, then irreducibles are either .x � a/ for a 2 R or .x2 C bx C c/
for b; c 2 R, where b2 � 4c < 0.

Remark 6.2.3 If we have one irreducible dividing another, they must be
associates.

Definition 6.2.6 (Prime Element) We say p 2 R is prime if p ¤ 0 and .p/
is a prime ideal. In other words, p ¤ 0 and if p j ab, then p j a or p j b.1717: We force p … R�.

Proposition 6.2.8 Let R be a domain. Every prime element is irreducible.

Proof. Let p be prime. Then, .p/ ¨ .a/ � R. Thus, p D ab for some b 2 R
with b … R�. In turn, p j a or p j b, but p cannot divide a since .p/ ¨ .a/,
so p j b. Thus, b D cp for some c 2 R. Then, p D ab D acp, so 1 D ac,
meaning a; c 2 R�, and a 2 R� implies .a/ D R. Thus, .p/ is maximal
among principal ideals, so it is irreducible.

Example 6.2.6 Consider R ´ ZŒ
p
�5�. We have 3 2 R. If we have

3 D ˛ˇ, then N.3/ D N.˛/N.ˇ/ D 9, but N.˛/ ¤ 3. Thus, at least one
of the RHS is 1, so one is a unit. As such, 3 is irreducible. On the other
hand, it is not prime. We can factor 32 D 9 D .2C

p
�5/.2�

p
�5/. Then,

3 j ˛ˇ, but 3 − ˛ and 3 − ˇ.1818: We have

.3/ D f3aC 3b
p
�5 W a; b 2 Zg:

Proposition 6.2.9 If R is a PID, then prime is the same as irreducible.

Proof. We have already shown the forward direction. Conversely, if .a/
is irreducible, then .a/ is maximal among proper principal ideals. Yet,
all ideals are principal, so .a/ is maximal. Thus, R=.a/ is a field, and in
particular, R=.a/ is prime, so a is prime.

6.3 Unique Factorization Domains and Fermat
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Definition 6.3.1 (Unique Factorization Domain) A unique factorization
domain (UFD) is a domain R such that for all R 2 R n .f0g [R�/,

(i) there exists r D p1p2 � � �pn, where the pi are irreducible and n � 1.
(ii) this factorization is unique up to reorderings and units.

Remark 6.3.1 The latter statement is saying if r D p1 � � �pn D q1 � � � qm
with pi ; qi are irreducible, thenm D n and there exists � 2 SN such that
pk �units q�.k/.

Remark 6.3.2 That is, .r/ D .p1/ � � � .pn/ with pi irreducible, which is
unique up to reordering.19 19: These are products of ideals, as

discussed earlier.

Definition 6.3.2 (ACC for Principal Ideals) We say R has the ACC for
principal ideals if for I1 � I2 � � � � � R, then with fIkgk2ZC , Ik D .ak/

implies there exists n such that Ik D In for all k � n.20 20: That is, every chain stabilizes, as you
might expect.

Lemma 6.3.1 Every PID has the ACC for principal ideals.

Proof. Let
.b/ D J ´

[
k�1

Ik � R;

so there exists n such that b 2 In, so J D In.

Theorem 6.3.2 PIDs are UFDs.

Proof. Let R be a PID. We want to show every nonzero, non-unit in R has
r D p1 � � �pn for pi irreducible. Suppose a 2 R n .f0g [R�/ for which this
is not true.21 Then, a is not irreducible, so a is reducible. Then, there exists a 21: Call this property “bad.”
factorization a D a0b and a; b … f0g [R�. Thus, a0 also is not a product of
irreducibles. We have a1 D a2b2 bad, so a2 is bad and b2 … R�. Continue
iterating in this way. Then, we get a a chain of principal ideals

.a1/ ¨ .a2/ ¨ � � � ¨ � � � � R;

a contradiction to the ACC.22 We now need to prove uniqueness,m which 22: In practice, this means the process
must stop if we keep pulling off elements.uses that irreducibles are prime (which is true in a PID). Suppose

a D p1 � � �pn D q1 � � � qm, where pi ; qi are irreducible. Of course,
p1 j q1q2 � � � qm, so p1 j qj for some j . Reorder so that j D 1. Thus,
p1 �units q1. What we get here is that q1 D p1u for some u 2 R�, so
canceling p1 gives us

.up2/ � � �pn D q2 � � � qm;

and induction by the number of factors tells us n D m and the factors are
the same up to reordering and units.
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Example 6.3.1 Let O´ ZŒi �. This is a PID, so it is UFD. What are the
irreducible elements? Well, recall that we have the norm N W O! Z�0
so that N.a C bi/ D a2 C b2, which is multiplicative. We also have
O� D f˙1;˙ig. Let us start with a lemma.

Lemma 6.3.3 Let ˛ 2 Owith N.˛/ D p, a prime in Z. Then, ˛ is irreducible
in O.

Proof. If ˛ D ˇ
 , then since norm is multiplicative, either ˇ or 
 is a unit
in O.

For instance, N.2˙ i/ D 22 C 12 D 5, so 2˙ i are both irreducible, yet
they are not associates.23 Algebraic number theorists will say “irreducibles23: Just check products of the four units.
in ZŒi � sit over irreducibles in Z.”

Proposition 6.3.4 If R is commutative, unital, S � R is unital, and P � R
is a prime ideal, then S \ P � S is a prime ideal.2424: We call this a “restricted ideal.”

Proof. Suppose a; b 2 S so that ab 2 S \ P . Yet, P � R is prime, so either
a 2 P or b 2 P , but both are in S so we win.

Alternatively, we have a subring inclusion S=.S \ P / � R=P , where the
latter is a domain, and subrings of domains are domains.

Proposition 6.3.5 Let p 2 Z be a prime number. Let ˛ 2 O D ZŒi � be an
irreducible element. The following are equivalent:2525: Algebraic number theorists say that

“˛ lies over p.”
(i) ˛ is a divisor of p in O.
(ii) pZ D ˛O\Z.

Proof. Since ˛ is irreducible in O, we have that .˛/ D ˛O is maximal in O.
Thus, it is a prime ideal in O. Then, by the previous proposition, ˛O\Z is
a prime ideal in Z. We know that ˛O\ Z D qZ for some unique prime
number q. Now, start with (i)) (ii). If ˛ j p in O, then p 2 O\Z D qZ, so
p D q. Conversely, if q D p, p 2 ˛O, so p D ˛ˇ for some ˇ 2 O.

Remark 6.3.3 If ˛ 2 O is irreducible and ˛O\Z D pZ, we can p D ˛ˇ
for ˇ 2 O. Applying the field norm yields p2 D N.p/ D N.˛/N.ˇ/.
There are two cases, whenN.˛/ D p and whenN.˛/ D p2. IfN.˛/ D p2,
then N.ˇ/ D 1, so ˇ 2 O�, so ˛ �units in O p. Thus, ˛ 2 f˙p;˙pig. Now,
ifN.˛/ D p, thenN.ˇ/ D p, so p D ˛ˇ is an irreducible factorization of
p in O, meaning ˛; ˇ are unique up to units. Note that if ˛ D aCbi , then

p D N.˛/ D .aC bi/.a � bi/;

so in this case, ˛; ˇ 2 fa ˙ big up to units by unique factorization.
Consequently, every irreducible ˛ in O lies over a unique prime number
p 2 Z. Exactly one of the following happens:

(i) N.˛/ D p2 and ˛ 2 f˙p;˙pig.
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(ii) N.˛/ D p and a2 C b2 D p D .aC bi/.a � bi/.26 26: That is, p is not irreducible in O.

Corollary 6.3.6 Let p 2 Z be prime. We have that p factors nontrivially in O

if and only if p D a2 C b2 for some a; b 2 Z.27 27: Using the field norm, this also gives
us the factorization for free.

Example 6.3.2 Let p D 2 D 12 C 12. Then, p D .1C i/.1 � i/, which is
an irreducible factorization. Note that i.1� i/ D 1C i , so 1C i and 1� i
are associates.

Example 6.3.3 Let p D 3, which is not a sum of squares. Then, 3 is
irreducible in the Gaussian integers.

Example 6.3.4 Let p D 5 D 22 C 12 D .2 C i/.2 � i/. These are two
irreducibles in O over 5 up to units.28 28: Note that these are not associates.

Remark 6.3.4 If p D a2 C b2. Then, a C bi �units a � bi if and only if
p D 2.

Lemma 6.3.7 (Lagrange) Let p be a prime of the form p D 4mC 1 for some
m 2 Z. Then, there exists n 2 Z such that p j n2 C 1. That is, n2 � �1
.mod p/.29 29: To clarify, �1 2 Fp has a square root.

Proof. We proved this in the homework.

Theorem 6.3.8 (Fermat) If p 2 Z is prime, then p D a2 C b2 for some
a; b 2 Z if and only if p � 2 .mod 4/ or p � 1 .mod 4/.30 30: That is, not if p � �1 .mod 4/.

Proof. We know 2 D 12 D 12, so assume p is an odd prime. If p D a2C b2,
then p � 0; 1; 2 .mod 4/, so p ¥ �1 .mod 4/, as a2; b2 � 0; 1 .mod 4/.
Thus, p � 1 .mod 4/ for odd p. Suppose p � 1 .mod 4/. By Lagrange’s
lemma, there exists an n 2 Z such that p j n2 C 1. We can factor n2 C 1 D
.nC i/.n � i/ in O. Thus,

p j n2 C 1 D .nC i/.n � i/ in O:

Suppose p is irreducible in O, which is true if and only if p is prime in O

(PID). Then, p dividing a product implies p j nC i or p j n � i . Then, one
of nC i; n � i 2 pO, which is impossible. Thus, p cannot be irreducible in
O. Thus, p is reducible in O, so p D .aC bi/.a � bi/ for some irreducible
a˙ bi in O.

6.4 Torsion Modules, Independence, and Rank

LetM be an R-module, where R is a domain.
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Definition 6.4.1 (Torsion) We say that x 2 M is torsion if there exists an
r 2 R n f0g such that rx D 0.3131: That is, R ! Rx � M where r 7!

rx has nontrivial kernel.

Definition 6.4.2 (Set of Torsion Elements) We define

Mtors ´ fx 2M W x is torsion g:

Definition 6.4.3 (Torsion Module) We say thatM is torsion ifM DMtors.

Definition 6.4.4 (Torsion Free) We say that M is torsion free ifMtors D f0g.

Lemma 6.4.1Mtors �M is a submodule andM=Mtors is torsion free.

Proof. The proof is the same as in the case of R D Z, and Z-modules are
abelian groups.

Lemma 6.4.2 If N �M is a submodule, then M=N is torsion if and only if
for all x 2M there exists r 2 R n f0g such that rx 2 N .

Proof. The proof is obvious.

Proposition 6.4.3 A cyclic module M D R=I , is a torsion module if and only
if I ¤ 0.

Proof. Suppose there exists a 2 I n f0g. Then, a � b 2 I , so b 2 .R=I /tors.
Conversely, if I D 0, thenM D R, soRtors D 0, becauseR is a domain.

Example 6.4.1 If R D F , a field, then if V is a F -linear space, then
Vtors D 0. All vector spaces are torsion free.

Definition 6.4.5 (R-Linearly Dependent) We say that fxigi2I is R-linearly
dependent if there exists

finiteX
i2I

rixi D 0;

where not all ri D 0 (all but finitely many ri D 0).3232: The ri 2 R.

That is, if fx1; : : : ; xngiD1;:::;n, then R-dependence happens if and only if
there exists r1; : : : ; rn 2 R with some rk ¤ 0 such that

r1x1 C � � � C rnxn D 0:

Definition 6.4.6 (R-Linearly Independent) A set fxigi2I is R-independent
if it is not R-dependent.
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Remark 6.4.1 If fxig is R-independent, then xi ¤ xj for i ¤ j .

Note that R-independence is precisely equivalent to giving a mapM
i2I

R
f

������!M

ei 7������! xi

which is injective.33 If this is the case, we can consider the submodule 33: The ei are the standard basis
elements.Rfxig �M , which is free.

Definition 6.4.7 (Maximally R-Independent) We say that S � M is
maximally R-independent if both

(i) it is R-independent.
(ii) if S � T �M and T is R-independent, then S D T .

Example 6.4.2 The basis of a free module is always maximally R-
independent.

Example 6.4.3 Take 0 ¤ .a/ � R, then fag is R-independent.

Example 6.4.4 Let R´ Z and take M ´ Q as a Z-module. The subset
f1g � Q is maximally Z-independent.

Lemma 6.4.4 Let S �M be an R-independent subset. Then, S is maximally
R-independent if and only ifM=RS is a torsion module.

Proof. Let y 2M . Look at the quotient image y D y CN 2M=N , where
N D RS � M . The element y 2 M=N is torsion if and only if there
exists b 2 R n f0g such that by D 0. We can recast this as saying there
exists b 2 R n f0g with a1; : : : ; an 2 R and x1; : : : ; xn 2 S such that
by D a1x1 C � � � C anxn. Thus, y is torsion if and only if y 2 S or S [ fyg
is R-dependent. Therefore, all y 2 M=N are torsion if and only if S is
maximally R-independent.

Example 6.4.5 Let R ´ F , a field. The only torsion module is 0. We
have that if V2 ModF , then S � V is maximally F -independent, which
holds if and only if it is F -linear independent and VD FS . This is true
if and only if S is a basis of V.

Proposition 6.4.5 Every R-independent subset S �M is contained in some
maximally R-independent subset. In particular, every module has at least one
R-independent subset.34 34: Applying this to R D F , this is

precisely the statement that every vector
space has a basis.

Proof. Use Zorn’s lemma, applied to the poset of R-independent subsets
which contain S .
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Theorem 6.4.6 (Invariance of Rank) LetM be an R-module over a domain.
Let S � M be a finite subset with jS j D n such that M=.RS/ is torsion.
Then, there exists a T � S such that T is maximally R-independent, and every
maximally R-independent subset ofM has size equal to jT j D m � n.3535: The standard proof uses the

replacement/ interchange theorem,
which is usually used in linear algebra
to discuss dimension. This is ugly, so we
will use dimension, looking at the case of
finitely generated free modules, and then
look at the general case.

Definition 6.4.8 (Module Rank) In the case of the theorem above, we define

rank.M/´ size of any R-independent subset ofM:

Corollary 6.4.7 LetM ´ R˚n. Then, rank.M/ D n. If R˚n ' R˚m is an
isomorphism of R-modules, then m D n.

Example 6.4.6 Let R ´ F be a field. If V, an F -linear space, has a
spanning set S of size n <1, then S contains a basis T of size m � n,
and every basis of Vhas size m.

Consider the special caseM ´ R˚m.

Lemma 6.4.8 IfM D R˚m, then everyR-independent subset S ofM has size
less than or equal to m, and such an S is maximally R-independent if and only
if jS j D m.

Proof. Define F ´ Frac.R/ � R. We have M D R˚m � V´ F˚m. This
is an F -vector space and an R-module. If S �M , and also S � V, then S
is R-independent inM if and only if S is F -independent in V. Similarly, S
is maximally R-independent inM if and only if S is maximally F -linearly
independent in V.36 Now, we prove the claim. If S D fxigi2I � M is36: The lemma follows from linear

algebra applied to V. R-independent, then
finiteX
i2I

aixi D 0

implies all R 3 ai 2 0. Suppose

finiteX
i2I

cixi D 0;

where ci 2 F . Then, each ci D ai=bi , where ai ; bi 2 R and bi ¤ 0. Let
b D b1 � � � bn for all nonzero ci (the other ck D 0 if k ¤ 1; : : : ; n). We can
then rewrite the sum as

nX
iD1

.bci /xi D 0;

with bci 2 R, and R-independence tells us that all bci D 0, so all ci D 0.
Conversely, if S is F -independent then S is R-independent is the same
but easier. Now, it is trivial that if S � M is maximally F -independent,
then S is maximally R independent. Suppose S � M is maximally R-
independent, but suppose further that there exists a v 2 Vwith v … S so
that S [ fvg is F -independent in V. Then, there exists a b 2 R n f0g such
that bv 2M .37 If S [ fvg is F -independent, so is bS [ fbvg �M , meaning37: We have v D .v1; : : : ; vm/ 2 F˚m.
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bS [ fbvg is R-independent in M> Yet, bS is maximally R-independent
by the following lemma, a contradiction.

Lemma 6.4.9 If S � M D R˚m is maximally R-independent and if b 2
R n f0g, then bS is also maximally R-independent.

Proof. S being R-independent implies bS is R-independent. Consider
RbS � RS �M . If S is maximally R-independent, thenM=RS is torsion.
Also,RS=RbS is torsion, as for all x 2 RS=RbS has bx D 0. We claim that
this meansM=RbS is torsion. If y 2M=RbS , then since m=RS is torsion,
there exists a 2 R n f0g such that ay 2 RS , but then b.ay/ 2 RbS . Thus,
bay D 0 for ba 2 R n f0g.

Corollary 6.4.10 If N �M , then N;M=N are torsion, soM is torsion.

Example 6.4.7 Remember, Q is a Z-module. We have that rank.Q/ D 1.

Proposition 6.4.11 (Finding Maximally R-Independent T ) Let T be any
subset of S which is R-independent and has maximal size.

Proof. Existence comes from the fact that ¿ is R-independent. If T � S
is maximal among subsets of S which are R-independent, then we claim
that RS=RT is torsion. Well, RS=RT is generated as an R-module by the
image of S n T .38 Let x 2 S n T . Then, T [ fxg �M is not R-independent, 38: We take the quotient image.
by the maximality of T .39 Then, ax D 0 inRS=RT �M=RT , soRS=RT is 39: That is, there exists ax D b1t1 C

� � � C bntn, where ti 2 T , a ¤ 0, and
a; bi 2 R.

torsion. Consider RS=RT �M=RT . Well, .M=RT /=.RS=RT / 'M=RS .
Since the submodule RS=RT is torsion and the quotient M=RS is torsion,
we have thatM=RT is torsion. Suppose S; T �M such that T is maximally
R-independent of size n and S is R-independent with jS j D nC 1. We
will show a contradiction. Since T is maximally R-independent,M=RT is
torsion. Take S D fx1; : : : ; xnC1g, then there exists d 2 R n f0g such that
dS D fdx1; : : : ; dxnC1g � RT ' R

˚n and dS is also R-independent. Last
time, we showed this is impossible.

Corollary 6.4.12 If R is a domain and Rm ' Rn withm; n � 0, thenm D n.

Proof. We have that rank.Rn/ D n, and rank is an invariant.

Proposition 6.4.13 Let M be a domain R-module. Take N � M to be a
submodule. If rank.N / D n is finite and rank.M=N/ D m, then rank.M/ D

rank.N /C rank.M=N/.

6.5 Annihilators

Let R be a unital ring andM be a left R-module.
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Definition 6.5.1 (Annihilator) We define the annihilator

Ann.M/´ fx 2 R W xM D 0g � R:

Proposition 6.5.1 We have that Ann.M/ �M is a two-sided ideal.

Proof. We have that 0M D 0. If xM D 0 D yM , then .x C y/M D 0. If
xM D 0, then xrM � xM , so xrM D 0. Also, r.xM/ D r0 D 0.

Exercise 6.5.1 Prove that

Ann.M/ D ker ŒR! EndZ.M/� :

Proposition 6.5.2 IfM ' N , then Ann.M/ D Ann.N /.4040: The proof is short, but this is
particularly intuitive.

Proof. If ' WM ��! N is anR-module isomorphism, then x'.m/ D 0 if and
only if xm D 0.

Proposition 6.5.3 Let I � R be a two-sided ideal. Then, Ann.R=I / D I .

Proof. If x 2 Ann.R=I /, then x1 D 0, x1 2 I so x 2 I . If x 2 I , then for
all y 2 R, we have xy 2 I , so xy D 0.

Remark 6.5.1 If I � R is only a left ideal, we can have Ann.R=I / ¨ I .

Example 6.5.1 Let R´M2.F /. Let I ´
�
� 0

� 0

�
be a left ideal. Then,

Ann.R=I / D 0 ¤ I .

Proposition 6.5.4 Let I; J � R be two-sided ideals. Then, R=I ' R=J as
left R-modules if and only if I D J .4141: A useful example is when R is

commutative.

Proof. We have that the respective annihilators are isomorphic for R-
modules, plus Ann.R=I / D I .

Corollary 6.5.5 Let R be commutative withM;N cyclic as R0modules. Then,
M ' N as R-modules if and only if Ann.M/ D Ann.N /.

6.6 Modules Over PIDs

Now, let R be a PID. Then, for cyclic modules, we have R=.a/ ' R=.b/ as
R-modules if and only if .a/ D .b/. That is, if a �units b.
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Proposition 6.6.1 (Cylic Modules) There are three types of cyclic modules
over a PID:

(i) trivial: R=.a/ ' 0 for a 2 R�.
(ii) nontrivial torsion: R=.a/ for a ¤ 0; a … R�.
(iii) free: R=.0/ ' R.

Proposition 6.6.2 Let R be a PID. Then, every finitely generated R-module is
isomorphic to one of the form42 42: That is, a finite direct sum of cyclic

modules.
M ' R=.a1/˚ � � � ˚R=.ak/:

Remark 6.6.1 (Chinese Remainder Theorem) Factor

R 3 a D p
k1
1 p

k2
2 � � �p

kd
d
;

wherep1; : : : ; pd are distinct-up-to-units primes inR, the k1; : : : ; kd � 1,
and d � 0. Then, .a/ D .pk11 /.p

k2
2 / � � � .p

kd
d
/. Thus,

R=.a/ ' R=.p
k1
1 /˚ � � � ˚R=.p

kd
d
/:

Theorem 6.6.3 (Elementary Divisor) Every finitely generated module over a
PID R is isomorphic to one of the form

M ' Rr ˚R=.p
k1
1 /˚ � � � ˚R=.p

ku
u /;

where r � 0,u � 0, andp1; : : : ; pu are primes inR and ki � 1.43 43: The pi are not necessarily distinct.Furthermore,
this is unique in the sense that if we also have

M ' Rr
0

˚R=.q
`1
1 /˚ � � � ˚R=.q

`v
v /

with r 0; v � 0 and q1; : : : ; qv are prime with `i � 1, then r D r 0, v D v0, and
there exists a � 2 Sv such that pi �units q�.i/ with ki D `�.i/.

We need to show uniqueness and existence.

Lemma 6.6.4 If M ' Rr ˚ R=.a1/ ˚ � � � ˚ R=.an/ with ak ¤ 0, then
rank.M/ D r .

Proof. We showed thatN �M implies rank.M/ D rank.N /Crank.M=N/.
In particular, rank.N1 ˚ N2/ D rank.N1/ C rank.N2/. Thus, the claim
follows from the fact that rank is an isomorphism invariant: rank.R/ D 1
and rank.R=.a// D 0 if a ¤ 0.44 44: The rank is zero because it is a torsion

module.

Now, let R be a commutative ring, M be an R-module, and I � R be an
ideal such that I � AnnR.M/. That is,

IM D fx1m1 C � � � xnmn W xi 2 I;mi 2M g D 0:

We have that M=IM admits the structure of an R=I -module. Set .r C
I /m ´ rm. Furthermore, if M ' N as R-modules and IM D 0, then
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IN D 0 andM ' N as R=I -modules.

Example 6.6.1 LetR´ Z and letM be anR-module such that .p/M D
0, where p is a prime. Then,M is also a module over Z=p D Fp . Then,
it has an invariant dimFp M . The idea is that dimFp .M=pM/µ ˇ.M/

is an isomorphism invariant of abelian groups: ˇ.Z=.pk// D 1, k � 1,
ˇ.Z=.q`// D 0 for p − q.

Proposition 6.6.5

(i) Let ' W M ��! N be an isomorphism of R-modules. Then, ' restricts
an isomorphism IM ��! IN of R-modules. Furthermore, it induces an
isomorphismM=IM ��! N=IN of R-modules (and R=I -modules).

(ii) LetM DM1˚� � �˚Mn ofR-modules, then IM D IM1˚� � �˚IMn.
Then, we get a nice isomorphism

M=IM 'M1=IM1 ˚ � � � ˚Mn=IMn

of R-modules (and R=I -modules).
(iii) IfM is a finitely generatedR-module, thenM=IM is a finitely generated

R-module (and R=I -module).
(iv) LetM be a finitely generatedR-module. Let I � R be a finitely generated

ideal. Then, IM is a finitely generated R-module.

Proof. For (iv), note thatM D Rx1C� � �CRxn. Similarly, I D .a1; : : : ; ak/.
Then, the claim is

IM D
X

iD1;:::;k
jD1;:::;n

Raixj :

LetR be a PID and p 2 R a prime (irreducible) element. LetM be a finitely
generated R-module. Then, we can form submodules pkM �M :4545: By (iv), these are all finitely generated.

M D p0M � p1M � p2M � � � � :

Using (iii), we can form finitely generated R-quotients pk�1M=pkM :

M=pM;pM=p2M;p2M=p3M:

Well, pk�1M=pkM D N=pN , where N D pk�1M . Then, these are all
R=.p/-modules. Why do we care? Well, these are fields!

Definition 6.6.1 ( p̨k .M/) We define an “invariant” for k � 1:

p̨k .M/´ dimR=.p/ p
k�1=pkM 2 Z�0:

Proposition 6.6.6

(i) IfM ' N are finitely generated R-modules, then p̨k .M/ D p̨k .N /.
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(ii) IfM DM1 ˚ � � � ˚Mn, then46 46: TheMk are finitely generated.

p̨k .M/ D p̨k .M1/C � � � C p̨k .Mn/:

(iii) IfM D R=.a/ for some a 2 R, then47 47: Consequently, ˛pk .R/ D 1.

p̨k .R=.a// D

(
1; pk j a

0; otherwise:

Proof. See the previous proposition for (i) and (ii). We now prove (iii).
Our module is cyclic, so N ´ pk�1M is also cyclic. It is generated as
a submodule of M by the class of pk�1. Then, pk�1M=pkM is a cyclic
R-module (and R=.p/-module). Thus, we have forced

dimR=.p/ p
k�1M=pkM 2 f0; 1g:

We can writeN D pk�1M D pk�1.R=.a//, and we claim this is isomorphic
to .pk ; a/=.a/. Map .pk�1; a/! pk�1.R=.a// by x 7! x.48 In the other case, 48: It is surjective easily. Why is it

injective? Well, the kernel of the map is
exactly .a/, so we get an isomorphism via
the first isomorphism theorem.

pN D pkM D pk.R=.a// ' .pk ; a/=.a/. we want to know if N D pN .
Well, N=pN ' .pk�1; a/=.pk ; a/. Well, these are equal if and only if
pk�1 2 .pk ; a/ D .d/, so d D gcd.pk ; a/. That is, N=pN D 0 if and only if
gcd.pk ; a/ j pk�1. This happens if and only if pk − a.

Definition 6.6.2 ( p̌k .M/) We define for prime p and k � 1

p̌k .M/ D p̨k .M/ � p̨kC1.M/:

Proposition 6.6.7

(i) p̌k .M/ is an invariant.
(ii) p̌k .M/ is additive.
(iii) If q is prime and ` � 1, then

p̌k .R=.q
`// D

(
1; q` � pk

0; otherwise:

In particular, p̌k .R/ D 0,

Corollary 6.6.8 The number

p̌k

�
Rr ˚R=.q

`1
1 /˚ � � � ˚R=.q

`u
u /
�

is precisely the number of summands which are isomorphic to R=.pk/.49 49: That is, such that q j̀ � pk .
Similarly,

rank
�
Rr ˚R=.q

`1
1 /˚ � � � ˚R=.q

`u
u /
�
D r:

We are now heading towards existence. Now, if M is finitely generated
over R, then M ' Rn=N , where R˚n

'
��! M with .c1; : : : ; cn/ 7!

P
cixi

is a surjective R-module homomorphism and M ' Rn= ker'. Then,
N ´ ker'.
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Proposition 6.6.9 Let R be a PID andM be a free module of rank n. Then any
submodule N �M is free of rank m � n.

Proof. We have thatM D Rn � N . Proceed by induction on n. The n D 0
is trivial. What about n D 1? Well, .d/ D N � R, as R is a PID. If .d/ D 0,
then N D 0, which is free of rank zero. If .d/ ¤ 0, then R ��! .d/ by
r 7! rd as R-modules.50 Now, let n � 2. Consider the projection50: Since we are in a domain, the kernel

is only 0.

Rn
�

������! R

.c1; : : : ; cn/ 7������! cn:

Then, ker� D Rn�1˚ 0 � Rn. LetN 0´ N \ ker� � Rn�1. By induction,
N 0 is free of rank less than or equal to n � 1. Consider �.N/ � R as a
submodule. Either �.N/ D 0, so N D N 0 and we win, or �.N/ D Rt , for
some t 2 R for t ¤ 0. Lift t to some t 2 N . We claim thatN D N 0˚Rt , so it
is of rank rank.N 0/C1 � .n�1/C1 D n. Note thatN 0; Rt � N Then, take
N D N 0CRt , so if x 2 N , then �.x/ D ct for c 2 R. Let x0´ x � ct 2 N .
Then, �.x0/ D �.x/� ct D 0, so x0 2 N 0. Thus, x D x0C ct . IfN 0\Rt D 0,
then if x 2 N 0 \ Rt , then x D ct , so �.x/ D ct D 0. Since we are in a
domain, we get x D 0.

Definition 6.6.3 (Smith Normal Form) Let A 2Mm�n.R/, taking n � m.
We say that A is in Smith normal form if A is diagonal with di , and zeros
beneath. and d1 j d2 j � � � j dn.

Definition 6.6.4 (Similar) We say A;B 2 Mm�n.R/ are similar if there
exists P 2 GLm.R/ andQ 2 GLn.R/ so that B D P�1AQ.

Theorem 6.6.10 Let R be a PID with A 2Mm�n.R/ and n � m, then A is
similar to a matrix in Smith normal form.

Proof. We want to show there exist P1; : : : ; Pk ;2 GLm.R/ and
Q1; : : : ;Q` 2 GLn.R/ such that

P1 � � �PkAQ1 � � �Q`

is in Smith normal form.51 We also have a “Bézout operation” based on the51: Quickly, note that we have three
elementary matrices. The first swithces
rows and columns, the second by a row
or column by a unit, and the third adds
multiples of a row (or column) to another.

standard number theory linear combination result. Leaving out essentially
all of the matrix checking, we can get a matrixA into our desired form. Over
a field, the elementary matrices are enough for this, but we do not have
a Euclidean algorithm in a general PID. Now, let A 2 Mm�n.R/. Define
gcd.A/ 2 R be the greatest common divisor of all the elements in A, taken
up to units. Now, we claim that if P;Q are invertible R-matrices, then
gcd.PAQ/ D gcd.A/. Well, for anyM with entries in R,

.gcd.MA// � .gcd.A//

and
.gcd.AN// � .gcd.A//:
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Well,MA D Œxij � generates an ideal contained in .gcd.A//. We will be done
by the following lemma, by induction.52 52: The proof proceeds by induction on

the number of columns, but I was not
enjoying typesetting the block matrices.

Lemma 6.6.11 For A 2Mm�n.R/ withm � n, A is similar to one of the form0BBB@
d 0 � � � 0

0 b1;1 � � � b1;n�1
:::

:::
:::

0 bm�1;1 � � � bm�1;n�1

1CCCA
such that d divides every entry of B 2M.m�1/�.n�1/.R/.

Proof. For A D 0, we are done. Assume A ¤ 0. Write a for the .1; 1/-entry
of A. Write d ´ gcd.A/. We claim that if .a/ ¤ .d/, then A is similar to
an A0 whose .1; 1/-entry a0 is so that .a/ ¨ .a0/.53 Thus, we must obtain A0 53: If so, we can find a sequence of similar

Aj whose .1; 1/-entries satisfy strict
successive inclusions .ai / ¨ .aiC1/, but
the ACC tells us this process must stop.

similar to Awith .1; 1/-entry of which is a greatest common divisor of A0
and of A. Using our operations, we get A0 � A. Finally, let us prove the
claim. In the first case, a does not divide some element in the first row or
first column, other than itself, of course. Using the Bézout operation, we can
slightly enlargen the top left generated ideal. In the second case, suppose a
divides every element in the first row and column. Well, .a/ ¤ .gcd.A//,
there exists an .i; j /-entry m such that a − m.54 54: From here, use an elementary row

operation to create a matrix with m0 in
the first row not divisible by a.

Proposition 6.6.12 Let R be a PID. LetM be a finitely generated R-module.
Then, there exists a chain of ideals R � .d1/ � � � � � .dm/ such that

M ' R=.d1/˚ � � � ˚R=.dm/:

Proof. Pick generators x1; : : : ; xn 2M . We have the diagram

ker.'/

N Rm M

Rn

(

(

 

!

'

�

!
'  ��

with
M ' Rm=N D Rm='.Rn/:

We can then express ' W Rn ! Rm as a matrixA such that '.fj / D
P
aij ei .

Then, there exist P;Q such that S ´ PAQ�1 in Smith normal form. This
gives us new bases

f 0j ´

nX
iD1

qijfi 2 N

and55 55: Take '.f 0
j
/´

P
dj e
0
j

.

e0j ´

mX
iD1

pij ei 2 R
m:
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That is,M ' Rm='0.Rn/ via

'0.x1; : : : ; xn/ D .d1x1; : : : ; dnxn; 0; : : : ; 0/:

Really, we have a map '0 W Rn ! Rm D Rn ˚Rm�n, so

M ' R=.d1/˚ � � � ˚R=.dn/˚R˚ � � �R:

Take dnC1 D � � � D dm D 0.

Let R be a PID andM a finitely generated R-module.

Theorem 6.6.13 (Invariant Factor) There exist t; r � 0 with

R © .a1/ © � � � © .at / © .0/

such that5656: The a1; : : : ; at are called the
“invariant factors.” M ' R=.a1/˚ � � � ˚R=.at /˚R

r :

This is unique in the sense that if we have another decomposition with r 0 and t 0,
then r D r 0, t D t 0, and .aj / D .a0j /.

Example 6.6.2 WithR´ Z, recall that every nonabelian group of order
120 D 23 � 3 � 5 is isomorphic to exactly one of Z=120, Z=2˚ Z=60, or
Z=2˚Z=2˚Z=30.

Remark 6.6.2 The pk11 ; : : : ; p
ku
u of an elementary divisor form are called

elementary divisors.

Proposition 6.6.14 (Uniqeuness of IFD) The invariant factor form is unique.

Proof. If M D R=.a1/˚ � � � ˚ R=.at /˚ Rr , where a1 j a2 � � � j at and the
aj are nonzero and non-units. We have that rank.M/ D r . Well,

p̨k .M/ D
ˇ̌̌
fj W pk j aj g

ˇ̌̌
C r:

Now, note that p is any prime which divides a1. Thus, p̨.M/ D t C r , so

t D maxf p̨.M/ � rank.M/g

with primes p.

6.7 Linear Algebra via Modules

If we have V, an F -vector space, and a T W V! V, an F -linear operator,
then we get a module VT over R D F Œx�. The underlying set is V, and
with f 2 R and v 2 V , then fv D f .T /v. Furthermore, this is a bĳective
correspondence:
In particular, VT ' WU asR-modules if and only if there exists a ' W V ��!
Wsuch that 'T D U'.
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Operators .V; T W V! V/ R D F Œx�-modules VT

T -invariant W� V R-submodules of VT

F -linear ' W V! Wst 'T D U' R-module hom VT
'
�! WU :

!

!

!

!

!

!

Lemma 6.7.1 Given .V; T /, we get dimF V<1 if and only if VT is finitely
generated and torsion as an F Œx�-module.

Proof. Suppose v 2 VT is not torsion. Then, Rv � VT . Yet, we get an
R-module isomorphism Rv ' R, and dimF R D1, which is impossible.
Conversely, if VT is finitely generated and torsion as an R-module, then

VT ' R=.f1/˚ � � � ˚R=.fd /

as R-modules, with fi ¤ 0. Then,

dimF F Œx�=.f / D deg.f / D dimV V<1:

Now, let VT be a finitely generated torsion F Œx�-module. Consider
Ann.VT / D .f /.

Theorem 6.7.2 There exists a decomposition

VT ' R=.f1/˚ � � � ˚R=.fd /

with fj ¤ 0 and 0 ¤ f1f2 � � � fd 2 Ann.VT / D .f /.57 57: Remember, this f is called the
minimal polynomial of T , the smallest
polynomial killing T .

Proposition 6.7.3 Given .V; T / with dimF V< 1, let f be the minimal
polynomial of T . Then, with c 2 F , the following are equivalent:

(i) There exists a nonzero v 2 V such that T v D cv.
(ii) f .x/ D 0.58 58: That is, c is a root of the minimial

polynomial.

Proof. We use that F Œx� is a Euclidean domain. Thus, there exists a form
f D .x�c/gCr , where g 2 F Œx� and r 2 F . Now, we have T v D cv, where
v ¤ 0. Thus, .x� c/v D T v� cv D 0, so 0 D f .T /v D g.T /.T � c/vC rv,
meaning r D 0. Thus, f .x/ D 0. Conversely, if f .x/ D 0, then f D .x�c/g
with g … .f / D Ann.VT /. There exists w 2 V such that v D g.T /w ¤ 0,
so T v D cv.

Now, let

VT 'M1 ˚ � � � ˚Mm

' R=.f1/˚ � � � ˚R=.fm/:
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Pick a basis ˇ of Vsuch that

ŒT �ˇ D

0BBB@
A1

A2
: : :

Am

1CCCA :
Pick ˇ so that the first bunch is an F -basis ofM , the second is one forM2,
and so forth. If VT D F Œx�=.f /, then f D xk C bk�1xk�1 C � � � C b0 with
bj 2 F . Use the basis ˇ with e1 D 1, e2 D x, e D x2, and ei D xi�1 of
F Œx�=.f /. Then,5959: We callCf the companion matrix, for

some reason.

ŒT �ˇ D Cf D

0BBBBBB@
0 0 � � � 0 �b0
1 0 � � � 0 �b1

0 1 � � �
:::

:::
:::

::: � � �
:::

:::

0 0 � � � 1 �bk�1

1CCCCCCA :

Theorem 6.7.4 (Rational Canonical Form) Any T W V! V can be written
uniquely as6060: That is, we dceompose into

companion matrices. The proof
this is precisely the invariant factor
decomposition.

ŒT �ˇ D

0BBB@
Cf1

Cf2
: : :

Cfm

1CCCA ;
where fj is a monic polynomial such that f1 j f2 j � � � j fm.

Theorem 6.7.5 (Cayley-Hamilton) We have that fT j pT , so pT .T / D 0.6161: The minimal polynomial divides the
characteristic polynomial.

Proof. Note that det
�
xI � Cf

�
D f .x/, so if

VT '

mM
kD1

F Œx�=.fk/;

where is fk is monic for all k, then

pT ´ det.xI � T / D f1 � � � fm 2 Ann.VT / D .fT /;

the minimal polynomial.6262: We also have Jordan form for when

VT '

mM
kD1

F Œx�=
�
.x � ci /

ki
�
:
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Now that we have developed a working theory of commutative rings,
domains, and modules, we turn our focus to fields. Using our work on
ModF D VectF , we can prove many things about embeddings of fields.

7.1 Extensions and Towers

Let K be a field. Let F � K be a subfield.

Definition 7.1.1 (Field Extension) We write K=F to mean “K extends F .”1 1: This is certainly not a quotient, just
notation.

K

F

 

 

Figure 7.1: Diagram of a field extension
K=F , voiced “K over F .”

Remark 7.1.1 If F ;K are fields and � W F ! K is a ring homomorphism
preserving 1, then � is injective, so �.F / ' F . We will abusively write
� W F � K makes K into an extension of a field F .

Definition 7.1.2 (Prime Subfield) Every field F contains a prime subfield,
isomorphic to either Q or to Fp D Z=p, where p is prime.

Then, recalling our definition of characteristic, we have

char.F / D

(
0; Q � F

p; Fp � F :

Now, if we have R � S , where S is a commutative ring and R is a subring
with 1R D 1S , then S 2 ModR.

Definition 7.1.3 (Degree) In particular, if F � K is a field extension, then we
define the degree

ŒK W F �´ dimF K:

Example 7.1.1 We have that ŒC W R� D 2 and ŒR W Q� > @0.

L

K

F

 

 

 

 ŒLWK�

 

 ŒKWF �

Figure 7.2: Diagram of the tower law

Theorem 7.1.1 (Tower Law) Let F � K � L. Then,

ŒL W F � D ŒL W K�ŒK W F �:

Proof. Let f˛igi2I be a basis of K over F and f ǰ gj2J be a basis of L over K.
We claim that f˛i ǰ gi2I;j2J is a basis of L over F . Take x 2 L. Then,

x D
X
j

xj ǰ D

X
j

�X
i

yij˛i
�
D

X
i;j

yij .˛i ǰ /;

so spanF f˛i ǰ g D L. Uniqueness gives us linear independence.
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Definition 7.1.4 (Field Embedding) A field homomorphism is a map ' W
K! L is a ring homomorphism between fields preserving 1. In particular, ' is
injective, so we can call ' an “embedding” of K into L.

As usual, we take
Aut.F / D f' W F ��! F g:

Fix F . Consider extensions K=F and L=F . We need K ! L such that F
stays fixed.

Definition 7.1.5 (Extension Homomorphism) A homomorphism of
extensions K=F ! L=F is a homomorphism of fields ' W K ! L such
that 'jF D idF .

Then, we can define

Aut.K=F /´ f' W K ��! K W '
ˇ̌
F
D idF g � Aut.K/:

Definition 7.1.6 (Irreduicble Set) The set of irreducible polynomials over F
is denoted

Irred.F /´ ff 2 F Œx� W f irreducible in F Œx� and f monic g:

Let f 2 Irred.F /. Then, K´ F Œx�=.f / is a field, because f is irreducible
and F Œx� is a PID. Then, we get

F F Œx� F Œx�=.f / D K�

!

extension K=F

 - !
scalars  ��

Remark 7.1.2 Let ŒK W F � D degf D n, and take K as before. Write
˛ D x C .f / 2 K. Then, K has an F -basis22: This is precisely because F Œx� is a

Euclidean domain.

1; ˛; ˛2; : : : ; ˛n�1:

Given f; g ¤ 0 in F Œx�, then there are q; r 2 F Œx� such that

g D qf C r; deg r < n D degf;

as K$ fr 2 F Œx� W deg r < ng is an isomorphism of F -vector spaces.

Now, what has this construction given us? Well, F � K 3 ˛ has the property
that f .˛/ D 0. That is, we have “formally adjoined a root of the irreducible
f to the field F .”

Example 7.1.2 Let F ´ Q. Let f D x2 � 2 2 QŒx�. We claim that f is
irreducible. If not, f D .x�a/.x�b/, so a; b 2 Q such that f .a/ D f .b/.
Yet, ˙

p
2 … Q. Then, we can form K ´ QŒx�=.x2 � 2/. We will write
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˛´ x C .f / 2 K, so ˛2 D 2. Let a; b; c; d 2 Q, so

.aC b˛/.c C d˛/ D .ac C 2bd/C .ad C bc/˛:

Well,

.aC b˛/.a � b˛/ D a2 � 2b2

.aC b˛/�1 D
a

a2 � 2b2
C

�b

a2 � 2b2
˛;

which is not dividing by zero since a2 D 2b2 implies 2 D .a=b/2.3 3: This is why we needed an irreducible.

Without proof, we state a nice irreducibility theorem.

Theorem 7.1.2 (Eisenstein’s Criterion) Let f D xnCan�1xn�1C� � �Ca0 2
ZŒx� � QŒx�. Letp 2 Z be a prime number. Ifp j ak for all k 2 f0; : : : ; n�1g,
and p2 − a0, then f 2 Irred.Q/.

Example 7.1.3 Let K´ QŒx�=.x3 � 2/. We claim x3 � 2 2 Irred.Q/, as
2 j 0;�2, but 4 − 2. Now, ˛3 D 2, so ŒK W Q� D 3.

What does4 4: We have f 2 Irred.Q/.
HomField.QŒx�=.f /;L/

look like? Here is the answer:

Q

QŒx�

QŒx�=.f / L

 

!

exists iff char LD0
 
-

!

 

!

x 7!ˇ2L �

 

!
exists iff f .ˇ/D0

Figure 7.3: The reason Q ! L exists if
and only if char L D 0 is essentially by
the definition of prime subfield.

Example 7.1.4 Consider K D QŒx�=.x2 � 2/. Then, HomField.K;Q/ D ¿,
since the polynomial has no roots in Q. On the other hand,5 5: With these maps, '1.K/ D '2.K/,

which are isomorphic to K in two different
ways.

HomField.K;R/ D

(
˛ 7!

p
2

˛ 7! �
p
2:

Example 7.1.5 Consider K0 D QŒx�=.x3 � 2/. Then,

HomField.K
0;R/ D

n
˛ 7!

3
p
2:
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On the other hand,66: Here, 'i .K0/ are distinct in R. Then,
Aut.K0/ D feg.

HomField.K
0;C/ D

�
˛ 7!

3
p
2

˛ 7! �3
3
p
2

˛ 7! �23
3
p
2:

Definition 7.1.7 (Generated Subextension) Let L=F be a field extension; let
S � L. Then,

F .S/´
\

K � L subfield
S [ F � K

K � L

is a subfield.

Note that the above gives us an intermediate extension.
L

F .S/

F

 

 

 

 

Now, let S ´ f˛1; : : : ; ˛ng. We will write F .˛1; : : : ; ˛n/ � L.

Definition 7.1.8 (Finitely Generated Extension) We say that L=F is
a finitely generated extension if there exists ˛1; : : : ; ˛n 2 L such that
F .˛1; : : : ; ˛n/ D L.

Definition 7.1.9 (Simple Extension) We say that L=F is a simple extension
if L D F .˛/ for some ˛ 2 L.

7.2 Algebraic Extensions

Our goal is to classify K D F .˛/. Consider the homomorphism '˛ W F Œx�!
F .˛/ as the unique ring homomorphism '˛jF D idF and '˛.x/ D ˛.7 Well,7: The map 'a is “evaluation at ˛” with

'˛.f / D f .˛/. ker'˛ � F Œx�. Now, there are two cases:

(i) ker'˛ D .0/ if and only if ˛ is not the root of any nonzero polynomial
over F . In this case, we say ˛ is transcendental over F . Furthermore, if
we have trivial kernel, then '˛ W F Œx� ,! F .˛/, so F .˛/ ' Frac.F Œx�/.

(ii) ker'˛ D .m/, where m is monic and irreducible in F Œx�. Well,
m 2 Irred.F /, and we call m the minimal polynomial of ˛ over F .88: This is the smallest degree (nonzero)

polynomial that has ˛ as a root. If ˛ is any
polynomial such that f 2 F Œx� such that
f .˛/ D 0, thenm j f .

Furthermore, F .˛/ ' F Œx�=.m/. In this case, we say F .˛/ is an
algebraic simple extension.

Remark 7.2.1 Take L=F . For ˛ 2 L, we have a tower F � F .˛/ D K � L.
Either ˛ is transcendental over F or ˛ is algebraic over F with minimial
polynomial m˛;F 2 Irred.F /.

Example 7.2.1 (R=Q) For instance, �; e 2 R are transcendental over Q,
whereas 3

p
2 2 R is algebraic over Q with minimal polynomial

m 3
p
2;Q
D x3 � 2 2 Irred.Q/:
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Example 7.2.2 (C=R) We have that i 2 C is algebraic over R with minimal
polynomial mi;R D x2 C 1.

Now, we have a extension diagram

Q.
p
2;
p
3/

Q.
p
2/ Q.

p
3/

Q

 

 

 

 

 

 

2
 

 

2
Figure 7.4: Diagram of extensions via
adjoining

p
2 and

p
3.

To get the degrees, we use

mp2;Q D x
2
� 2 2 Irred.Q/

ŒQ.
p
2/ W Q� D 2

mp3;Q D x
2
� 3 2 Irred.Q/

ŒQ.
p
3/ W Q� D 3:

What about the upper degrees? Well, let m D mp3;Q.p2/. We have that

.m/ D fg 2 Q.
p
2/Œx� W g.

p
3/ D 0g:

We claim x2 � 3 is irreducible in Q.
p
2/Œx�, and if not,

p
3 2 Q.

p
2/.

Proof of Claim. Use
p
3 … Q. We want to show

p
3 … Q.

p
2/. If

p
3 2

Q.
p
2/, then

p
3 D a C b

p
2 for some a; b 2 Q, so 3 D .a C b

p
2/2 D

.a2 C 2b2/C 2ab
p
2. Well, dimQ Q.

p
2/ D 2 with a basis 1;

p
2 over Q.

We have a system 3 D a2 C 2b2 and 0 D 2ab.9 9: From here, the proof comes down to
some simple algebra.

Remark 7.2.2 Note that Q.
p
2;
p
3/ D Q.

p
2C
p
3/.

We say that L=F is algebraic if every ˛ 2 L is algebraic over F .

Proposition 7.2.1 Let L=F and L D F .˛1; : : : ; ˛n/. The following are
equivalent:

(i) ŒL W F � <1.
(ii) L=F is an algebraic extension.
(iii) Each ˛k is algebraic over F .

Proof. For (i)) (ii), if ˇ 2 L, we can consider F � F .ˇ/ � L. Then,

1 > ŒL W F � D ŒL W F .ˇ/�ŒF .ˇ/ W F �;

so ˇ is algebraic over F . We certainly have that (ii)) (iii). For (iii)) (i),
we need a picture:
We claim that ŒKk W Kk�1� <1.
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L D Kn

:::

F .˛1; ˛2/ D K1.˛2/ D K2

F .˛1/ D K1

F

 

 

 

 

 

 

 

 

K D Kk�1.˛k/ 3 ˛k

Kk�1

F

 

 

 

 

Figure 7.5: Note that m D mF ;˛ 2

F Œx� � Kk�1, so there existsm˛;Kk�1 .

Lemma 7.2.2 Let F � K � L 3 ˛ be a tower such that˛ is algebraic over F and
ŒK W F � <1. Then, ŒK.˛/ W K� � ŒF .˛/ W F � and ŒK.˛/ W F .˛/� � ŒK W F �.

Proof. It suffices to show that

ŒK.˛/ W K� � ŒF .˛/ W F �:

The LHS is degm˛;K and the RHS is degm˛;F . Since F � K, we get an
inclusion m˛;F 2 .m˛;K/ � KŒx�, so degm˛;F � degm˛;K.

Definition 7.2.1 (Composite) Define the composite extension KK0 of K;K0 to
be the field generated by K [ K0. That is, the smallest field containing both.

L

K0

K

F

 

 

 

 

 

 

 

 

Corollary 7.2.3 If we have a diagram as given, where L D KK0, and all are
finite, then ŒK W F � � ŒL W K0� and ŒK0 W F � � ŒL W K�.

Proof. Just draw the parallelogram of adjoining .˛i / to K and F to get K
and L, which gives us our inequality by the tower law.
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Example 7.2.3 (Algebraic Numbers) Let ˛ 2 C. We call ˛ algebraic if
it is algebraic over Q. That is, ˛ is the root of some f 2 QŒx� such that
f ¤ 0. Define the set of algebraic numbers

Qalg
´ f˛ 2 C W ˛ is algebraicg:

Proposition 7.2.4 Qalg is a field.

We will need a proposition.

Proposition 7.2.5 If L=F is an extension and ˛; ˇ 2 L are algebraic over F ,
then ˛ C ˇ, ˛ˇ, and �˛ are algebraic over F .

Proof. If ˛; ˇ are algebraic over F , then (equivalently) we have

ŒF .˛/ W F � <1 and ŒF .ˇ/ W F � <1;

so via the tower law we can write

ŒF .˛; ˇ/ W F � D ŒF .˛; ˇ/ W F .˛/�ŒF .˛/ W F �;

which is less than or equal to10 10: That is, every 
 2 F .˛; ˇ/ is algebraic
over F . Note that F .˛; ˇ/ D F .˛/F .ˇ/.

ŒF .ˇ/ W F �ŒF .˛/ W F � <1:

Exercise 7.2.1 Let p1; : : : ; pr be distinct prime numbers. Then, we can
form an algebraic extension�

Q
�p
p1;
p
p2; : : : ;

p
pr
�
W Q

�
D 2r ;

and since this is contained in Qalg, so ŒQalg W Q� D1.11 11: Thus, we can have algebraic extensions
which are infinite. We will not, however,
say too much about them.

7.3 Splitting Fields

Fix a field F and a polynomial f 2 F Œx�with f ¤ 0.

Definition 7.3.1 (Splitting Field) A splitting field of f , as above, is an
extension †=F such that

(i) f splits over †; i.e., that is

f D c.x � ˛1/ � � � .x � ˛n/ 2 †Œx�;

for some ˛i ; c 2 †.
(ii) † is generated over F by the roots of f .12 12: That is, using the roots from the linear

factors above,

† D F .˛1; : : : ; ˛n/:
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Lemma 7.3.1 Let L=F be an extension and nonzero f 2 F Œx� which splits
over L. Then, †´ F .˛1; : : : ; ˛n/ � L, where ˛i are the roots of f in L, is a
splitting field of f .

Example 7.3.1 Let f D .x2 C 1/.x2 � 5/ 2 QŒx�. Then, a splitting field
is1313: There are four roots, but we only need

to write two, as �1 2Q. †´ Q.
p
5; i/:

Example 7.3.2 Consider f D x3 � 2 2 QŒx�. Then,

† D Q.
3
p
2; !

3
p
2; !2

3
p
2/ D Q.

3
p
2; !/:

Theorem 7.3.2 (Existence of Splitting Field) Every f 2 F Œx� with f ¤ 0
has a splitting field.

Proof. Proceed by induction on n ´ degf . If n D 0; 1, then † D F .
Suppose n � 2. Choose a p 2 Irred.F / sch that p j f . Then, since F Œx� is a
PID, f D pg where g 2 F Œx�.14 Construct F .˛/=F such that14: We have degp � 1 and degg < n.

m˛;F D p 2 Irred.F /;

and define F .˛/´ F Œx�=.p/, where ˛ D x. We take f D h.x � ˛/, where
h 2 F .˛/Œx�. Now, deg h ¤ n � 1 < n, so by induction, h has a splitting
field †=F .˛/. We claim that †=F is a splitting field of f .

Corollary 7.3.3 If †=F is a splitting field of f 2 F Œx� with degf D n, then

Œ† W F � � nŠ:

Example 7.3.3 Let f D x2 � 3x C 2 D .x � 1/.x � 2/ 2 QŒx�. Then, the
splitting field † D Q.

We now discuss cyclotomic extensions, taking L=F .

Definition 7.3.2 (Primitive nth Root of Unity) We say � 2 L is a primitive
nth root of unity if j�j D n in L�.

Note that � is a root of the polynomial f D xn � 1 2 F Œx�.

Proposition 7.3.4 Define †´ F .�/ � L to be a splitting field of f .

Proof. Note that
1; �; �2; : : : ; �n�1 2 L

are all roots of f . Furthermore, they are all different.15 Thus,15: This is precisely because � is primitive.

xn � 1 D .x � 1/.x � �/ � � � .x � �n�1/;

so f splits over † D F .�/.
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Note that ŒF .�/ W F � � n, which is usually far less than nŠ.

Definition 7.3.3 (Cyclotomic Extension) We call such an extension, adjoining
roots of unity, a cyclotomic extension.

Example 7.3.4 The standard example is to take �n´ e2�i=n 2 C, where
j�nj D n in C�, forming Q.�n/.

Proposition 7.3.5 If n D p, a prime, then

m�n;Q D x
p�1
C xp�2 C � � � C x C 1;

where degm�n;Q D p � 1. Thus,

ŒQ.�p/ W Q� D p � 1:

Definition 7.3.4 (Formal Deriviative) Let

f D a0 C a1x C � � � C anx
n
2 F Œx�:

We define the formal derivative

Df ´ a1 C 2a2x C 3a3x
2
C � � � C nanx

n�1
2 F Œx�:

Exercise 7.3.1 The formal derivative acts how you think it does.16 16: I have now proved these rules on two
distinct occasions, so see my Hardt notes
or my Fogel work.

Definition 7.3.5 (Separable) Let f 2 F Œx�. We have that f is separable if
f;Df are relatively prime in F Œx�. That is, .f;Df / is the unit ideal in F Œx�.

Remark 7.3.1 Let � W bF � K be a homomorphism of fields. Then, we
also ket a free homomorphism of rings � W F Œx� ! KŒx�. We precisely
take this new � to be prescribed by the formula

� W
X

akx
k
7!

X
�.ak/x

k :

Then, it is an easy check that �.D.f // D D.�.f //.

Example 7.3.5 For instance, let � W F ,! K. Then, we get a subring
inclusion � W F Œx� ,! KŒx�.

Proposition 7.3.6 Let � W F � K be a field homomorphism. Then, f 2 F Œx�
is separable if and only if �.f / 2 KŒx� is separable over K.17 17: An element f 2 QŒx� is separable

over Q if and only if f 2 Q.i/Œx� is
separable over Q.i/.

Proof. If f is separable over F , then 1 D uf C vD.f / for some u; v 2 F Œx�.
Well, 1 D �.u/�.f /C �.v/D.�.f // in KŒx�. Thus �.f / is separable over
K. Conversely, if f is not separable over F , then there exists a common,
non-unit factor g of f;Df , so �.g/ is a common, non-unit factor of
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�.f /;D.�.f //, meaning �.f / is not separable.

Proposition 7.3.7 A nonzero polynomial f 2 F Œx� is separable if and only if
for some irreducible factorization

f D g1 � � �gn; the gi are irreducible,

then

(i) each gk is separable.
(ii) there are no repeated factors.1818: That is, if i ¤ j , then gi − gj .

Proof. We will show that an irreducible factor g of f divides the formal
derivative Df if and only if g2 j f , or g is not separable. Suppose g is
irreducible in F Œx� and g j f . Then,19 f D gh:19: Note that g j Df if and only if g j

.Dg/h.
Df D D.gh/ D .Dg/hC g.Dh/:

Then, equivalently, g j Dg or g j h, since g is irreducible (and thus, prime).
Well, the latter is the same as saying g2 j f , whereas the former is the same
as saying g is not separable.

Corollary 7.3.8 Let L=F be any extension over which nonzero f 2 F Œx� splits.
Then, f is separable if and only if f has no repeated roots in LŒx�.

Proof. Note that separability over F is equivalent to separability over L.
Then, without loss of generality, take L D F , writing

f D c.x � ˛1/ � � � .x � ˛n/;

where c 2 L�. An easy fact is that x � ˛ is always separable:D.x � ˛/ D 1,
so f is separable if and only if it has no repeated roots.

Proposition 7.3.9 Let f 2 F Œx� be irreducible. Then, f is separable if and
only ifDf ¤ 0.

Proof. Assume Df ¤ 0. Let degf D n. Then, �1 ¤ degDf < n. Then,
Df … .f / � F Œx�, so .Df; f / D F Œx�. If Df D 0, then .f;Df / D .f / ¤

F Œx�, as desired.

Example 7.3.6 Let F ´ Fp D Z=p. Let f D xp �a, where a 2 Fp . Then,
Df D pxp�1 � 0 D 0 is not separable.2020: Note that this polynomial factors by

xp � a D .x � a/p

in FpŒx� so this is not a contradiction to
our result.

Theorem 7.3.10 There exists a field K such that char K D p > 0 and a 2 K
so that a D bp for every b 2 K, meaning f D xp � a is irreducible and not
separable.

Corollary 7.3.11 If char F D 0. Then, all irreducible polynomials are separable.
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Suppose we are given a simple, finite extension of fields F .˛/=F . This must
be algebraic. We get a minimal polynomial m˛;F D f 2 Irred.F /. Now,
suppose we have

F .˛/ L

F F 0
 

 

 

!
'

 

 

 ��

'

Figure 7.6: We take a simple, finite
extension, map the ground field over
isomorphically to another field with an
associated parent extension. We show how
to construct a new homomorphism '
between the parents.

Then, we get a bĳective correspondence˚
homs ' W F .˛/! L W '

ˇ̌
F
D �

	
 ����!

bĳection
fˇ 2 L W f 0.ˇ/ D 0g;

where f 0´ �.f / 2 F 0Œx�.

Corollary 7.3.12 The # of homs ' W F .˛/! L is � degf .

Corollary 7.3.13 (Uniqueness of Splitting Field) If †=F and †0=F are
splitting field of f 2 F Œx� then †=F ' †0=F .21 21: Recall that an isomorphism of

extensions is a field isomorphism which
restricts to the identity on the ground
field.We will need to prepare some tools for this.

Proposition 7.3.14 Consider an isomorphism � W F ��! F 0, a nonzero
polynomial f 2 F Œx�, a splitting field †=F of f , and an extension L=F 0

such that f 0´ �.f / splits over L. Then, there exists a homomorphism of field
' W †! L such that 'jF D �, and '.†/ is a splitting field of f 0.

† L

F F 0

 

 

 

!
'

 

 

 ��

'

Proof of Corollary. Take F D F 0. Then, � D idF , meaning L D †0. Then, the
proposition gives us a triangle

† †0

F

 

 

 �'

 

 

Note that ' must send roots of f to roots of f . Thus, † D †0.22 22: We use that both are splitting fields
of f .

Proof of Proposition. We proceed by induction on n D degf . For n D 0,
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then † D F . Suppose n � 1. Let ˛1 2 † be a root of f , then

m D m˛1;F 2 Irred.F /

so m j f , meaning f D mg for some g 2 F Œx�. We get � W F Œx� ��! F 0Œx�
with �.f / D f 0 D m0g0, with m0 D �.m/. Well, f 0 splits over L, so m has
a root ˇ1 2 L. We get a diagram

† L

F .˛1/ F .ˇ1/

F F 0

 

 

 

 

 

!
'

 

 

 

 

 ��

'

Then, f D .x � ˛1/h over F .˛1/. We get an isomorphism of fields '1 W
F .˛1/ ��! F 0.ˇ1/, a nonzero polynomialh 2 F .˛1/Œx�,†=F .˛1/ is a splitting
field of h, and L=F 0.ˇ1/ is so that '1.h/ splits over it. Thus, we have all
elements of our proposition.

Remark 7.3.2 We have determined that the splitting field of f in F Œx� is
unique up to isomorphism. We write †f=F for any such splitting field.
Galois theory is about the group G ´ Aut.†f=F=F /.2323: Note that splitting fields are not

unique up to unique isomorphism. We
made lots of choices.
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Recall that if we have a field K, then we can form the corresponding
automorphism group Aut.K/. In turn, if we have an extension K=F , then we
can form the automorphism group Aut.K=F / � Aut.K/ of automorphisms
fixing F .

8.1 Automorphisms

Suppose G � Aut.K/. Then, the fixed field

KG ´ f˛ 2 K W g.˛/ D ˛ for all g 2 Gg

is a subfield of K.1 Then, suppose we have an extension K=F and f 2 F Œx�. 1: Showing that this is a field is easy.
For any ' 2 Aut.K=F /, if ˛ 2 K such that f .˛/ D 0, then f .'.˛// D 0.

Proposition 8.1.1 Let K=F be an extension and f 2 F Œx�. Let

Rf ´ f˛ 2 K W f .˛/ D 0g:

Then, ' 2 Aut.K=F / restricts to a permutation of the set Rf . We get a group
homomorphism � W Aut.L=K/! Sym.Rf /. Furthermore, if K D F .Rf /, then
� is injective.2 2: That is, Aut.K=F / is isomoprhic to a

subgroup of Sym.Rf /.

Proof. We show injectivity. Suppose ' 2 Aut.K=F / such that �.'/ D idRf .
That is, ' W ˛ 7! ˛ for all ˛ 2 Rf . Then, Rf � KG , where G ´ h'i �
Aut.K=F /. We have F � F .Rf / � KG , but if F .Rf / D K, then KG D K, so

'.ˇ/ D ˇ for all ˇ 2 K;

meaning ' D idK.

Example 8.1.1 Let K´ Q. 3
p
2/=Q. What is Aut.Q. 3

p
2/=Q/? We know

how to do this. The extension is degree three with minimal polynomial
m 3
p
2;Q
D x3 � 2 2 Irred.Q/. This polynomial only has one root in K, so

Aut.K/ is such that '. 3
p
2/ D

3
p
2, meaning Aut.K/ D feg.

Example 8.1.2 Let L D Q. 3
p
2; !

3
p
2; !2

3
p
2/. This is generated by the

roots of x3 � 2 2 QŒx�. Then, G D Aut.L/ D Aut.L=Q/ � Symf!i˛g '
S3. We claim G ' S3.3 3: Here, ! is the primitive third root of

unity and ˛ D 3
p
2.

Using the tower law, we can deduce that the
degree ŒL W Q� D 6.

Now, we get our answer by the following diagram.
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L D Q.˛; !˛/ L

Q.˛/

Q Q

 

 

2

 

!
2 choices

 

 

 

 

3

 

!

3 choices

(

(

Example 8.1.3 Let g D .x2 � 2/.x2 � 3/ with roots ˙
p
2;˙
p
3. Then,

† D Q.
p
2;
p
3/. Then,

Aut.†;Q/ � Symf˙
p
2;˙
p
3g ' S4

has order at most 4. We claim that Aut.†=Q/ ' C2 � C2.

Again, we reason via the diagram.

Q.
p
2;
p
3/ †

Q.
p
2/

Q Q

 

 

2

 

!

p
37!˙

p
3

 

 

 

 

2

 

!

p
2 7!˙

p
2

(

(

8.2 Normality

Definition 8.2.1 (Normal Extension) An extension L=F is normal if for all
f 2 Irred.F /, if f has a root in L, then f splits over L.44: As an exercise, show that if ŒL W F � D

2, then L=F is normal.

Theorem 8.2.1 A finite extension L=F is normal if and only if it is a splitting
field of some f 2 F Œx�.55: This actually works for infinite

extensions, but that is not what we are
interested in.

Proof of). Suppose L=F is finite and normal. Then, L D F .˛1; : : : ; ˛m/,
algebraic over F . We can form the product of the minimal polynomials

f ´ m˛1;F �m˛2;F � � �m˛m;F 2 F Œx�:

Since each minimal polynomial splits over L, via normality, f also splits
over L, meaning L D F .Rf /, the roots of f .
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To get the other direction, we need to do some work.

Lemma 8.2.2 Let F � L �M. Define L´ †f=F . If ˛; ˇ 2M are roots of
the same g 2 Irred.F /, then

ŒL.˛/ W L� D ŒL.ˇ/ W L�:

That is, we have the picture

M

L.˛/ L.ˇ/

L

F .˛/ F .ˇ/

F

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

Proof of(. Suppose L D †f=F . Suppose g 2 Irred.F / such that g.˛/ D 0,
where ˛ 2 L. Form M´ †g=L. Let ˇ 2M such that g.ˇ/ D 0. Applying
the lemma,

ŒL.˛/ W L� D ŒL.ˇ/ W L�:

Proof of Lemma. We claim we have the diagram

L.˛/ L.ˇ/

F .˛/ F .ˇ/

F

 

!
'

 

 

!
'

'

� ! � !

�

!

�

!

We know ' exists, because ˛; ˇ are roots of g 2 Irred.F /.6 6: This is a harder proof, but we make a
few uses of our theorems about splitting
fields and the tower law.

Proposition 8.2.3 Let F � K � L be a finite extension. If L=F is normal,
then L=K is normal.

Proof. Let L´ †f=F for some f 2 F Œx� � KŒx�. Then, L D †f=K, so L=K
is normal.
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8.3 Galois Extensions

Definition 8.3.1 (Separable Extension) An extension K=F is separable if
every ˛ 2 K is such that m˛;F 2 F Œx� is separable.

Remark 8.3.1 The observation is that in char 0, every algebraic extension
is separable.77: In positive characteristic, that is

certainly not true.

Definition 8.3.2 (Galois Extension) An extension is called Galois if it is both
normal and separable.

Proposition 8.3.1 A finite extension L=F is Galois if and only if it is a splitting
field of separable polynomial over F .

Proof. In char 0, this is clear.

Now, we need a theorem relating the notion of a Galois extension to the
theory of embeddings.

Remark 8.3.2 Recall that if we have extensions K=F ;L=F , then we have
the set

EmbF .K;L/´

˚
K

'
����! L

such that 'jF D idF

	
:

Theorem 8.3.2 (On Embeddings) Let K;L be extensions over F . Let ŒK W
F � <1. Then,

jEmbF .K;L/j � ŒK W F �

with equality saturated if and only if

(i) K=F is a separable extension, and
(ii) for all f 2 Irred.F / such that f has a root in K, f splits over L.

We can generalize slightly and use an induction argument. Given an
isomorphism � W F ��! F 0 and extensions K=F and L=F 0. Then, we can
define the set

Emb�.K;L/´

˚
K

'
����! L

such that 'jF D �

	

Then, our statement is in terms of �, and we want �.f / to split over L in
(ii).8 We now give a useful lemma for proving our theorem.8: That is, the theorem is the case � D

idF .

Lemma 8.3.3 Let K=F and L=F 0 be extensions, and � W F ��! F 0 an
isomorphism. Then, for any ˛ 2 K, we have

jEmb�.F .˛/;L/j � ŒF .˛/ W F � D degm˛;F µ m;
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with equality saturated if and only if

(i) ˛ is separable over F , and
(ii) m0´ �.m/ splits over L.

Proof. Via our diagram, we see that there is a correspondence

f' 2 Emb�.F .˛/;L/g  ��! fˇ 2 L W m0.ˇ/ D 0g:

Proof of Theorem. We will induct on n ´ ŒK W F �. If n D 1, then K D F ,
so Emb�.F ;L/ D f�g. Suppose n � 2. Pick ˛ 2 K n F so F ¨ F .˛/.
Define d ´ ŒF .˛/ W F � and e ´ ŒK W F .˛/�, so n D de > e. To give
' 2 Emb�.K=L/, choose

(a) � W F .˛/� L extending �, as by the lemma, our number of choices
is less than or equal to d , and then

(b) given �, we choose our ' W K � L extending �. Since e < n, by
induction, there are at most e.

K L

F .˛/ �.F .˛//

F F 0

 

!
'

 �
'

�

� ! � !

�

!

 �'

�

� !

Our choices amount to

jEmb�.K; F /j D
X

�2Emb�.F .˛/;F /

ˇ̌
Emb�.K;L/

ˇ̌
� de D n:

We now need to show equality for saturation. Suppose (i) and (ii) hold. We
want to show that

(i) ˛ 2 K is separable over F ; i.e., m D m˛;F is separable, so that
m0 D �.m/ is a separable polynomial.

(ii) m0 splits over L, so d D jEmb�.F .˛/;L/j. We have that (i) implies
K=F .˛/ is separable (remember, this is easy in char 0). Also, if f 2
Irred.F .˛// has a root ˇ 2 K, then f 0 ´ �.f / must split over L.
Because f j mˇ;F , we know �.mˇ;K/ splits over L, by the hypothesis.
Thus, �.mˇ;F .˛// D f , so the hypothesis of the theorem applies to
K=F .˛/, meaning

ˇ̌
Emb�.K;L/

ˇ̌
D e. We now need the converse.

Suppose
jEmb�.K;L/j D n D ŒK W F �:

Consider ˛ 2 K, giving us a tower

F � F .˛/ � K:
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Define d to be the degree of the left-hand side degree, and e for the
right-hand side degree. Then,

0 � jEmb�.F .˛/;L/j � d

and
0 � jEmb�.K;L/j � e:

Well, we have

de D n D jEmb�.K;L/j D
X

�2Emb�.F .˛/;L/

ˇ̌
Emb�.K; F /;

ˇ̌
meaning jEmb�.F .˛/;L/j D d , so m˛;F is separable and so is its
image �.m˛;F / over L.

K L

F F 0

 

!
'

�

!

 

 
�

'

� !

Figure 8.1: Diagram for new embedding
set

Corollary 8.3.4 Let L=F be finite. Then, jAut.L=F /j � ŒL W F �, with equality
saturated if and only if L=F is Galois.

Proof. We take the theorem with K D L.

Remark 8.3.3 We essentially just showed that finite L=F is Galois if and
only if

jAut.L=F /j D ŒL W F �:

In general, we only have �.

Definition 8.3.3 (Galois Group) In the case of a Galois extension, we write
Gal.L=F /´ Aut.L=F /.

Note that if we have F � K � L, then we get sub extensions K=F and L=K.
It turns out that if the big extension is Galois, so is the top sub extension:

L

K

F

 

 Galois

 

 sep, not norm  

 

Galois

Remark 8.3.4 Let K be an intermediate field. Then, L=K is Galois, with

Gal.L=K/ � G;

whereH � G implies

LH ´ f˛ 2 L W h.˛/ D ˛ for all h 2 H g

is an intermediate field.

8.4 Galois Correspondence

Recall that we have jGal.L=K/j D ŒL W K�. We need one further lemma,
which says that G � Aut.L/ and jGj <1 implies ŒL W LG � D jGj.99: We may omit this.
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Theorem 8.4.1 (Basic Galois Correspondence) Let L=F be a finite Galois
extension. Define G ´ Gal.L=F /. Then, we have a correspondence

fH � Gg  �����!

�
intermediate fields

of L=F

�
;

with operations of the bĳection given by H 7! LH in the forward direction,
and K 7! Gal.L=K/ in the backward direction.

Remark 8.4.1 (Order Reversal of Galois Correspondence) Note thatH �
H 0 implies LH � LH

0 . Thus, K � K0 implies Gal.L=K/ � Gal.L=K0/.

Proof of Theorem. If we have H � G, then LH � L=F , so we have
Gal.L=LH / � H . Then, using the embedding theorem and the technical
lemma, ˇ̌̌

Gal.L=LH /
ˇ̌̌
D ŒL W LH � D jH j:

On the other hand, if K � L=F , then Gal.L=K/ � G, so LGal.L=K/ �

L=F . Note that K � LGal.L=K/. Well, again via the technical lemma and
embedding theorem,

ŒL W LGal.L=K/� D jGal.L=K/j D ŒL W K�:

Then, K � LGal.L=K/ � L, so by the tower law, we are done.

Theorem 8.4.2 (Degree Correspondence) If K � L=F , then ŒL W K� D
jGal.L=K/j, and with H � G corresponding to K, we have ŒL W K� D jH j.
Finally, ŒK W F � D jG W H j, the index of the corresponding groups.

Theorem 8.4.3 (Lattice Correspondence) IfH1 $ K1 andH2 $ K2, then
H1 \H2 $ K1K2 and hH1 [H2i $ K1 \ K2.

Proposition 8.4.4

(i) If g 2 G and K � L=F , then K0 D g.K/ if and only if H 0 D gHg�1,
whereH $ K andH 0 $ K0.10 10: That it, we can move between the fields

if and only if the corresponding Galois
groups are conjugate.

(ii) Aut.K=F / 'NG.H/=H .
(iii) K=F is Galois if and only ifH E G. If so, then Gal.K=F / ' G=H .

Example 8.4.1 Let f ´ .x2 � 2/.x2 � 3/ 2 QŒx�. The roots are ˛1;2 D
˙
p
2 and ˛3;4 D ˙

p
3. We have a field L D Q.

p
2;
p
3/, then

G D Gal.L=Q/ D h.1 2/; .3 4/i � S4:

Note that ˛´
p
2C
p
3 is not fixed by any of the 3 non-identity elements

of G. Thus, Q.˛/ D L.
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Figure 8.2: Lattice of intermediate
subgroups, inverted
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Figure 8.3: Lattice of intermediate fields
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Example 8.4.2 Let f ´ x4C x3C x2C xC 1. We have that .x � 1/f D
x5 � 1. The roots are �5; �25 ; �35 ; �45 , labeling these ˛1; : : : ; ˛4, respectively.
Now, L D Q.�/, and ŒL W Q� D '.5/ D 4. If g 2 G, and g W � 7! �k for
some k 2 Œ4�, then g W �j 7! �kj . Clearly, we have a four-cycle g W � 7! �2,
meaning G D h.1 2 3 4/i ' C4 � S4.

Figure 8.4: Lattice of intermediate groups
(left), inverted, and lattice of intermediate
fields (right)

feg L D Q.�/

h.1 4/.2 3/i Q.˛/

G Q

 

 2
 

 2

 

 2

 

 2

How do we find ˛? We can write ˛´ � C ��1, and doing some algebra,
we can show that it must satisfy ˛2 C ˛ � 1 D 0, taking the positive root
˛ D .1C

p
5/=2.

Example 8.4.3 Let f ´ x2 � 2 2 Qx. Take ˛1 D ˛, ˛2 D ˛!, and
˛3 D ˛!

2. Then, G D S3.

Example 8.4.4 Define the polynomialf ´ x6Cx5Cx4Cx3Cx2CxC1 2

Irred.Q/: If we write � ´ �7, then the roots are ˛k ´ �k , for k 2 Œ6�.1111: Then, G D Gal.Q.�/=Q/ '
.Z=7/� ' C6 � S6. Our best way to do
this is '.�/ D �3$ .1 3 2 6 4 5/µ '.
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2 Figure 8.5: Lattice of intermediate
subgroups, inverted
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Figure 8.6: Lattice of intermediate field
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Figure 8.7: Lattice of subgroups, inverted
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Figure 8.8: Lattice of intermediate fields
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