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State Space Axiom 1
1.1 Aside on the Philosophy of

Information . . . . . . . . . . 3
Nature of Quantum
Mechanics . . . . . . . . . . . . 3
Classical Versus Quantum
Information . . . . . . . . . . . 3

1.2 State Space Axiom . . . . . . 4

At the root of quantum mechanics lay philosophical questions about the
nature of science–whether realism or instrumentalism is adopted plays
a substantial role in how we interpret the theories, and the perceived
importance, of quantum information.

1.1 Aside on the Philosophy of Information

Quantum mechanics arose to explain experimental phenomena discovered
in the early twentieth century.

Nature of Quantum Mechanics

Every quantum experiment consists of three stages:

(i) System Preparation: setting the initial state of our system.
(ii) System Evolution: dynamically evolving the system.

(iii) System Measurement: coupling with some measurement device to
observe an outcome.1 1: Notably, quantum mechanics tells

us how to mathematically compute
probabilites of our experimental system.Still, quantum mechanics poses some major challenges to scientific realism.

Quantum observables are altered by measurement, either of itself or
of an “associated” observable. We often represent quantum states via
mathematical tools like “pure state” vectors j i and “mixed state” density
matrices �. Whether these representations are real is, once again, a question
of scientific philosophy. In either case, the density matrix � allows for
calculated measurement outcomes.

Classical Versus Quantum Information

Generally speaking, classical information processing handles the storage
and manipulation of long strings of bits. The fundamental piece of
technology here is the transistor.2 No matter the device, in principle, any 2: These transistors can be miniaturized,

to an extent, and billions can be put in a
processor.

calculation can be performed on any classical machine, simply mapping
the sets of bits between the systems. Quantum information diverges,
introducing the notion of a qubit. What is a qubit? Well, a qubit, in analog
with a bit, is a two-level quantum system, using the quantum properties of
our system to superimpose states.3 3: Given states j0i ; j1i, we could take the

C-linear combination

jCi ´
1
p
2
.j0i C j1i/

j�i ´
1
p
2
.j0i � j1i/:

Example 1.1.1 There are a few common qubits used, in practice.

(a) Photon Polarization: The quantum particles associated with the
electromagnetic field are called photons. Each photon has a
property known as polarization, which is its direction of oscillation
in space. We could describe orthogonal sates via j0i ; j1i, and
diagonal polarizations via jCi ; j�i.
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(b) Spin Systems: Quantum systems have a physical property known
as spin, and an associated spin number which is a half-integer
n=2 2 ZC. The “spin up” and “spin down” states can encode j0i
and j1i.

(c) Atomic Systems: We can construct qubits using any “gapped”
quantum system in which there are two energy levels j0i ; j1i
which are sufficiently separated.

(d) Superconducting Systems: Built at low temperature, superconducting
elements called Josephson junctions can encode j0i ; j1i.

The bit and qubit values are also called logical values. These are abstractions
of their physical counterparts, where there is a correspondence between
logical and physical transformations.

1.2 State Space Axiom

The starting point in formulating quantum mechanics is the state space
axiom.44: This gives us a rigorous mathematical

framework to work in.

Definition 1.2.1 (State Space Axiom) Given a quantum system,

(i) the system is represented by a complex Hilbert space H, known as the
state space.

(ii) states of the system are represented by trace-one, positive (semi-definite)
operators acting on H called density operators.

That is to say, we have a correspondence,�
states in the

physical system

�
bĳection
 ���!
�

�
density operators

in H

�
:

Remark 1.2.1 The set of all density operators is denoted D.H/.

Proposition 1.2.1 The dimension of a quantum system corresponds to the
number of distinct observable outcomes it can generate.55: With d distinct outcomes observed,

we model the system with a Hilbert space
of dim H D d . This is determined by
experiment.

Example 1.2.1 Let H´ C3. For what values of a; b; c is � a valid density
matrix?66: Recall that a positive operator � � 0

is when the eigenvalues are nonnegative
and �� D �, Hermitian. �´

0@a 0 0

0 b 0

0 0 c

1A
Solution. Well, the eigenvalues are a; b; c, so a; b; c � 0. We also need
tr � D aC b C c D 1.

Remark 1.2.2 Notably, a; b; c, as above, form a probability distribution.
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Example 1.2.2 Let H´ C3. For what values of a; b; c is � a valid density
matrix?

�´

0@ a 1=
p
2 0

1=
p
2 b 0

0 0 c

1A
Solution. One eigenvalue is c � 0, and we can look at the top left block in
M2.C/ for the other two:ˇ̌̌̌

a � � 1=
p
2

1=
p
2 b � �

ˇ̌̌̌
D 0

.a � �/.b � �/ �
1

2
D 0

ab �
1

2
C �2 � �.aC b/ D 0

� D
1

2

�
.aC b/˙

p
.a � b/2 C 2

�
:

We can then take

.aC b/2 � .a � b/2 C 2) ab �
1

2
;

along with a � 0, ensuring that all eigenvalues are nonnegative.7 7: For unit trace, again we just need

aC bC c D 1:

Example 1.2.3 If � is a valid density matrix on some space H, explain
why h j�j i � 0 for any state j i 2 H.

Proof. We use spectral decomposition to write8 8: The �k are eigenvalues and fjekig are
orthonormal eigenvectors.

� D
X
k

�k jekihekj :

By assumption, �k � 0 for all k, so let us compute:

h j�j i D h j
X
k

�k jekihekj j i D
X
k

�k h jeki hekj i

D

X
k

�kjckj
2
� 0; where ck ´ h jeki :

So, we can do computations, but what is the motivation for these properties
of the state space axiom? We will give a preview of the measurement axiom
to understand.

Definition 1.2.2 (Measurement Axiom) Every orthonormal basis fjexigdxD1
for H ´ Cd represents a physically realizable measurement on any d -
dimensional quantum system. The probability of obtaining outcome x when
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measuring prepared state � is “Born’s rule:”99: Born’s rule is precisely why we need
the positivty of the state space axiom.

p.x/ D hexj�jexi � 0:

We also need1010: This is why we need unit trace.

1 D

dX
xD1

p.x/ D

dX
xD1

hexj�jexi D tr �:

Now, there are two types of states that we need to distinguish from one
another.

Definition 1.2.3 (Pure State) Given � 2 D.H/, we say � is a pure state if
rk � D 1.1111: Via spectral decomposition, if rk� D

1, then � D �1 je1ihe1j, so

� D j ih j :

Note that it is convention to write a pure
state as � D j i rather than the outer
product � D j ih j.

Remark 1.2.3 The choice of j i is not unique! For every � 2 Œ0; 2�/, the
ket ei� j i yields the same density matrix.

Definition 1.2.4 (Global Phase) The angle � is called a global phase of j ih j
if it is part of scaling factor ei� j i.1212: Since it is equivalent, these are

physically inconsequential.

Definition 1.2.5 (Relative Phase) If � occurs in a a scaling in superposition
between two kets forming  , then it is called a relative phase of state j ih j.1313: These are extremely physically

consequential.

Why do we care about pure sates? Well, one reason is they allow for
“deterministic” measurements, via Born’s rule. That is, there is some
outcome with probability 1 for j ih j.

Example 1.2.4 Consider the pure state �´ jCihCjwith

jCi D
1
p
2
.j0i C j1i/:

Suppose we measure � in the basis fje1i ; je2igwith

je1i ´
1
p
2

�
j0i C ei' j1i

�
and

je2i ´
1
p
2

�
j0i � ei' j1i

�
:

What is the probability of outcome je1i?

Solution. Via Born’s rule, we know

p.e1/ D he1j�je1i D he1jCi jCihe1j D jhCje1ij
2:

Computing through gives us that1414: When ' D 0, p.e1/ D 1.
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p.e1/ D
1

2
.1C cos'/:

We get this result solely because we have a pure state.

Definition 1.2.6 (Mixed State) A density matrix � 2 D.H/ is called mixed
if it is not pure.15 15: That is, rk� > 1.

Remark 1.2.4 Note that the eigenvalues of a mixed state � form a
probability distribution, via the unit trace axiom.

Definition 1.2.7 (Ensemble) The set fpi ; j i ig16 16: The pi are the eigenvalues.is known as an ensemble of
pure sates, and the density matrix

� D
X
i

pi j i ih i j

is called an ensemble average.17 17: Alternatively, you will hear convex
combination. This gives us a way to average
over the pure states.

Remark 1.2.5 You may hear people saying that the mixed state

� D

rX
iD1

pi jei ihei j

is typically interpreted as the system being in state jei i with probability pi .
This is not a good interpretation.18 18: The reason for this is the fact that two

different pure state ensembles can have
the same ensemble average.

In this case, how do we characterize all the ensembles fpi ; j i igriD1 that
have the same ensemble average?

Theorem 1.2.2 Two pure state ensembles fpi ; j i igriD1 and fqj ;
ˇ̌
'j
˛
gsjD1 have

the same ensemble average if and only if

p
qi j'i i D

sX
jD1

uij
p
pj
ˇ̌
 j
˛

for all i 2 Œr�, where the ŒU �ij ´ uij is a unitary matrix.

Proof. The proof is omitted for brevity.19 19: It follows a rather simple argument
via the polar decomposition.

ŒRNG�
�

Particle
Emitter

�
j'i i

 

!
i  

! Figure 1.1: The preparation of a system in
state j'i iwith probability pi

Our struggles with describing a system in some state j'i i with probability
qi suggest that we need a multi-part system, incorporating a “random
number generator” on number i to trigger a “particle emitter” to release a
state in state i .20 We now take some time to discuss qubits and the Bloch 20: That is, we need a way to

mathematically describe multiple systems.
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sphere.

Definition 1.2.8 (Qubit) A qubit is a generic name for any two-dimensional
quantum system H' C2.

In the computational basis, we have a pure state in the form j i D
˛ j0i C ˇ j1i. We only really have two parameters .�; '/ on S2 � R3, called
the Bloch sphere. Note that we have

On D .cos' sin �; sin' sin �; cos �/

if and only if

j Oni D cos
�

2
j0i C sin

�

2
ei' j1i :

The vector On 2 R3 is known as the Bloch vector of j Oni 2 C2. Precisely,
� 2 Œ0; �� is the polar angle, and ' 2 Œ0; 2�/ is the azimuthal angle.

Remark 1.2.6 We have that .�; '/ D .0; 0/ yields j0i, whereas .�; 0/
yields j1i. Similarly, .�=2; 0/ yields jCi, and .�=2; �/ yields j�i. Finally,
on the y-axis, if we have .�=2; �=2/ and .�=2; 3�=2/, we getˇ̌ė˛´ 1

p
2
.j0i ˙ i j1i/;

respectively.

Example 1.2.5 TheH and T states are important in quantum computing.
The Bloch vector of theH state lies along the line .x; 0; x/, and the Bloch
vector of T lies along the line .x; x; x/. Write jH i and jT i.2121: Use the computational basis, and

assume the Bloch vectors lie in the first
quadrant of the Bloch sphere embedded
in R3.

Solution. For H , we have .�; '/ D .�=4; 0/ and for T we have .�; '/ D
.arccos 1=

p
3; �=4/. Thus,

jH i D cos
�

8
j0i C sin

�

8
j1i

jT i D cos
�

2
j0i C ei�=4 sin

�

2
j1i :

If we write out the density matrix j Onih Onj, we get2222: Use the half-angle formulae, after
expanding the outer product.

j Onih Onj D
1

2
.I2 C sin � cos'�x C sin � sin'�y C cos ��´/:

That is, we can decompose the density matrix via the Pauli matrices, using
the components of the cartesian representation. Note that the Pauli matrices
are hermitian and unitary. That is, ��j D �j and �2j for all j 2 fx; y; ´g.
They also anti-commute.23 Finally, they satisfy �j�k D i�jkl�l , where �ijk23: That is, f�j ; �kg D 2ıjk1.
is the Levi-Civita symbol.
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Remark 1.2.7 Via these observations, we can write

j Onih Onj D
1

2
.1C On � E�/ D

1

2

 
1C

3X
iD1

ni�i

!
:

where E� D �x Ox C �y Oy C �´ Ó and On D .nx ; ny ; n´/.

As such,24 24: Once again, we get a nice geometrical
picture which takes an inner product in
C2 to a dot product in R3.jh Omj Onij

2
D
1

2
.1C Om � On/:

This means that j Omi is orthogonal to j Oni if and only if Om � On D �1. Thus,
orthogonal states on the Bloch sphere correspond to antipodal points on
the sphere; i.e., j Omi D j�Oni. Now, considering mixed states, we have that a
qubit density matrix � has the spectral decomposition

� D
1C �

2
j Onih Onj C

1 � �

2
j� Onih� Onj

D
1

2
.1C � On � E�/:

Then, every � can be written as a Bloch vector Onwith shrunken length �.
That is, r´ � On is the Bloch vector:25 25: When we have � D 0, we get the

totally mixed state � D 1=2.

� D
1

2
.1C r � E�/:

Example 1.2.6 Find values a; b such that � D a1C b�y is a valid density
matrix. What is the Bloch vector of � when it is a valid density matrix?

Solution. We need tr � D 1 and � � 0. Thus, tr � D 1 D 2a, meaning
a D 1=2, so rewriting gives us

� D
1

2
1C b�y :

We know that �y has eigenvectors
ˇ̌ė˛. Spectral decomposition tells us that

�y D
ˇ̌eC˛̋ eCˇ̌ � je�ihe�j ;

and since
1 D

ˇ̌eC˛̋ eCˇ̌C je�ihe�j ;
so substituting gives us

� D

�
1

2
˙ b

� ˇ̌ė˛̋ ėˇ̌ :
As such, b 2 Œ�1=2; 1=2�. The eigenvalues are 1=2˙ b, so � D 2b, meaning
our Bloch vector is

r D � Oy D 2b Oy:
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Example 1.2.7 What are Bloch vectors of states

� D p
1

2
1C .1 � p/ jH ihH j

and
� D q

1

2
1C .1 � q/ jT ihT j‹

Solution. We have that the Bloch vector of jH i:

On D

�
1
p
2
; 0;

1
p
2

�
;

so

� D p
1

2
1C .1 � p/ jH ihH j

D
1

2
.1C .1 � p/ On � �/;

so the Bloch vector of � is2626: The Bloch vector is what we dot with
� , so the goal is to get � into a form such
that we can identify r.

r D
1 � p
p
2

0@10
1

1A :
Now, for jT i, we have the Bloch vector

On D
1
p
3
.1; 1; 1/:

Then, writing out the outer product, we get

jT ihT j D
1

2

�
1C

1
p
3
.�x C �y C �´/

�
:

Thus,

� D q
1

2
1C .1 � q/

1

2

�
1C

1
p
3
.�x C �y C �´/

�
D
1

2

�
1C

1 � q
p
3
.�x C �y C �´/:

�
Thus, the Bloch vector of � is

r D
1 � q
p
3

0@11
1

1A :

Proposition 1.2.3 For � 2 D.H/, show that tr
�
�2
�
D 1 if and only if � is a

pure state.2727: Show this using both the spectral
decomposition for arbitrary d and the
Bloch sphere for d D 2.
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Proof. If � is pure, � D j ih j. Then, �2 D j ih j, so tr
�
�2
�
D tr.�/ D 1.

Now, for the forward direction, assume tr
�
�2
�
D 1. Spectral decomposition

tells us that we can write

� D
X
k

�k jekihekj ;

where 0 � �k � 128 and jeki are orthonormal. Then, 28: We know � is positive, and we know
the eigenvalues must be bounded by 1, as
tr� D 1.

�2 D
X
k

�2k jekihekj ;

so taking the trace, we get

tr
�
�2
�
D

X
k

�2k �
X
k

�k D 1:

Under which case do we get equality? Well, we need each �k 2 f0; 1g. Thus,
there is only one nonzero eigenvalue equaling 1, so � D j ih j is pure.29 29: Rank-1 implies pure.

Now, consider the qubit case. Then, we can write

� D
1

2
.1C r � E�/:

Then, the trace of the square is

tr
�
�2
�
D
1

4
tr
�
.1C r � E�/.1C r � E�/

�
D
1

2
.1C r � r/;

and these equals 1 if and only if r � r D 1. Thus, � is pure.

Example 1.2.8 Describe the motion of the Bloch vector on the Bloch
sphere of the time-dependent state

j .t/i D cos
�

2
j0i C ei't sin

�

2
j1i :

Solution. Well, only ' is scaled by t , and ' is the azimuthal angle, so on the
Bloch sphere, so the resultant motion of the time-dependent state would
be a rotation around the ´-axis, keeping the polar angle � fixed.30 30: That is, we are “stuck” on a line of

latitude of the sphere.

Example 1.2.9 Two orthonormal bases fj Oni ; j� Onig and fj Omi ; j� Omig are
called mutually unbiased if

1

2
D jh˙Onj˙ Omij

2
D jh˙Onj� Omij

2:

Describe the relationship, geometrically, of the Bloch vectors of any two
mutually unbiased bases.

Solution. In either case, we need Om � On to vanish, so any vectors are mutually
unbiased with On if and only if they lie in the plane ? to On.





Multiple System Axiom 2
Recall that the state space axiom tells us how we mathematically represent
a quantum system. Yet, what if we have one large system consisting of
multiple subsystems, say A and B?

Definition 2.0.1 (Multiple System Axiom) The joint system of A and B is a
Hilbert space

HAB
´ HA

˝HB:

We will give some computational background on what tensor spaces are.
Well, let HA and HB be Hilbert spaces with bases jiiAi and jj iBj . Then, the
basis of the tensor product basis is precisely the set jiiA ˝ jj iBij . Then, for
any element j iAB

2 HAB can be written as1 1: Note that˝, is bilinear.

j iAB
D

dim HAX
iD1

dim HBX
jD1

cij jii
A
˝ jj iB :

Definition 2.0.2 (Joint State) Given a state j˛iA of Alice’s system and jˇiB of
Bob’s system, their joint state is j˛iA ˝ jˇiB.2 2: Sometimes, we will simply use

juxtaposition for denoting the joint state.

Example 2.0.1 Consider the two qubit state space HAB ' C2 ˝ C2.
Express

j‰iAB
D

1
p
3
.j0Ci C j�1i/:

Solution. We can rewrite

j‰iAB
D

1
p
3

�
j0i ˝

1
p
2
.j0i C j1i/C

1
p
2
.j0i � j1i/˝ j1i

�
D

1
p
6
j0i ˝ j0i C

2
p
6
j0i ˝ j1i �

1
p
6
j1i ˝ j1i

D
1
p
6
.j00i C 2 j01i � j11i/:

This axiom leads us naturally to the property of quantum entanglement. Joint
states are a very special type of state known as a product state. In particular,
it is very rare for us to be able to decompose a pure state into a product
state.

Definition 2.0.3 (Entangled State) If a pure bipartite state cannot be written
as a product state, then it is called an entangled state.3 3: Quantum entanglement is the absolute

essential feature of multipartite quantum
systems that enables “stronger-than-
classical” processing.



14 2 Multiple System Axiom

Recall that for any state j˛i 2 HA in a finite Hilbert space, we can associate
it to a column vector in CdA.

Definition 2.0.4 (Kronecker Product) Given j˛i ; jˇi, we write the Kronecker
product of the corresponding column vectors as44: It is clear this gives us a vector in

CdAdB, as desired.

j˛i ˝ jˇi D

0BBB@
a1
a2
:::

adA

1CCCA˝
0BBB@
b1
b2
:::

bdB

1CCCA D
0BBBBBBBBBB@

a1b1
a1b2
:::

a1bdB
a2b1
:::

adAbdB

1CCCCCCCCCCA
Example 2.0.2 What is the matrix representation of55: Note that the notationˆC is because of

the addition of the tensored states. We can
also define a ˆ�, in the way you would
expect.

ˇ̌
ˆC

˛
´

1
p
2
.j00i C j11i/‹

Solution. We have that

j00i D j0i ˝ j0i D

0BB@
1

0

0

0

1CCA
and

j11i D j1i ˝ j1i D

0BB@
0

0

0

1

1CCA ;
so ˇ̌

ˆC
˛
D

1
p
2

0BB@
1

0

0

1

1CCA :

Now, how do linear operators work on a Hilbertian tensor product? Well,
every map66: These sort of gymnastics are usually

referred to as “tensor contractions,” which
you may see in a variety of related fields.

K W HA
˝HB

! HA0
˝HB0

can be written as

K D

dA0X
iD1

dAX
kD1

dB0X
jD1

dBX
`D1

cijk` jiihkj ˝ jj ih`j ;

so the action of K j iAB is

dA0X
iD1

dAX
kD1

dB0X
jD1

dBX
`D1

cijk`bk` jii
A0
˝ jj iB

0

:
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Example 2.0.3 The two-qubit unitary operator

U AB
CNOT ´ j0ih0j

A
˝ 1B

C j1ih1jA ˝ �B
x

is called the controlled-not (CNOT) gate. Compute the action of U AB
CNOT on

the computational basis states. What is its action on the state jCi j0i?

Solution. Recall that 1 D j0ih0j C j1ih1j and �x D j1ih0j C j0ih1j.7 Thus, we 7: Remember,�x is just the Pauli operator
X 2 P1.can write

UCNOT D j0ih0j ˝ j0ih0j C j0ih0j ˝ j1ih1j C j1ih1j ˝ j1ih0j C j1ih1j ˝ j0ih1j ;

so we have the action8 8: The CNOT gate gets its name from the
fact that the “control” checks whether the
first qubit is on, and if so, it performs a
“not” on the second qubit.

UCNOT W

„
j00i 7! j00i

j01i 7! j01i

j10i 7! j11i

j11i 7! j10i :

We get that

UCNOT jC0i D
1
p
2
.j00i C j11i/ D

ˇ̌
ˆC

˛
:

Similarly, UCNOT j�Ci D j�Ci.

Remark 2.0.1 As with vectors, we can represent the tensor product of
TA ˝ TB by the Kronecker product A˝ B .9 9: We just multiply each component ofA

by all of B .

Example 2.0.4 Consider a generic two-qubit state

j i ´ a j00i C b j01i C c j10i C d j11i :

The SWAP operator on .C2/˝2 is defined as

F ´ j00ih00j C j10ih01j C j01ih10j C j11ih11j :

Compute F j i.

Solution. We compute10 10: The computation makes it pretty clear
why we call F the SWAP operator.

F j i D a j00i C b j10i C c j01i C d j11i :

Remark 2.0.2 Let j˛i D a0 j0i C a1 j1i and jˇi D b0 j0i C b1 j1i. Then,

F j˛iA jˇiB D a0b0 j00iC a0b1 j10iC a1b0 j01iC a1b1 j11i D jˇi
A
j˛iˇ :
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Note that we have the matrix representation1111: Use the Kroncker product to
determine this.

F D

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA :
Combining the two axioms we have seen thus far, we have that for two
systems HA;HB, their joint state is a bipartite density operator

�AB
D

dAX
i;kD1

dBX
j;`

cijk` jiihkj
A
˝ jj ih`jB ;

where

(i) �AB � 0,
(ii) tr �AB D 1.

Note that we can then take a spectral decomposition1212: Note that the eigenvectors jei i could
be entangled vectors in HA ˝HB.

�AB
D

rX
iD1

pi jei ihei j :

Remark 2.0.3 Recall our visualization of random preparations via an
RNG and a particle emitter. Now, we need to include the state of the
RNG in our description. However, an RNG is a classical system.1313: That is, it outputs bits.

Definition 2.0.5 (Classical Register) A classical register X is a system whose
allowed states are always density matrices diagonal in the computational basis.
Then,1414: You can think of classical registers as

probability distributions.
�X
D

X
x2X

px jxihxj :

Then, we can form a quantum-classical state:

�SX
D

X
x2X

px j'xih'xj
S
˝ jxihxjX :

Example 2.0.5 Suppose two fair dice are rolled. Let s 2 Œ12� n f1g denote
their sum. Let e be a variable such that(

e D 0; dice show same number
e D 1; dice show different numbers:

Compute the joint probabilities p.s; e/ for all outcomes. Compute the
marginal probabilities p.s/; p.e/. Compute the conditional probabilities,
as well.1515: We can get p.s; e/ by writing out all

36 outcomes in a table. Then, we can
compute

p.s/ D
X
e

p.s; e/;

and likewise for p.e/. Finally, recall that

p.e j s/ D
p.s; e/

p.s/
:
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Remark 2.0.4 Recall Born’s rule:

p.x/ D hexj�i ex D tr .� jexihexj/:

If Alice and Bob share the bipartite state �AB, then

p.x; y/ D tr
�
�AB
jaxihaxj ˝

ˇ̌
by
˛̋
by
ˇ̌�
:

Then, as we know, the marginal distribution for Alice is16 16: We use the completion relation.

p.x/ D

dBX
yD1

tr
�
�AB
jaxihaxj ˝

ˇ̌
by
˛̋
by
ˇ̌�
D tr

�
�AB
jaxihaxj ˝ 1

�
:

Remark 2.0.5 This is a manifestation of “no-signaling.”

We can then rewrite

�AB
D

dBX
j;`D1

RA
j;` ˝ jj ih`j

B ;

where

Rj;`´

dAX
i;kD1

cijk` jiihkj
A
2 B.HA/:

Thus,17 17: That is, we can express Alice’s
marginal in terms of the new operator,
which depends on the joint density
operator.

p.x/ D haxj

�
dBX
jD1

RA
jj

�
jaxi :

Definition 2.0.6 (Partial Trace I) For a bipartite operator

�AB
D

dAX
j;`

jiihkjA ˝ SB
ik ;

its partial trace over A is the operator

�B
´ trA �

AB
2 B.HB/ given by �B

D

dAX
iD1

SB
i i :

If K D R˝ S is a product operator, then

trA.K/ D trA.R˝ S/ D tr.R/S:

We get that if �AB is a density matrix, then so is trA �
AB D �B.18 In this case, 18: That is, the partial trace is CPTP.

�A; �B are reduced density matrices.

Definition 2.0.7 (Partial Trace II) The partial trace trB is a map

B.HA
˝HB/

trB´idA˝ tr
��������! B.HA/:
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Note that in the Pauli basis, every two-qubit state has a convenient form:1919: We have that r is Alice’s Bloch vector
and s is Bob’s Bloch vector. Nice! Note
further that this expression has 16 terms,
as we would expect. �AB

´
1

4

 
1˝2 C r � E� ˝ 1C 1˝ s � E� C

3X
i;jD1

tij�i ˝ �j

!
:

Remark 2.0.6 Together, the last nine terms,
P
tij�i ˝ �j , is called the

correlation matrix.

Let us now look at a particularly useful basis for our entangled qubits.

Definition 2.0.8 (Bell Basis) There is an entangled basis for .C2/˝2:ˇ̌
ˆC

˛
´

1
p
2
.j00i C j11i/ D jˆ00iˇ̌

‰C
˛
´

1
p
2
.j01i C j10i/ D jˆ01i

jˆ�i ´
1
p
2
.j00i � j11i/ D jˆ10i

j‰�i ´
1
p
2
.j01i � j10i/ D jˆ11i :

Remark 2.0.7 Note thatˇ̌
ˆb0b1

˛
D �b0´ �

b1
x ˝ 1 jˆ00i ;

where b0; b1 2 f0; 1g.2020: Note that if we take b0 D b1 D 1,
then

�´�x D i�y :

We call b0 the “phase” bit and b1 the
“amplitude” bit.

The Bell states can be interpreted as errors.

Example 2.0.6 Write the computational basis in the Bell basis.

Solution. By observation,

j00i D
1
p
2
.
ˇ̌
ˆC

˛
C jˆ�i/

j01i D
1
p
2
.
ˇ̌
‰C

˛
C j‰�i/;

and so forth.

Definition 2.0.9 (Bell-Diagonal) We call a density matrix Bell-diagonal state
if its eigenvectors are the Bell states:

�AB
D

1X
i;jD0

pij
ˇ̌
ˆij

˛̋
ˆij

ˇ̌
:

Example 2.0.7 Compute the local Bloch vectors and the correlation
matrix of a generic Bell-diagonal state.
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Solution. Remember,

ri D tr
�
�AB�i ˝ 1

�
D tr

�
�i trB.�

AB.1˝ 1//:
�

Of course,21 21: In general, if we have

tr
�
�AB� D tr

�
trA �

AB�:
We can always write

trB..A˝ 1/�.A� ˝ 1//

asA trB �A
�.

trB.�
AB/ D

X
ij

pij trB.
ˇ̌
ˆij

˛̋
ˆij

ˇ̌
/:

Now, we just saw that ˇ̌
ˆij

˛
D � ix�

j
x ˝ 1 jˆ00i :

Thus, we can rewrite the partial trace as

1

2
trB.

ˇ̌
ˆij

˛̋
ˆij

ˇ̌
/ D � i´�

j
x .j0ih0j C j1ih1j/�

j
x �

i
´ D 1=2:

Finally, we get
tr .�x1=2/ D 0:

Then, the correlation matrix is given by22 22: Complete this as an exercise.

tij D tr
�
�AB�i ˝ �j

�
:

Theorem 2.0.1 (First Canonical Isomorphism) We have an isomorphism

HAB
D HA

˝HB ��! B.HB
W HA/:

The map is given by23 23: That is, jii jj i corresponds to jiihj j
and j˛i jˇi corresponds to j˛ihˇ�j,
where

jˇi D

dBX
iD1

bi jii :

j iAB
7!M ;

where

j iAB
D

dAX
iD1

dBX
jD1

mij jii
A
˝ jj iB

and

M D

dAX
iD1

dBX
jD1

mij jii
A
hj jB :

Corollary 2.0.2 The state j i is a product state if and only ifM is rank one.

Proof. The proof is clear from observation,.

Theorem 2.0.3 (Ricochet Property) An arbitrary A 2 B.HB W HA/ satisfies

A˝ 1
ˇ̌
'C
dB

˛
D 1˝ At

ˇ̌
'C
dA

˛
:

Let j iAB
2 HAB be arbitrary, writing

j iAB
DM ˝ 1

ˇ̌
'C
dB

˛
:
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Taking the partial trace over B of j ih j gives us

trB .j ih j/ DM trB
�ˇ̌
'C
dB

˛̋
'C
dB

ˇ̌�
M
�
 DM M

�
 :

Likewise, we could write2424: Here, we use the Ricochet property.

j iAB
D 1˝M t

 

ˇ̌
'C
dA

˛
;

so
trA .j ih j/ DM

�
 M

�
 :

Then, for any bipartite density matrix

�AB
D

X
i

pi j i ih i j ;

we have the reduced density matrices2525: Thus, isntead of worrying about
partial traces, we have a nice formula
for the reduced density matrices of an
arbitrary bipartite density. �A

D

X
i

piM iM
�
 i

and
�B
D

X
i

piM
t
 i
M � i :

Remark 2.0.8 Recall that the SVD of an operators tells us that if M 2
B.HB;HA/, then there exist unitaries U 2 B.HA/ and V 2 B.HB/ such
that

M D UƒV �;

where ƒ 2 B.HB;HA/.2626: Note that ƒ is nonnegative and
diagonal. The nonzero diagonal elements
are the singular values. The number of
nonzero singular values is the rank.

Note that

MM �
D Uƒ2U � andM �M D Vƒ2V �:

Thus, the singular values ofM are the square roots of the eigenvalues of
M �M andMM �.

Theorem 2.0.4 (Schmidt Decomposition) Every bipartite state j iAB
2 HAB

can be written as

j iAB
D

rX
jD1

�j
ˇ̌
j̨

˛A
˝
ˇ̌
ǰ

˛B
;

where the
ˇ̌
j̨

˛
and

ˇ̌
ǰ

˛
are orthonormal bases called the Schmidt bases, the �i

are the Schmidt coefficients, and r is the Schmidt rank.

Proof. Let us apply SVD to a bipartite state j iAB. We get

j i DM ˝ 1
ˇ̌
'C
dB

˛
D UƒV � ˝ 1

ˇ̌
'C
dB

˛
;

and via Ricochet we get

Uƒ˝ V �
ˇ̌
'C
dB

˛
D .Uƒ˝ V �/

dBX
iD1

jii ˝ jii :
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After some computation, we get27 27: Let ˇ̌
j̨

˛
´ U jj i

and ˇ̌
ǰ

˛
´ V � jj i :j iAB

D

rX
jD1

�j
ˇ̌
j̨

˛A
˝
ˇ̌
ǰ

˛B
:

Remark 2.0.9 Look at why this is valuable. The Schmidt decomposition
gives us a way to perfectly correlate our A and B subsystems. If we wrote
j i in our standard form, we would have two summations.28 28: Note that the proof of Schmidt is

exactly applying the SVD.

Corollary 2.0.5 Taking the Schmidt decomposition, we get

�A
D

rX
iD1

�2i j˛i ih˛i j

and

�B
D

rX
iD1

�2i jˇi ihˇi j :

Thus, the spectra of �A; �B are identical.29 29: As a result, the Schmidt rank

r � minfdA; dBg:
We now give a brief discussion/application of entanglement measures. Such
measures quantify “how much” entanglement is in a state.

Example 2.0.8 (Min Schmidt Coefficient) If

j iAB
D

rX
jD1

�j
ˇ̌
j̨

˛A
˝
ˇ̌
ǰ

˛B
;

define30 30: We can show that

0 � E1.j i/ � lndA:

When is it zero? Well, consider a product
state j i. Then, the Schmidt coefficient
is 1, and ln1 D 0. Thus, the zero case
precisely corresponds to product states.

E1.j i/´ �min
j

ln �2j D � ln �2min:

Note that E1.j i/ D ln dA if and only if �2j D 1=dA for all j , so

j i D
1
p
r

rX
iD1

j˛i i ˝ jˇi i ;

so j i is maximally entangled.

Definition 2.0.10 (Shannon Entropy) For a probability distribution
fp.x/grxD1, its Shannon entropy is defined as31 31: This entropy is a fundamental

quantity in informaion theory.

H.fp.x/g/ D �

rX
xD1

p.x/ lnp.x/:

Well,
0 � H.fp.x/g/ � ln r:
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Where p.x/ D 1 if and only if we have zero, and p.x/ D 1=r for all x if
and only if we have ln r .

Example 2.0.9 (Entanglement Entropy) We define the entanglement
entropy as the Shannon entropy of the squared Schmidt coefficients:

E.j i/ D �

rX
jD1

�2j ln �2j :

Definition 2.0.11 (Product States of Mixed States) A bipartite density state
�AB is a product state if it is the tensor product of two density matrices.

Definition 2.0.12 (Entanglement of Mixed States) A bipartite state �AB is
entangled if it is not a convex combination of product states3232: In the second equality, we

decomposed each �i and!i into a convex
combination of pure states.

�AB
¤

X
i

pi�
A
i ˝ !

B
i D

X
�

q� j˛�ih˛�j ˝ jˇ�ihˇ�j :

Definition 2.0.13 (Separable State) A bipartite state �AB is called separable if
it is a convex combination of product states.3333: That is, for mixed states,

entanglement means “not separable,” and
the product states are contained within
the separable states. Remark 2.0.10 It is an NP-Hard question to decide if a given density

matrix �AB is separable,
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Thus far, we have described the “static” structure of quantum systems.
Now, we turn to “dynamical” properties of quantum systems. Now, for
time in t 2 Œt1; t2�, we say systemQ undergoes closed evolution if it does not
exchange energy with any other system. In contrast, system Q undergoes
open evolution if it exchanges some energy with another system.

3.1 Closed Evolution

Definition 3.1.1 (System Evolution Axiom) A quantum system Q

undergoing closed evolution is described by a unitary transformation on the
state space.

That is, for closed evolution t 2 Œt1; t2�,

�Q.t2/ D U�
Q.t1/U

�;

where U 2 B.HQ/.1 1: Recall that if we have a pure state,

j .t1/i 7! j .t2/i ;

we are really moving from outer product
to outer product, meaning the time
evolution is precisely conjugating by
U;U �.

Remark 3.1.1 Remember, every unitary takes time. Still, we often omit
denoting the times t1 and t2.

Note that closed evolution is reversible:

� 7! U�U � 7! U �U�U �U D �:

We often refer to multi-qubit unitaries as gates. Let us begin by looking
at qubit gates in detail. Suppose a 2 � 2 unitary U is applied on a qubit
system. How does U transform an arbitrary density matrix

�0 D
1

2
.1C r0 � E�/:

Well,2 2: If we can deduce the relationship
between r0 and r1, we get a nice
geometrical Bloch understanding of
unitary evolution.�1 D U�0U

�
D
1

2
.1C r1 � E�/:

Definition 3.1.2 (Special Unitary Group) The set SU.2/ � U.2/ is the
group of unitary operators in B.C2/ with determinantC1.

Lemma 3.1.1 Any unitary U 2 B.C2/ can be written as U D ei˛=2V with
V 2 SU.2/.3 3: We have a determinant detU D ei˛=2,

since eigenvalues of unitaries are always
roots of unity.
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Proposition 3.1.2 Any U 2 SU.2/ can be written as

U On.�/ D e
�i �2 On�E� ;

where On 2 R3 is a unit vector, and � is an angle.

Note that On � E� has eigenvalues˙1with eigenvectors j˙Oni. Then,44: Let f W x 7! eix�=2.

f . On � �/ D cos
�

2
1C i sin

�

2
. On � E�/:

We can thus think of On as an axis of rotation and � as the angle of rotation.

Definition 3.1.3 (Special Orthogonal Group) The set SO.3/ is the group of
real orthogonal operators in B.R3/ with determinantC1.55: This is the group of rotations on S2.

Theorem 3.1.3 There exists an isomorphism SO.3/ ��! SU.2/=C2. That is,
for any given direction On and angle � , there is a one-to-two correspondence
O On.�/ !˙U On.�/ between SO.3/ and SU.2/ such that

r1 D O On.�/r0(HH) r1 � E� D U On.�/.r0 � E�/U
�

On
.�/:

For instance, let On D Ox and � D � . Then,

U Ox.�/ D �i�x 2 SU.2/;

so the Pauli X is a rotation of angle � around the x-axis.66: Likewise for Y andZ.

Example 3.1.1 Suppose we want to rotation from j0i 7! jCi. One way to
do that is to rotate around the y-axis by �=2:

U Oy.�=2/ D cos.�=4/1 � i sin.�=4/�y ;

which is just
1
p
2

�
1 �1

1 1

�
:

Recall that Hadamard H sends j0i 7! jCi and j1i 7! j�i, so we need
another rotation77: We need the �i there, as H … SU.2/,

since detH D �1.

U Ox.�/U Oy.�=2/ D �i

�
0 1

0 1

�
1
p
2

�
1 �1

1 1

�
D �iH:

Thus, in practice, the gate sequence is

U Ox.�/U Oy.�=2/ j0i D i jCi :

Proposition 3.1.4 Let j Om1i and j Om2i be arbitrary qubit states. There exists a
unitary U 2 SU.2/ such that

U j Om1i D j� Om1i
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and
U j Om2i D j� Om2i :

Proof. Take the cross product On´ . Om1 � Om2/k Om1 � Om2k. Then, the unitary
U On.�/ does what we want.

Remark 3.1.2 If we are given three non-coplanar vectors, then no such
unitary exists in SU.2/. Such an operation is called a universal spin flip.
There does exist an anti-unitary operator A such that A j Oni D j�Oni.8 8: An anti-unitary is when A�A D �1.

This is not physical.

We can now consider a universal gate set for quantum computing. Unlike
for classical logic circuits, there are infinitely many unitary gates. However,
it is possible to decompose a circuit into a finite set of elementary building
blocks.

Theorem 3.1.5 (Solovay-Kitaev Theoren) For U 2 SU.2/ and " > 0, there
exists a sequence of

n D O

�
ln3C"

1

"

�
gates chosen from the set f�x ; �y ; �´;H; T g that approximates U within " error

Proposition 3.1.6 The Pauli matrices can be generated byH and T .

Proof. Well, �´ D T 4, �x D H�´H , and �y D �i�´�x .

[add notes from tuesday, oct 8]

Example 3.1.2 Let

On D

�
1

2
;
1

2
;
1
p
2

�
:

Show how to build U On.�/ exactly from

f�x ; �y ; U Ó .�/;H; T g�2Œ0;2�/

gates.

Proof. Transform On 7! Ó by rotation U Ó .��=4/ and then U Oy.��=4/. Now,
rotate about the Ó axis withU Ó .�/. Now, rotate back to the On axis byU Oy.�=4/
and then U Ó .�=4/.9 9: We will come back to showing that

U Oy.��=4/ is constructible from our gate
set.

Remark 3.1.3 The quantum circuit model describes a standard approach
to computing some function f W .Z=2/n ! .Z=2/m using a quantum
computer. The input b 2 .Z=2/n is encoded in an n-qubit computational
basis state:

b 7! jbi D

nO
iD1

jbi i :

The function f is encoded into a unitary Uf that reversibly maps jbi to
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jf .b/i. Thus, we have an issue when f is not injective. A standard (but
not always optimal) form of unitary computation: for all b 2 .Z=2/n and
for all x 2 .Z=2/m,1010: Note that˚ is XOR.

Uf .jbi ˝ jxi/ D jbi ˝ jx ˚ f .b/i :

Proposition 3.1.7 We have the equality1111: This is trivial by induction.

jCi
˝n
D

1
p
2n

X
b2.Z=2/n

jbi :

Suppose a user has access to a “black box” that can compute a function
f W .Z=2/n ! .Z=2/ on a given input b. The query complexity of f
describes the number of calls an agent must make to the black box to
compute f .b/ for an arbitrary b. The black box is often dubbed the oracle.
Is the classical complexity C.f /� Q.f /, the quantum complexity. This
comes down to the Deutsch-Jozsa problem. Consider a Boolean function
f W .Z=2/n ! .Z=2/ that is either constant:

f .b/ D c 2 f0; 1g;

or balanced:1212: We say there exists S � .Z=2/n such
that jS j D 2n�1.

f .b/ D

(
0; b 2 S

1; b … S:

The goal is to decide whether f is constant or balanced by making queries
to the oracle. LetN ´ 2n. Then,C.f / D O.N/. Using the eigenstate trick,

O jˆi D

r
1

N

X
b2.Z=2/n

.�1/f .b/ jbi ;

where

jˆi D

�r
1

2
.j0i C j1i/

�˝n
:

Note that in general,1313: Define

b � x �

nX
iD1

bixi .mod 2/: H˝n jbi D
X

x2.Z=2/n

.�1/b�x jxi :

This allows us to compute

H˝nO jˆi D
1

N

X
x2.Z=2/n

X
b2.Z=2/n

.�1/f .b/˚b�x jxi :

If f .b/ D c for all b, then we get j0i˝n.14 On the other hand, if f is14: This is computation. Interestingly, this
does not depend on c. balanced, then with probability 0, the outcome x D 0 will be measured.

The upshot here is that if it is constant, we always produce all zeroes, and
if it is balanced, we never do. That is, f is constant if and only if x D 0 is
measured.

Corollary 3.1.8Q.f / D 1 < C.f / D O.N/ D O.2n/.1515: However, there exist randomized
classical algorithms that can solve this
problem with small error. Can we obtain
a separation between C.f / and Q.f /
even with a bounded error? It turns out,
the answer is yes!
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3.2 Quantum Channels

What if we instead allow our systemQ to exchange energy with another
system R? It is open relative to R between t1 � t � t2. The idea is to
simply treat the joint system QR as being closed with respect to a larger
environment E. Then,QR evolves by some unitary U 2 B.HQR/. We now
have to consider the reduced dynamics ofQ by itself:

�Q.ti / D trR.�QR.ti //

for i 2 f1; 2g. The key point is that at time t2, we have

�Q.t2/ D trR.U�QR.t1/U �/:

This is known as the reduced dynamics picture. Assume further that Q
and R are in a tensor product state:16 16: That is, they are prepared separately

(uncoupled) initially.
�QR.t1/ D �

Q.t1/˝ !
R.t1/:

Then, reduced dynamics looks like

�Q.t1/ 7! �Q.t2/ D trR
�
U.�Q.t1/˝ !

R.t1//U
�
�
;

where !R.t1/ 2 D.HR/.

Example 3.2.1 Suppose the primary system and the environment are both
qubits. The environment is initially in jCi and the interaction is described
by controlled-�´.17 17: This CZ maps

j00i 7! j00i

j01i 7! j01i

j10i 7! j10i

j11i 7! � j11i :

How does the primary system evolve under the
reduced dynamics, if it is initially in the state j i D cos � j0i C sin � j1i?

Solution. Our initial state is

j Ci D
1
p
2
.cos � j00i C cos � j01i C sin � j10i C sin � j11i/:

Applying CZ gives us

CZ j Ci D
1
p
2
.cos � j00i C cos � j01i C sin � j10i � sin � j11i/QR:

Let j�iQR DM� ˝ 1
ˇ̌
'C
˛
be this state. Then,

M� D
1
p
2

�
cos � cos �
sin � � sin �

�
;

so
trR j�ih� jQR DM�M

�
� D

�
cos2 � 0

0 sin2 �

�
:

Let us look at what happened:

j ih j D

�
cos2 � cos � sin �

cos � sin � sin2 �

�
7!

�
cos2 � 0

0 sin2 �

�
:

The off-diagonals vanished! Since we often call these off-diagonals
“coherence terms,” this process is dubbed decoherence.18 18: In some ways, this is even worse. Our

final state is like a classical biased coin!



28 3 System Evolution Axiom

Exercise 3.2.1 Prove that F2 j˛i
A
jˇiB D jˇiA j˛iB .

Mathematically, we having been doing transformations which are linear
maps on the space of linear operators :

EQ!Q
0

W B.HQ/! B.HQ0/:

3.3 Superoperators and Channels

Definition 3.3.1 (Superoperator) Linear maps on the space of linear operators
are known as superoperators.

Remember, linear maps HQ ! HQ are called operators and constitute
B.HQ/. We know consider the set B.B.HQ/ W B.HQ0//. The identity idQ is
the identity superoperator. Reduced dynamics represent a nice subclass of
superoperators with the partial trace form we looked at.

Definition 3.3.2 (Trace-Preserving) A superoperator E W B.HQ/ !

B.HQ0/ is called trace-preserving (TP) if tr E.X/ D trX .

Definition 3.3.3 (Positive) A superoperator E W B.HQ/! B.HQ0/ is called
positive if E.X/ � 0 for all X � 0.

LetQk denote a k-dimensional system; i.e., HQk ' Ck .

Definition 3.3.4 (k-Positive) A superoperator EQ!Q
0 is k-positive if the

superoperator

idQk ˝EQ!Q
0

W B.HQkQ/! B.HQkQ
0

/

is positive.1919: That is, idQk ˝E.TQkQ/ � 0 for
any positive TQkQ .

Definition 3.3.5 A superoperator E is completely positive if it is k-positive for
all k 2 ZC.

The superoperator EQ!Q
0 maps operators in D.HQ/ to density operators

in D.HQ0/ even when acting on only half of an entangled state. Reduced
dynamics superoperators are CPTP.

Definition 3.3.6 (Quantum Channel) CPTP superoperators are known as
quantum channels.

Example 3.3.1 (States as Channels) You can think of quantum states as
quantum channels! LetQ be a one-dimensional Hilbert space.2020: That is,Q ' C We can
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think of
CPTP.C! Q0/ D D.Q0/;

where CPTP.C ! Q0/ � B.B.C/ W B.Q0// is the set of CPTP
superoperators between the two spaces’ operators.

Example 3.3.2 (Transpose and Partial Transpose) We can think of the
transpose map as a superoperator

X 7! t .X/´ X t ;

where X t is a transpose wrt the computation basis. It is clearly trace-
preserving, since we do not change the diagonals. Now, let j'i ´P
i ci jii. Let X � 0. Then, for arbitrary j'i,

h'jX t j'i D tr
�
X t j'ih'j

�
D tr

�
X j'ih'jt

�
D h'�jX j'�i � 0:

Thus, t is trace-preserving and positive. Is it completely positive? It turns
out, the answer is no. Consider t W B.C2/ ! B.C2/ and id W B.C2/ !

B.C2/. Define the bipartite superoperator21 21: This map is called the partial transpose.

�A´ t ˝ id :

If we apply �A on
ˇ̌
ˆC

˛̋
ˆC

ˇ̌
, then we get F2, which is not positive.22 22: Hence, t is not CP, and thus, not a

quantum channel.

Note that while t ˝ id is not positive on all B.Cd ˝Cd /, it is positive on
the set of separable states; that is, those states which have the form

�AB D
X
i

pi j˛i ih˛i j
A
˝ jˇi ihˇi j

B :

We have

�A.�
AB/ D

X
i

pi j˛i ih˛i j
t
˝ jˇi ihˇi j

D

X
i

pi j˛
�
i ih˛

�
i j ˝ jˇi ihˇi j ;

which is also separable. Thus, it is a positive operator.

Definition 3.3.7 (PPT) A state �AB is called PPT if �A�AB � 0

Theorem 3.3.1 (PPT Crtierion) If �AB is separable, then its partial transpose
�A is positive.23 23: That is, separable implies PPT.

Corollary 3.3.2 If �AB is not PPT, then �AB is entangled!

Remark 3.3.1 There exist entangled states which are PPT.
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Example 3.3.3 Define

B.Cd /
'

������! B.Cd /

X 7������! tr.X/1 �X:

Is ' positive? Is ' CP?

Proof. Assume X � 0. Let j i be arbitrary. Then,

h j'.X/j i D trX j ih j � h jX j i D trX � h jX j i :

We claim that h jX j i � trX . Complete j i with
ˇ̌
 ?i

˛
until it is an

orthonormal basis. Then,

trX D h jX j i C
dX
iD2

˝
 ?i

ˇ̌
X
ˇ̌
 ?i

˛
� h jX j i :

Thus, ' is positive. Now, for CP:2424: We try the same thing we did for �A.

' ˝ id.
ˇ̌
ˆC

˛
/ D

1

2

0BB@
0 0 0 �1

0 1 0 0

0 0 1 0

�1 0 0 0

1CCA ;
and the outer block is simply ��x , which is not a positive operator. Thus,
' is not a CP superoperator; i.e., not a channel.

Theorem 3.3.3 (Reduction Criterion) If we have �AB 7! ' ˝ id �AB � 0.

It turns out, this criterion is no stronger than the PPT one.

Definition 3.3.8 (Choi Matrix) Let E W B.HB/! B.HA/. Its Choi matrix
is the operator JE 2 B.HAB/ defined by

JABE D E
eB!A

˝ idB.'CeBB/;
where

'CeBB D dimBX
i;jD1

ji iihjj j
eBB :

Theorem 3.3.4 (Second Canonical Isomorphism) We have an isomorphism2525: This isomorphism goes by a few
names, including the Choi-Jamiołkowski
isomorphism.

B.B.HB/ W B.HA//
'

������! B.HA
˝HB/

E 7������! JE:

Sketch of Proof. The action of E2 B.B.HB/ W B.HA// can be described fully
by its Choi matrix. That is, for X 2 B.HB/,2626: Note that the transpose on X is the

same as the basis we use on
ˇ̌
'C

˛
.
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E.X/ D trB
�
.1A ˝ .X t /B/JABE

�
:

Conversely, if JAB 2 B.HAB/, then we can define the superoperator
EJ W B.HB/! B.HA/ by

EJ .X/ D trB
�
.1A ˝ .X t /B/JAB

�
;

which precisely aligns with our definition of the Choi matrix.

Now, suppose E2 CP.A;B/. Then,

JABE D E
eB!A

˝ idB.'CeBB/ � 0:
That is, Ebeing CP implies that JE is positive. What about the converse?
Let J � 0. Take the spectral decomposition

JAB D

rX
kD1

�k j kih kj D

rX
kD1

ˇ̌f k ˛̋f k ˇ̌ :
Write

ˇ̌f k ˛ DMe k ˝ 1
ˇ̌
'C
dB

˛
. Thus, we can write

EJ .X/ D trB

 
.1A ˝ .X t /B/

rX
kD1

.Me k ˝ 1B/'CeBB.M �e k ˝ 1B/

!
:

Using ricochet, we get

EJ .X/ D

rX
kD1

Me kXM �e k D rX
kD1

MkXM
�

k
:

Then, using this new form, we can see that EJ .X/ is CP

Definition 3.3.9 (Kraus Operators) We call the Mk 2 B.HB W HA/ the
Kraus operators for EJ .

Theorem 3.3.5 For a superoperator E W B.HA/! B.HB/, the following are
equivalent:

(i) E is completely positive.
(ii) Its Choi operator JABE � 0.
(iii) There exist Kraus operators fMkgk such that

E.X/ D
X
k

MkXM
�

k
:

Are the Kraus operators of a CP map unique? As it turns out, the answer is
yes, but only up to unitaries. Since the convex combination of a pure state
ensemble is not unique, but unique up to unitary equivalence, the same
can be said for the Kraus operators.
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Proposition 3.3.6 We have2727: TheMk andNj are Kraus operators.

E.�/ D

sX
jD1

Nj .�/N
�
j D

rX
kD1

Mk.�/M
�

k

if and only if there exists a unitary matrix U D .ujk/ so that

Nj D
X
k

ujkMk :

Thus far, we have a good understanding of what happens when our map is
CP, but what about TP? Suppose that E is trace-preserving. Take a Kraus
representation

tr E.X/ D
rX
kD1

tr
�
M
�

k
MkX

�
D tr

  
rX
kD1

M
�

k
Mk

!
X

!
;

which only works if we meet the completion condition

rX
kD1

M
�

k
Mk D 1B :

If our map is TP, then trA JABE D 1B .

Example 3.3.4 Consider the qubit superoperator that kills all off-diagonal
terms:

T W

�
a b

c d

�
7!

�
a 0

0 d

�
:

What is the Choi matrix of this map. Is the map CP? If so, find an
operator-sum decomposition.

Solution. We have T W j0ih0j 7! j0ih0j, T W j1ih1j 7! j1ih1j, T W j0ih1j 7! 0

and T W j1ih0j 7! 0. Then,

JTD T˝ idŒ'C� D T˝ id
X
ji iihjj j D

1X
i;jD0

T.jiihj j/˝ jiihj j :

Thus, we kill our off-diagonals and get

JTD j0ih0j
˝2
C j1ih1j˝2 :

Now, is the map CP?28 Well, remember our equivalence theorems. We just28: Remember, this is the decoherence
map. need to check JE � 0. It certainly is positive. Write

j00i DM0 ˝ 1
ˇ̌
'C
˛
D j0ih0j ˝ 1

ˇ̌
'C
˛
;

which we can just write as

M0 ˝ 1.j00i C j11i/:
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We can do the same for the other eigenvector:

j11i D j1ih1j ˝ 1
ˇ̌
'C
˛
:

Thus,29 29: This is our Kraus representation.
T.�/ D j0ih0j .�/ j0ih0j C j1ih1j .�/ j1ih1j :

Remark 3.3.2 What is the Choi matrix for a unitary transformation?

Well, let UB!B be a unitary transformation. Take the density matrix
interpretation of its action:

j ih j 7! U j ih jU �:

Then,
U.�/ D U�U �;

the channel form of U . We have

JU D U˝ idŒ'C� D
ˇ̌
O'C
˛̋
O'C
ˇ̌
;

where
ˇ̌̌
O'C
E
D U ˝ 1

ˇ̌
'C
˛
. What are the Kraus operators? The Kraus

operators form a singleton fU g!30 30: In other words, our eigenvector is justˇ̌̌
O'C
E
.

Proposition 3.3.7 The set of Kraus operators of a unitary channel is simply the
singleton containing the unitary itself.

Remark 3.3.3 We have a rk 1 Choi matrix if and only if we have 1 Kraus
operator. If our channel is TP, thenM �M D 1, soM is unitary.

Does every CPTP map have a physical interpretation?

Theorem 3.3.8 (Stinespring Dilation) For every CPTP map E W Q! Q0,
there exists a system R, state !R, and unitary U 2 B.HQR/ so that

E.X/ D trR0
�
U.X ˝ !R/U �

�
:

The unitary U W QR! Q0R0 is called a unitary dilation of the channel E. In
general, for every CP map E W Q! Q0, there exists a system R, state !R, and
operatorM 2 B.HQR/ such that

E.X/ D trR0
�
M.X ˝ !R/M �

�
:

Proof. For E2 CP.Q! Q0/, consider the Choi matrix JQ
0Q

E . Purify it:

J
Q0Q
E D dQ treQ eQ0 �jJEihJEj

Q0QeQ0eQ�:
Then, doing a lot of algebra, we find that31 31: We use thatQ ' eQ ' R0 andQ0 'eQ0 ' R.
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E.X/ D trR0
�
OM
QR!R0Q0

JE

�
X ˝

1R

dQ0
OM
�QR!R0Q0

JE

��
:

3.4 Qubit Channels

We now restrict our attention to qubit channels CPTP.B.C2/ ! B.C2//.
If N is a channel transforming � 7! �0, where � D 1=2.1 C r � E�/. What
happens to r 7! r0. For a unitary channel, the pair is related by an SO.3/
operation. Now, for a qubit channel N, its Choi matrix is the two-qubit
operator

JNDN˝ id.'C2 /;

where
'C2 D

ˇ̌
'C2
˛̋
'C2
ˇ̌

and
ˇ̌
'C2
˛
D j00i C j11i :

We can write JN in the two-qubit Pauli basis. We want JN � 0 and
trA.JN/ D 1. To check the TP, we compute

trA.JN/ D a tr.1/1Ctr
�
m � E�

�
1Ctr.1/n� E�C

3X
i;jD1

tij tr.�i /�j D 2a1C2n� E�;

so a D 1=2 and n D 0:

JND
1

2
1˝ 1Cm � E� C

3X
i;jD1

tij�i ˝ �j � 0:

Let � be as before. Remember, the action of channel Ncan be written as

N.�/ D trB
�
.1˝ �t /JN

�
;

which we compute to be

1

2

 
1 tr
�
�t
�
Cm � E� tr

�
�t
�
C

3X
i;jD1

tij�i tr
�
�i�

t
�!
:

Now, recall that
tr
�
� tx�

�
D tr.�x�/ D rx ;

and likewise for y and ´, so we get

1

2

 
1Cm � E� C

3X
i;jD1

tij rj .�1/
ıj2�i

!
;

using the Kronecker delta ıj2.32 Well, notice that the sum is just s � E� ,32: We need this to adjust for the negative
sign on �ry from �y . where

si D

3X
jD1

tij rj .�1/
ıj2 :
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That is,

s D T

0@1 0 0

0 �1 0

0 0 1

1A rµ T 0r:

Thus, the transformed state is

N.�/ D
1

2
.1C .mC s/ � E�/;

so
N W r 7! sCm D T 0rCm:

Theorem 3.4.1 The action of every qubit channel N on the Bloch sphere is
described by an affine transformation

r 7! T 0rCm;

where m is the Bloch vector of the Choi matrix JN and T 0 D T times the
diagonal matrix above.33 33: Remember,T is the correlation matrix

of JN.

Remark 3.4.1 For a unitary transformation, m D 0, so T 0 2 SO.3/.

Definition 3.4.1 (Partially Depolarizing Channel) We define D� to be
defined by

D�.X/´ �X C .1 � �/ tr.X/
1

2
:

The Choi matrix is

JD� D D� ˝ id.'C/ D
1X

i;jD0

D�.jiihj j/˝ jiihj j D �'
C
C .1 � �/

1

2
˝ 1:

Let us take a spectral decomposition of JD� to get the Kraus operators. We
have that

ˇ̌
'˙
˛
D
p
2
ˇ̌
ˆ˙

˛
and

ˇ̌
 ˙

˛
D
p
2
ˇ̌
‰˙

˛
, so

1˝2 D
1

2
.'C C '� C  C C  �/:

Thus,34 34: Recall thatˇ̌
ˆij

˛
D � i´�

j
x ˝ 1 jˆ00i :

JD� D

�
1C 3�

4

�
'C C

1 � �

4
.'� C  C C  �/:

Hence, our Kraus representation is

D�.X/ D aX C b�xX�x C b�yX�y C b�´X�´;

where
a D

1C 3�

4
and b D

1 � �

4
:

Note that when � D 0,35 35: This is the maximally mixed state,
which is precisely what we do not want.

D�.X/ D
1

4
.X C �xX�x C �yX�y C �´X�´/ D

1

2
:
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We have

tij D tr
�
�i ˝ �j'

C
�
D tr

�
�i�

t
j

�
D

�
0; i ¤ j

2; i D j 2 fx; ´g

�2; i D j D y:

via ricochet on �j . Thus,

JD� D
1

2
.1˝2 C �.�˝2x � �

˝2
y C �˝2´ //:

Since m D 0, we get that the effect of the channel on the Bloch sphere is
r 7! T 0r D �r.

Remark 3.4.2 Geometrically, taking our r 7! T 0r D �r action by D�, we
see that the partially depolarizing channel shrinks the Bloch sphere by
�.3636: Since we are shrinking by �, when

� D 0we get the center of the sphere, as
desired.

Definition 3.4.2 (Partially Dephasing Channel) We define

��.X/ D �X C .1 � �/�.X/;

where �.X/ D j0ih0jX j0ih0j C j1ih1jX j1ih1j is the complete dephasing (or
decohering map).

The Choi matrix of �� is given by

J�� D �'
C
C .1 � �/

 
1X
iD0

jiihi j ˝ jiihi j :

!
To get the Kraus representation we will again use the spectral
decomposition:

J�� D

�
�C

1 � �

2

�
'C C

1 � �

2
'�:

Once again, we take the matrix representations and get the Kraus
representation

��.X/ D aX C b�´X�´;

where a D .1C�/=2 and b D .1��/=2. Lastly, for the affine transformation,
we can write

JD� D
1

2
.1˝2 C �.�˝2x � �

˝2
y /C �˝2´ /:

Thus, our correlation matrix is3737: Once again, m D 0. When m ¤ 0,
the sphere also shifts in space.

T D

0@� 0 0

0 �� 0

0 0 1

1A ;
so

r 7! T 0r D .�rx ; �ry ; r´/:
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Remark 3.4.3 This map, geometrically, takes the Bloch sphere to an
ellipsoid around ´-axis, shrinking the Bloch “ellipsoid” inward by �,
keeping the north and south poles fixed.

Definition 3.4.3 (General Pauli Channel) A general Pauli channel P is
defined by38 38: We interpret this as saying “with

probability pb0b1 , the channel input X
incurs a Pauli error �b0´ �

b1
x .”P.X/ D p00X C p01�xX�x C p10�´X�´ C p11�yX�y ;

where p00 C p01 C p10 C p11 D 1.

The Kraus operators are just fpp001;
p
p01�x ;

p
p10�´;

p
p11�yg. The

affine transformation of Bloch vectors is obtained by just writing the Choi
matrix in the Pauli basis. Well, we can write

'C D
1

2

�
1˝2 C �˝2x � �

˝2
y C �˝2´

�
:

We can compute  C; '�;  � in a similar fashion, just conjugating 'C by
.�i ˝ 1/ for i 2 fx; ´; yg, respectively. Then,

JP D
1

2

�
1˝ C t11�

˝2
x C t22�

˝2
y C t33�

˝2
´

�
;

where

t11 D p00 C p01 � p10 � p11

t22 D �p00 C p01 C p10 � p11

t33 D p00 � p01 C p10 � p11:

Thus, the Bloch vector transforms as

r 7!

0@ t11rx
�t22ry
t33r´

1A :
Proposition 3.4.2 Every Pauli channel is a unital channel; i.e., P.1/ D 1.39 39: That is, 0 7! 0, leaving the origin of

the Bloch sphere invariant.

The partially depolarizing and partially dephasing channels are special cases
of general Pauli channels.

Example 3.4.1 (Amplitude Damping Channel) The amplitude damping
channel is a non-unital qubit channel with Kraus representation

A�.X/ DM0XM
�
0 CM1XM

�
1 ;

where
M0 D j0ih0j C

p
1 � � j1ih1j D

�
1 0

0
p
1 � �

�
and

M1 D
p
� j0ih1j D

�
0
p
�

0 0

�
:
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The Choi matrix is given by4040: We just switch Bob’s bra to a ket.

JA� D
�
j00i C

p
1 � � j11i

��
h00j C

p
1 � � h11j

�
C � j01ih01j :

We express the Choi matrix in the Pauli basis by computing the
components

mi D
1

2
tr .JA�.�i ˝ 1//

and
tij D

1

2
tr .JA�.�i ˝ �j //:

We can read off the trace as a trace out on Bob’s side and then a trace out
on Alice’s side. Thus, the channel A� acts by

r 7!

0@ p
1 � �rxp
1 � �ry

r´.1 � �/C �

1A :
When � D 0, it does nothing. When � D 1, we map r 7! Ok. In general,
between 0 and 1, we have the Bloch sphere squishing and shrinking
upwards as a point at the north pole.

Remark 3.4.4 (Replacement Channel) One neat channel (which may be
on a future exam) is the replacement channel4141: We can just have ! to be arbitrary.

R�.X/ D �X C .1 � �/ trŒX�!:

Consider an arbitrary qubit channel N. Suppose we perform a unitary
U 2 SU.2/ to the channel and another unitary V 2 SU.2/ after the output:
N0´ VNU . How are the Choi matrices of Nand N0 related? Well, using
richochet on the wires, JN0 D .V ˝U t /JN.V ˝U t /�. Well, we can identify
V 2 SU.2/ 7! R 2 SO.3/ and U t 2 SU.2/ 7! S 2 SO.3/, so

.V ˝ U t /

 
3X

i;jD1

tij�i ˝ �j

!
.V ˝ U t /�

can be written as

3X
i;jD1

tij

3X
k;lD1

rkislj .ek � E�/˝ .el � E�/:

Rewriting again, we get4242: We substitute

t 0kl D

3X
i;j

rki tij slj :
3X

k;lD1

t 0kl�k ˝ �l D ŒŒRTS
t ��kl :

Remark 3.4.5 Thus, pre- and post- SU.2/ rotations on Ncorrespond to
left and right SO.3/ rotations on the correlation matrix of JN.

By the SVD of T , there exist orthogonalR; S t so thatRTS t is diagonal with
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non-negative diagonal elements.

Theorem 3.4.3 (Canonical Form of Qubit Channels) Every qubit channel
N can be transformed into canonical form N0 by applying pre- and post- SU.2/
rotations such that N0 has a Choi matrix of the form

JN0 D
1

2

 
1˝2 Cm0 � E� ˝ 1C

3X
iD1

p
ti�i ˝ �i

!
:

The canonical channel N0 induces an affine transformation on the Bloch sphere
given by

r 7!

0@pt1 0 0

0 �
p
t2 0

0 0
p
t3

1A rCm:

Corollary 3.4.4 Every unital qubit channel can be transformed into a Pauli
channel by a pre- and post- unitary transformation.

Proof. If m D 0, then m0 D 0, and via our JP of general Pauli channels, we
have our result.43 43: It is for these reasons that our

understanding of Pauli channels gives us
information about all unital channels.

3.5 Pauli Twirling

Consider an arbitrary qubit channel N. Suppose we choose a random Pauli
and apply it both before and after the channel: N0´ �

b0
´ �

b1
x N�

b0
´ �

b1
x . This

operation is called Pauli twirling. What does the resulting channel N0 look
like?44 44: Each bitb0; b1 is chosen with uniform

probability 1=2.

Remark 3.5.1

(i) For all �k ,
1X

b0;b1D0

.�b0´ �
b1
x /�k.�

b0
´ �

b1
x / D 0;

since �k commutes with exactly 2 elements in P generators and
anti-commutes with the other 2 elements.

(ii) For all �k ¤ �l ,

1X
b0;b1D0

.�b0´ �
b1
x ˝ �

b0
´ �

b1
x /�k ˝ �k.�

b0
´ �

b1
x ˝ �

b0
´ �

b1
x / D 0;

since �k ˝ �k commutes with exactly 2 elements in

f1˝ 1; �x ˝ �x ; �y ˝ �y ; �´ ˝ �´g:

(iii) For all �k ,

1X
b0;b1D0

.�b0´ �
b1
x ˝ �

b0
´ �

b1
x /�k ˝ �k.�

b0
´ �

b1
x ˝ �

b0
´ �

b1
x / D 4�k ˝ �k :
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Theorem 3.5.1 Pauli twirling an arbitrary qubit channel N transforms it into
a Pauli channel P, whose Choi matrix is

JP D
1

2

 
1˝2 C

3X
iD1

ti i�i ˝ �i

!
;

with ti i D 2 tr.�i ˝ �iJN/.

Remark 3.5.2 For an arbitrary channel Nwhich is unknown, we can first
transform it into a Pauli channel by twirling, and then try and correct
the noise of the simpler problem.
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This is the fourth, and final axiom we will consider. It is also perhaps the
most controversial, forcing a sort of stochastic nature on our understanding
of measurable quantities. Now, at some point of every experiment, we
eventually connect our quantum system to a measurement apparatus to
extract classical data.1

1: That is, anything representable as finite
strings of data.

Abstractly, we will consider a quantum measurement
as a process which extracts information from a quantum system.

4.1 Registers

Definition 4.1.1 (Classical Register) Every quantum measurement generates
classical data, and we refer to the system X recording this data as a classical
register.2 2: We will denote the set of possible

outcomes as X with classical registers
X;Y.

Remark 4.1.1 What happens if someone does not have access to a classical
register X or know its state? The best we can do is assign a probability
to the different outcomes based on the individual’s state of knowledge. In
other words, the individual describes the state of the classical register X
by a random variable X with distribution pX over alphabet X. Alright,
but then how to we decide the probability values pX .x/ for x 2 X.

The measurement axiom tells us how to associate a probability distribution
to our “read-out” process. States of classical registers are always represented
by density matrices diagonal in the computational basis:

�X D
X
x2X

pX .x/ jxihxj
X :

Classical random variables are always diagonal. This is a convex combination
of the outcomes jxihxj.

Example 4.1.1 (Classical States) Suppose at time t1 Alice and Bob witness
the rolling of a die land at four. We can model their classical registers via
�X D j4ih4j for both. At time t2, Alice’s memory becomes fuzzy, and she
only remembers within˙1 of the outcome. Thus, her matrix becomes

�X
D
1

3
.j3ih3j C j4ih4j C j5ih5j/;

whereas Bob remains the same. Then, at time t3, Bob’s memory also
becomes fuzzy, so his state of knowledge becomes

�X
D
1

3
.j2ih2j C j4ih4j j6ih6j/;

only remembering the number was even.
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In general, a change of information is described by a classical channel with
transitional probabilities p.x0 j x/.

Example 4.1.2 (CQ States) Now, suppose a quantum state �x of system
Q is prepared whenever x is rolled on the die. We have two pieces of
information we need to store: the classical value x 2 Œ6� and the quantum
state �x 2 D.Q/. We represent both systems by a classical-quantum
(CQ) state

�XQ
D

X
x2X

pX .x/ jxihxj
X
˝ �Qx :

The rule of thumb is to average over the different outcomes. Then, Alice
(as in the previous example) has the descriptions

j4ih4j ˝ �4 7!
1

3
.j3ih3j ˝ �3 C j4ih4j ˝ �4 C j5ih5j ˝ �5/;

whereas Bob has

j4ih4j ˝ �4 7!
1

3
.j2ih2j ˝ �2 C j4ih4j ˝ �4 C j6ih6j ˝ �6/:

The most general type of quantum measurement can be seen as a Q-to-QC
stochastic mapping called a quantum instrument:

�Q 7! �Q
0

x ˝ jxihxj
X with probability p.x/:

If we model the state of the classical register as being unknown, then the
instrument is a deterministic mapping33: In fact, this is a quantum channel!

�Q 7!
X
x2X

pX .x/�
Q0

x ˝ jxihxj
X :

Physically, it is built in four steps:

(i) Introduce ancilla system R.
(ii) Unitary evolution.

(iii) Projective measurement.
(iv) Output QC.

This is helpful because we can understand a quantum instrument as
a generalization of a quantum channel in which we receive a classical
output.44: That is, trX gives us our channel.

Definition 4.1.2 (Measurement Axiom) Every measurement of a (finite-
dimensional) quantum systemQ is described by a set of orthogonal projectors
fPxg

r
xD1 (that is, PxPy D ıxyPX ) such that

Pr
xD1 Px D 1Q. That is to say,

we have a decomposition

HQ
D

rM
iD1

Hi ; with projector Pi :

If � is the state ofQ prior to measurement, then with probabilityp.x/ D trŒPx��,
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the post-measurement state will be

�x D
Px�Px

p.x/
:

If the projectors Px are rank-one projectors, Px D j'xih'xj, then B´

fj'xig
dQ
xD1 forms an orthogonal basis for HQ. We then say we “measure in

the B-basis.”

Example 4.1.3 For example, measuring in the computational basis is a
projective measurement with Px D jxihxj.

The measurement axiom describes an inherently stochastic
transformation

� 7! �x D
Px�Px

p.x/
; with p.x/ D trŒPx��:

Including a classical register that store the measurement outcome, we
have

� 7! �x ˝ jxihxj
X :

From the perspective of someone not learning x, we have that5 5: We average over the different outcomes
and plug in �x .

� 7!
X
x2X

Px�Px ˝ jxihxj
X :

Remark 4.1.2 The equation above for �’s transformation is the description
of both the Q and C systems. The state of just Q isX

x2calX

Px�Px :

Example 4.1.4 (Qubit I) A projective measurement in the On direction:

j˙Onih˙Onj D P˙On D
1

2
.1˙ On � E�/:

Suppose initially that the qubit system is j Omi. Well, recall that jh Omj˙Onij2
is6 6: Via the measurment axiom, this is

precisely p.˙On/.tr .j Omih Omj ˙ j Onih Onj/;

and plugging in our Pauli form for j Onih Onj gives us

1

2
.1˙ Om � On/:

Now, if we have an arbitrary state

� D
1C �

2
jC OmihC Omj C

1 � �

2
j� Omih� Omj ;

so
p.˙/ D trŒP˙On�� D

1˙ � Om � On

2
:



44 4 Measurement Axiom

Example 4.1.5 (Qubit II) Suppose Alice measures in spin direction On on
her qubit state � D .1=2/.j0ih0j C jCihCj/. Denote her˙measurement
outcome by a D C1 and a D �1, respectively. What is the probability
distribution of outcome a?

Solution. Using the trace formula, we get

p.a D C1/ D tr.j Onih Onj �/ D hOnj�j Oni ;

and rewriting gives us

1

2
jh Onj0ij

2
C
1

2
hh OnjCij

2
D
1

4
.1C n´/C

1

4
.1C nx/ D

1

2

�
1C

n´ C nx

2

�
:

What about p.a D �1/ D tr.j� Onih� Onj �/? Well, looking back at our
computation, it is just

1

2

�
1 �

n´ C nx

2

�
;

since we need the two to add up to one.77: Remembering that these are
probabilities can make computations way
quicker.

4.2 Wave Function Collapse and Observables

Since the projectors Px in the measurement axiom are orthogonal and
satisfy the completion relation, they are subspace projectors for the direct
sum decomposition

HQ
D V1 ˚ V2 ˚ � � � ˚ Vr ;

where Px is the projector onto Vx . Any j iQ can be uniquely decomposed
as88: Here, j'xi 2 Vx .

j i D

rX
xD1

p
p.x/ j'xi :

Projecting down onto Vy , we get

Py j i D

rX
xD1

p
p.x/Py j'xi D

p
p.y/

ˇ̌
'y
˛
;

so h jPy j i D p.y/.

Remark 4.2.1 Thus, with probability p.y/, the measurement will collapse
j i into its Vy component

ˇ̌
'y
˛
.

Historically, measurement has been described in terms of observables.

Definition 4.2.1 (Quantum Observable) A quantum observable for a system
Q is a hermitian operator K acting on HQ.
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We get a spectral decomposition

K D

rX
kD1

�kPk ;

and to measure observableKmeans to perform the projective measurement
with projectors fPkgk and store the outcome �k in the classical register.
Measuring collapses the state � into an eigenspace of the observable. Thus,
changing the eigenvalues gives you a different observable, but one that is
physically equivalent after relabeling the values on the classical register.
That is, we take

K 0 D

rX
kD1

�0kPk ;

we get a physically identical measurement.9 9: This is exactly just relabeling things.

Example 4.2.1 For instance, every unit vector On in R3 identifies a spin
observable

On � E� D jCOnihCOnj � j� Onih� Onj :

Outcome ˙On is associated with the classical value ˙1. Yet, we could
consider the observable

S D 45 jCOnihCOnj C 46 j� Onih� Onj :

These outcomes are physically identical.

Definition 4.2.2 (Expectation Value) Consider observable K DPr
kD1 �kPk . Its expectation value is given by

EŒK�� ´
rX
kD1

�kp.�k/ D tr.K�/:

Definition 4.2.3 (Variance) The variance is given by

VarŒK�� ´
rX
kD1

p.�k/.�k � EŒK�/2:

Remark 4.2.2 (Zero Uncertainty) Variance measures the average
deviation from the expectation value. Measuring observable K on state
� has zero uncertainty if and only if VarŒK�� D 0.

Per usual, some algebra shows us

VarŒK�� D
rX
kD1

trŒPk��.�k � EŒK�/2 D EŒK2� � EŒK�2

Example 4.2.2 Suppose Alice and Bob share the singlet state j‰�i D
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1p
2
.j01i � j10i/. Alice measures in spin direction On and Bob measures in

spin direction Om. Denote their measurement outcomes by a; b 2 f0; 1g.
What is the expected product of their outcomes ab.

Solution. Define the product observable K D PC1 � P�1. We have

PC´
1

2
.1C On � E�/˝

1

2
.1 � Om � E�/

C
1

2
.1 � On � E�/˝

1

2
.1 � Om � E�/;

and P� is the cross terms of parity. Thus,

K D On � E� ˝ Om � E�:

Using ricochet, plus some algebra, we find

EŒK� D
1

2
tr
�
�y. On � E�/�y. Om � E�/

t
�
;

and using the anti-commutation relation of the Paulis, this is precisely

�
1

2
tr .. On � E�/. Om � E�/ D � Om � On:/

4.3 Quantum Instruments and POVMs

Using the four steps of the quantum instruments we mentioned before, we
get a CP map

Ex.�/ D trR0.PxU.�˝ !R/U �Px/:

Definition 4.3.1 (Quantum Instrument) A quantum instrument is a
collection of CP maps fExgx such that

P
x Ex is trace-preserving.1010: Instruments were introduced in the

70s, but they have only caught on recently.
It is a bit of a departure from the
classical view of system evolution. Yet,
it aligns very well with the way we have
approached QIP.

Remark 4.3.1 (Instrument Performance) Performing instrument fExgx
on state �

(i) outputs classical value x with probability p.x/ D tr.Ex.�//.
(ii) outputs the post-measurement quantum state px D 1

p.x/
Ex.�/.

� 7!
1

p.x/
Ex.�/˝ jxihxj

X :

Well, what is the point? Using quantum instruments we can extract classical
information and evolve our system in ways that are not possible using
projective measurements. Remember, if the classical register is unknown,

� 7!
X
x

Ex.�/˝ jxihxj
X :
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Remark 4.3.2 There are two extremes:

(i) Completely ignore the classical output and any correlation it has
with the quantum output.

� 7!
X
x

Ex.�/:

(ii) Completely ignore the quantum output and any correlation it has
with the classical output.11 11: Maybe all we care about is the

measurement, classically.

� 7!
X
x

tr.Ex.�// jxihxjX D
X
x

p.x/ jxihxjX :

Definition 4.3.2 (Positive Operator-Valued Measure (POVM)) A POVM
is a mathematical object used to describe the classical outcomes of a quantum
measurement.

� 7!
X
x2X

tr.Ex.�// jxihxjX :

Essentially, the quantum measurement is defining a probability measure
p.x/ over the output set X. A POVM is a representation of this measure in
terms of positive operators. Take an operator-sum representation

Ex.�/ D
X
k

Mx;k�M
�

x;k
:

Then,
p.x/ D tr.Ex.�// D tr .…x�/;

where12 12: This tells us that the outcome p.x/ is
represented by the family f…xgx .…x ´

X
k

M
�

x;k
Mx;k :

Moreover, since
P
x Ex is TP we have

P
x…x D 1.

Definition 4.3.3 (POVM Generalized Born’s Rule) A POVM on systemQ is
a collection of positive operators f…xgx such that

P
x…x D 1Q.13 13: This is the actual starting place for

when you have a POVM.
Measuring

POVM f…xgx on a state � returns outcome x with probability

p.x/ D tr.…x�/:

Example 4.3.1 Consider the four qubit states

j'1i D j0i

j'2i D
1
p
3
j0i C

p
2
p
3
j1i

j'3i D
1
p
3
j0i C

p
2
p
3
ei
2�
3 j1i

j'4i D
1
p
3
j0i C

p
2
p
3
ei
4�
3 j1i :
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The f1
2
j'xih'xjg

4
xD1 form a qubit POVM.

We now consider an application in quantum state tomography. Suppose you
have a quantum source that is generating some unknown state �. A POVM
f…xg on HQ is called informationally complete if the …x form a linearly
independent set that spans B.HQ/.

Remark 4.3.3 Projective measurement are not informationally complete!
For instance,

fj1ih1j ; j2ih2j ; : : : ; jd ihd jg

does not span B.Cd /!.

For informationally complete POVMs, we can uniquely write

� D
X
x

cx…x :

Now, take the sequence1414: We go to d2 since dim B.Cd / D d2.

� D
X
x

cx…x ����������!

POVM f…ygd
2

yD1

y:

We can solve for the coefficients cx by measuring n copies of � and using
the sampled average of measurement outcomes. Thus,

# outcomes y
n

� p.y/ D tr
�
…y�

�
D

X
x

cx tr
�
…y…x

�
:

Define the matrixM with elements ŒŒM ��yx D tr
�
…y…x

�
, so that

p.y/ D
X
x

ŒŒM ��yxcx :

We get the linear equation0BBB@
p.1/

p.2/
:::

p.d2/

1CCCA DM
0BBB@
c1
c2
:::

cd2 ;

1CCCA
which we will solve by takingM�1.
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5.1 Multi-System Measurements

Recalling the measurement axiom, what if the systemQ consists of multiple
subsystems

Q D Q1Q2 � � �QN ‹

Then, the projectors Px might be entangled across the Qi subsystems.
These are called entangled measurements:

NO
iD1

HQi ' V1 ˚ V2 ˚ � � � ˚ VN :

Note that the Vi are spaces, not subsystems. That is, we are not just taking
each qubit. The most important example of an entangled measurement is
a two-qubit projective measurement into the Bell basis.1 We take HQ ' 1: We call this a Bell measurement.
C2 ˝C2, where the projectors are

P00 D jˆ
C
ihˆCj

P01 D j‰
C
ih‰Cj

P10 D jˆ
�
ihˆ�j

P11 D j‰
�
ih‰�j :

Example 5.1.1 Compute the post-measurement states and probabilities
when performing a Bell measurement on a generic two-qubit state

j i D a j00i C b j01i C c j10i C d j11i :

Solution. We have the projector Pij D jˆCij ihˆ
C

ij j, so

p.ij / D tr
�
j ih j jˆCij ihˆ

C

ij j
�
D

ˇ̌̌
h jˆCij i

ˇ̌̌2
:

There are various ways to implement a Bell measurement. One way is by
inverting the circuit that builds the Bell states. Build the Bell states from
the computational basis.2 Now, invert the circuit, taking an arbitrary state 2: The unitary U we need is just the

HadamardH followed by CNOT. Recall
that

H jii D
j0i C .�1/i j1i

p
2

D � i´ jCi :

�AB through U �, then measuring in the computational basis. What is the
probability of measuring .i; j / in the computational basis? Well,

p.i; j / D tr
�
U ��AB. jiihi j ˝ jj ihj j/

�
D tr

�
�AB jˆCij ihˆ

C

ij j

�
;

which is equivalent to measuring �AB in the Bell basis.
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Remark 5.1.1 This inversion of circuit trick can be used to realize a
projective measurement in any orthonormal basis f j bigb2Cn

2
.

Local measurements are independent POVMs performed on two or more
subsystems. In general, we have

p.i; j / D tr
�
�AB

�
…A
i ˝†

B
j

��
:

5.2 LOCC and Entanglement

Local operations (LO) are independent CPTP maps performed on two or
more subsystems. Then,

�AB D EA ˝FB.�AB/:

We refer to quantum operations in which the parties perform an interactive
sequence of local instruments while exchanging classical data local operations
and classical communication (LOCC). We send

�AB 7! �AB ´
X
itot

Aitot ˝Bitot.�
AB/:

In general, LOCC operations can have a very complex structure.

Example 5.2.1 Suppose that Alice and Bob are given one of the following
four bipartite states j 1i D j00i, j 2i D j01i, j 3i D j1Ci, j 4i D
j1�i. Show that they cannot be perfectly distinguished by LO, but they
can be perfectly distinguished by LOCC.

Proof. Bob must distinguish between his parts

f j0i ; j1i ; jCi ; j�ig:

Yet, non-orthogonal states means there exists some error in Bob’s
measurement.3 Now, for the LOCC, let Alice measure in the f j0i ; j1ig3: See the previous discussion of

measurement and POVMs. basis. On Bob’s part, if Alice gets 0, then Bob has orthogonal states, so let
him measure in the computational basis. Similarly, if Alice gets 1, Bob can
measure in f j˙ig. Then, Bob announces what his outcome was.

Definition 5.2.1 (Separable) Remember, a bipartite state �AB is called
separable if it is a convex combination of product states

�AB D
X
�

q�!
A
� ˝ �

B
� :

Suppose we perform some LOCC map on a separable state. Then, we get
out X

�

q�
X
itot

Aitot.!
A
� /˝Bitot.�

B
� /;
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which is still a convex combination of product states. On the other hand, if
we consider an arbitrary separable state �AB , we can build it using LOCC
via

(i) Alice samples from random variable �with probability q�.
(ii) She prepares the state !A

�
and communicates � to Bob.

(iii) Bob prepares the state �B
�

.

Theorem 5.2.1 A state �AB is separable if and only if it can be generated by
LOCC.

Remark 5.2.1 When asked the question “What is entanglement?,” we
answer “It is a property in all quantum states that cannot be generated
by LOCC.”4 4: That is, we place LOCC as a

more fundamental concept. Then, non-
separability follows from the structure
of LOCC. This is the “physical process”
perspective on entanglement.Proposition 5.2.2 It is impossible to perform a Bell measurement by LOCC.

Proof. We want to send �AB through an LOCC with output .i; j / such that

p.i; j / D tr
�
�AB jˆCij ihˆ

C

ij j

�
:

Suppose Alice and Bob initially share the separable state jˆCiAA
0

˝

jˆCiB
0B . We write out

jˆCiAA
0

˝ jˆCiBB
0

D . j00i C j11i/AA
0

˝ . j00i C j11i/AB

D j00iA
0B0
j00iAB C j01iA

0B0
j01iAB

C j10iA
0B0
j10iAB C j11iA

0B0
j11iAB :

Let us look at the ˆC projection onto the A0B 0, we see�
1AB ˝ jˆCihˆCjA

0B0
�
jˆCiAA

0

jˆCiB
0B

D jˆCiA
0B0
˝ jˆCiAB :

Thus, projectingA0B 0 onto jˆCi impliesAB is in state jˆCiAB , so we have
generated entanglement on AB via LOCC, a contradiction.5 5: Check the details of the last

computation, it takes some careful
observation.

5.3 Classical and Quantum Communication
Resources

We will start with a unifying perspective on these types of resources.

Definition 5.3.1 (Classical Information) We have defined classical
information to be mixtures of bit strings. That is, states of classical registers.

Definition 5.3.2 (Quantum Information) Similarly, quantum information
is mixtures of qubit strings. That is, states of quantum systems.
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In a high level sense, there are classical resources and quantum resources.
Within these sections, we can divide into static resources and dynamic
resources. Classical static resources [cc] have one bit of shared randomness
(SR):


XY
D
1

2
j00ih00jXY

C
1

2
j11ih11jXY :

Shared randomness requires some sort of interaction.6 Quantum static6: The notation [cc] means both X;Y
means both are classical systems, and
the brackets mean we are defining our
resource.

resource [qq] have on entangled bit (ebit)

jˆCiAB D
1
p
2
. j00i C j11i/:

Classical dynamic resources [c! c] are one bit noiseless classical channels

idX!Y
W jiiX 7! jiihi jY :

These are precisely classical channels, in the sense we are used to. We are
assuming the ideal case.7 Finally, quantum dynamic resources [q! q] are7: All channels are subject to error. Note

that the [c ! c] implies the dynamic
nature, with an arrow time.

one bit noiseless quantum channels

idA!B W j iA 7! j iB :

Above, i 2 f0; 1g and j i 2 C2. Our goal is to understand the relationship
between these resources. At an abstract level, all of information theory can be
thought of as transformations and trade-offs between resources like these
four.

One instance, is one bit shared randomness (SR) from a one bit classical
channel [c! c] � [cc]. Alice locally prepares the state


XQX
D
1

2
j00ih00jX

QX
C
1

2
j11ih11jX

QX :

She uses the noiseless channel idQX!Y to send system QX to Bob. Then, we
get


XY
D
1

2
j00ih00jXY

C
1

2
j11ih11jXY :

In fact, [c! c] > [cc], meaning anything we can do with one bit shared
randomness can be done with a one bit classical channel, but the converse
is untrue.

For the quantum analog, we could get one ebit from one qubit quantum
channel. Alice starts with jˆC2 i, sends one qubit over the quantum channel,
yielding [q! q] > [qq].

The fun stuff happens when we take one bit SR from one ebit [qq] � [cc].
Alice and Bob initially share jˆC2 i, they measure in the computational
basis f0; 1g. The joint state of the classical registers XY is 
XY.88: The randomness is from the

perspective of someone who does
not have access to the measurement
outcomes. Remark 5.3.1 (Classical information over quantum channels) Suppose

that idA!B is a d -dimensional quantum channel. Clearly, it is possible
to send jXj D d classical messages over this channel. Why? Well we can
just use the computational basis states j1i ; : : : ; jd i.99: That is, there are logd bits. We have the c!
q encoding: Alice copies the bit x 2 f1; : : : ; dg into the computational
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basis of the quantum system

jxihxjX 7! �A
x D jxihxj

A :

Then, for q! c decoding: Bob measures his system in the computational
basis f…y D jyihyjgd1 . The probability of decoding is

p.y j x/ D tr .…y�x/:

We ended up with log2 d [q! q] � log2 d [c! c]. The LHS here means
we have a d -dimensional, noiseless quantum channel.

Theorem 5.3.1 We cannot send more than d classical messages over a d -
dimensional quantum channel.

Proof. Suppose Alice tries to send s > d messages by encoding jxihxj 7! �x
for x 2 f1; : : : ; sg. Suppose Bob performs a decoder POVM f…ygsyD1. Then,
the average probability of successfully decoding is

1

s

sX
xD1

p.x j x/ D
1

s

sX
xD1

tr .…x�x/ �
1

s

sX
xD1

tr.…x/ D
1

s
tr
�
1B
�
D
d

s
< 1:

Bummer.

Remark 5.3.2 (Entanglement-assisted classical communication over a
quantum channel) We start with the same setup, except we also have a
static resource with the quantum channel. We end up with

�AB0
x D EA!A

x ˝ id.'/! �x :

If B and B 0 are d -dimensional then f�BB0x gsxD1 is a collection of states
on Cd ˝Cd . Then, for any decoder POVM on Bob’s side, the average
probability is upper bounded by d2=s!10 10: In fact, we can saturate this upper

bound of sending s D d2 perfect
messages using dense coding.

5.4 Dense Coding

Let us begin by looking at two-qubit dense coding:

(i) Let X´ Z2
2 D f00; 01; 10; 11g.

(ii) Alice encodes her message b0b1 2 Xby applying �b0´ �b1x to A. This
transforms jˆC00i 7! jˆ

C

b0b1
i.

(iii) Alice sends qubit A over the channel to Bob. He performs a Bell
measurement on systems BB0.11 11: Why does this work? Alice can

transform jˆ
C

00
i into 4 different

orthogonal states by just acting on her
half of jˆC00i.

In our resource-theoretic terms, we have [qq]C [q! q] � 2 [c! c]. The
key point is that we are using entanglement to increase how much classical
data we can send over a quantum channel.
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Let us now extend to higher dimensions for Cd ˝Cd . We need to introduce
a d -dimensional Bell basis for .Cd /˝2, so define

X.l/ D

d�1X
jD0

jl C j ihj j .mod d/ for l D 0; 1; : : : ; d � 1

and

Z.s/ D

d�1X
jD0

e2�i
sj
d jj ihj j for s D 0; 1; : : : ; d � 1:

The d -dimensional Bell basis is the collection of d2 states given by˚
jˆC
ls
i ´ Z.l/X.s/˝ 1 jˆC

d
i W l; s D 0; : : : ; d � 1

	
:

It is not clear that these are orthonormal, but it can be shown with simple
computation.12 Now, we can do d ˝ d -dimensional coding:12: Use the standard sum and product

rules for roots of unity.
(i) Let X´ Z2

d
.

(ii) Alice encodes her message .l; s/ 2 Xby applyingZ.l/X.s/ to A. This
transforms jˆC00i 7! jˆ

C

ls
i.

(iii) Then, Bob performs a projective Bell measurement.

The resource inequality for general dense coding is log d [qq] + log d [q!
q] � 2 log d [c! c].1313: In a sense, this means entanglement

allows us to double our classical
communication. Practically, we have to
go beyond dense coding to polynomial or
even exponential enhancement.

Remark 5.4.1 In case it was unclear, if we d bits, then we have 2d possible
outcomes (since they take values in Z2). Then, a d -dimensional channel
would have associated log2 d bits.

5.5 Teleportation

What if we wanted to send quantum information over a classical channel?
Suppose Alice has a Hilbert space HA, and she wants to completely send it
to Bob. Alice measures her quantum state �A using some POVM f…xgx :
q! c encoding Then Bob can prepare some quantum state �x given that
Alice has outcome x from her measurement: c! q decoding.

Well, for a given input �, Bob’s state averaging over outcomes x:1414: That is, tracing over the classical
register Y .

�� ´
X
x

p.x/�x D
X
x

tr.…x/�x :

Our goal: For every state of Alice’s system �A, we want �B� D �A. That
would be perfect communication! Note that1515: We omit the proof for time.

min
j'i2H

h'j�' j'i D min
j'i2H

X
x

h'j…xj'i h'j�xj'i �
1

d
:

our “worst-case” scenario. Unsurprisingly, this means the fidelity drops off
via 1=d , so classical communication is insufficient. Recall dense coding:
What if, instead, we have some entanglement assistance for our classical
channel–as we did with dense coding?
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Z2
d

Z.s/X.l/

idA!B

jˆ00i
AB0 Bell Measure js0l 0ihs0l 0j

 

 
jslihslj

(

)
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(

)
B 
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B0  

 

Figure 5.1: Communication diagram for
d ˝ d -dimensional dense coding, where
Z.s/;X.l/ are the higher dimensional
Sylvester operators

D.Cd / f…AA0

m g

idX!Y

‰A
0B0 DB

0!B �B

 

 
�A

(

)
jxihxjX

(

)
jxihxjY 

 

 

 

 

 

Figure 5.2: After the message encoding
(the POVM), we have jmihmjX ˝
trAA0 ..…AA

0

m ˝ 1B
0
/.�A ˝ ‰A

0B0 //.
Then, after the classical channel (idX!Y ),
we have jmihmjY ˝ trAA0 ..…AA

0

m ˝

1B
0
/.�A ˝‰A

0B0 //.

We can employ a technique called teleportation to achieve this sort of
mechanism:

D.Cd / f jˆslihˆsl jgsl

idX!Y

jˆ00i
A0B0 Z.s/tX.l/t �B

 

 
�A

(

)
jxihxjX

(

)
jxihxjY 

 

 
 
 

 

Figure 5.3: Communication diagram for
teleportation: Alice teleports her quantum
state �A to Bob.

Mathematically, the way entanglements helps us in teleportation is precisely
the ricochet property. We omit the proof, but we are really using the special
property of jˆCi to do this.

Then, the inequality is .2 log d/ [c! c]C.log d/ [qq] � .log d/ [q! q].

Example 5.5.1 What is the probability of each outcome .s; l/ on Alice’s
side, using standard teleportation? Well,16 16: Every density matrix is unit-trace,

so we cannot bias our outcome. The
probability is uniform over .s; l/.

P.s; l/ D tr.

measurement
º
.1B ˝ˆA

0A
sl /

initial state
º
.ˆA

0B
00 ˝ �

A/ /

D
1

d
tr
�
ˆA
0A

sl .1A
0

˝ �A/
�

D
1

d2
tr
�
1A�A

�
D

1

d2
:
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Suppose we have two parties, Alice and Bob, who each have access to
a pair of “black boxes.” Alice chooses x among MA inputs. Her device
outputs a among NA outputs. Bob does the same with y andMB ; NB . The
entire input/output behavior can be described by a family of conditional
probabilities p.a; bjx; y/–correlations–held between Alice and Bob.

6.1 Bipartite Correlations

Suppose we are in the situation given above.

Definition 6.1.1 (Bipartite Device) A bipartite input/output device is then
represented by a point

RMAMBNANB

with coordinates
fp.a; bjx; y/ga;b;x;y :

The collection of all possible input/output devices forms a subset

PMA;MB ;NA;NB � RMAMBNANB :

It is natural to ask what the structure of PMA;MB ;NA;NB is. LetMA DMB D

NA D NB D 2. Then,

(i) every v 2 P2222 is described by 16 coordinates:

fp.a; bjx; y/g1a;b;x;yD0:

(ii) there are special elements in P2222 that behave deterministically,
meaning that p.a; bjx; y/ 2 2 for all a; b; x; y.

How many deterministic boxes are there? In other words, how many
functions f W 22 ! 22? The answer is 44 D 256.1 Label the deterministic 1: This is just counting.
boxes as vi .a; bjx; y/.

Theorem 6.1.1 Every element of P2222 can be written as a convex combination
of deterministic boxes:

p.a; bjx; y/ D

256X
�D1

p.�/v�.a; bjx; y/:

Then, P2222 forms a polytope, where the deterministic boxes are the extremes.
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6.2 Local Correlations

We now consider a special family of correlations motivated by locality. The
intuitive meaning of locality is that Alice and Bob’s devices are influenced
only by what is happening in the nearby surrounding physical space.
Consequently, if the boxes are separated by a large distance, then they should
be have independently of each other. Thus,22: We will sometimes call this the Bell

locality condition.
p.a; bjx; y/ D p.ajx/p.bjy/:

However, it may have happened that at some time in the past, the boxes,
or parts of their boxes, were near each other and interacted. Specifically,
the boxes may have shared some classical information with each other,
which we will represent by the character �.3 We can think of � as a classical3: Think of this classical information like

a shared “set of instructions” �. register:
�AB� D

X
�

p.�/ j�ih�jX ˝ j�ih�jY :

The behavior of the boxes can then depend on the particular value of �:

p.a; bjx; y; �/ D p.ajx; �/p.bjy; �/:

Suppose that � has a distribution independent of x; y. Then,

p.a; bjx; y/ �
X
�

p.�/p.ajx; �/p.bjy; �/:

Definition 6.2.1 (Local Correlation) A correlation, as above, is called a local
correlation. They form a polytope LMA;MB ;NA;NB � P2222.44: Local correlations are said to satisfy

a local hidden variable (LHV) model. This
sort of idea dates even back to Einstein.

In the discussion so far, we have not mentioned quantum systems. In fact,
the only assumptions we have made is that the inputs and outputs are
classical. We assumed that there could be some shared randomness, also
classical. Our plan is to replace the instructions with a quantum state �AB .

The outputs .a; b/ are obtained by measuring �AB . The inputs .x; y/
determine which measurement Alice and Bob perform on their subsystem
of �AB . Specifically, for Alice, f…A

ajx
ga;x is a family of POVMs for Alice.55: Recall that POVMs satisfy the standard

completion relation. Assume the same for Bob. Then, using Born’s rule,

p.a; bjx; y/ D tr
�
…A
ajx ˝…

B
bjy

�
�AB :

Definition 6.2.2 (Quantum Correlation) A correlation, as above, is called
a quantum correlation. The set of all quantum correlations is denoted
QMA;MB ;NA;NB .

Proposition 6.2.1 LMA;MB ;NA;NB � QMA;MB ;NA;NB .

Proof. X
�

p.�/p.ajx; �/p.bjy; �/ D tr
�
…A
ajx ˝…

B
bjy

�
�AB :
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However, it turns out that LMA;MB ;NA;NB ¨ QMA;MB ;NA;NB . How do we
prove that there exist nonlocal quantum correlations?6 6: It is worth noting that Q is not a polytope.

The topological reasons why are a bit
subtle.

6.3 Polytope Membership Problem

In fact, the question above is a part of a more general type of problem,
called the polytope membership problem. Start with a simpler problem.
In R2, consider the polytope T whose vertices are v0 D .0; 0/, v1 D .0; 1/,
and v2 D .1; 0/. An element x 2 R2 belongs to T if and only if it can be
written as a convex combination of the vi . We call this interpretation the
V-representation of T .

However, there is an alternative description of T that is often easier to
work with. We can equivalently think of T as the intersection of three half
planes:

H1´ f.x; y/ W x � 0g

H2´ f.x; y/ W y � 0g

H3´ f.x; y/ W x C y � 1g;

taking
T D H1 \H2 \H2:

This is known as the H-representation of T . Thus, to decide whether or
not x 2 R2 is in T , we just need to check a system of three inequalities.

Definition 6.3.1 (Facet Inequalities) The inequalities defining the half planes
Hi the facet inequalities of T .

Let us return to R16. We can form the associated half planes for L2222. The
facet inequalities for the local polytope are called Bell inequalities.

Remark 6.3.1 In order to prove that a quantum correlation is nonlocal,
we must show that it violates a Bell inequality. The number of Bell
inequalities to characterize the polytope Ldepends on .MA;MB/ and
.NA; NB/. Unfortunately, this number scales exponentially inMi ; Ni .7 7: In fact, for general membership, the

problem is NP-hard.

Theorem 6.3.1 (Bell, CHSH, Fine) Let Mi ; Ni D 2. The polytope L2222 is
characterized entirely by two types of inequalities:

(i) positivity: p.a; bjx; y/ � 0 for all a; b; x; y 2 2.
(ii) CHSH:

˛ � p.a; bjx; y/ � p.a; bjx; y/ � p.a; bjx; y/ � p.a; bjx; y/ � ˇ

for all a; b; x; y 2 2, defining j ´ j ˚ 1, where˚ is modular addition
in 2; i.e., in .Z=2;C/.
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What are the values of ˛ and ˇ? Well, it is clear that ˛ � �3 and ˇ � 1. We
want to tighten this.8 Let us first find the largest value of ˛ such that this8: There is an algorithm to go between

V- and H-representations, but it is
complicated.

inequality is satisfied by all correlations in L2222. Assume we have a local
hidden variable model. Suppose

p.a; bjx; y/ D
X
�

p.�/pA.ajx; �/pB.bjy; �/:

Substitute this into the LHS of the CHSH inequality. After a good amount
of algebra, we get

2˛0ˇ0 � ˛0ˇ0 � .˛0 � ˛1/.ˇ0 � ˇ1/;

bounding
0 � ˛i ; ˇi � 1;

where ˛i ´ pA.0ji/, and likewise for ˇi . Then,

2˛0ˇ0 � ˛0ˇ0 � .˛0 � ˛1/.ˇ0 � ˇ1/ � �1:

Now, let us find the upper bound on ˇ. Following the same procedure, we
get that

2˛0ˇ0 � ˛0ˇ0 � .˛0 � ˛1/.ˇ0 � ˇ1/ � 0:

Remark 6.3.2 It is a bit of an exercise to do these computations, taking
maximums via some partials. It is just a bounded optimization problem.

Thus, our CHSH becomes

�1 � p.a; bjx; y/ � p.a; bjx; y/ � p.a; bjx; y/ � p.a; bjx; y/ � 0

in R16, where x; y 2 2.

6.4 Violation of CHSH

Suppose Alice and Bob each perform a two-outcome projective
measurement on a qubit system. A two-outcome projective measurement
on a qubit system means they project onto some orthonormal basis. ALice
and Bob are each choosing between two directions on the Bloch sphere,
and their outcome is either spin-up or spin-down.

Our projection for Alice takes the form

Paj Omx ´
1

2
.1C .�1/a Omx � E�/;

and likewise for Bob.
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Suppose they measure on the Bell state jˆCi:

p.a; bjx; y/ D
˝
ˆC

ˇ̌
Paj Omx ˝ Pbj Ony

ˇ̌
ˆC

˛
D
1

4

˝
ˆC

ˇ̌
.1C .�1/a Omx � E�/.1C .�1/

b
Ony � E�/

t
˝ 1

ˇ̌
ˆC

˛
D
1

8
tr
�
.1C .�1/a Omx � E�/.1C .�1/

b
Ony � E�/

t
�

D
1

4

�
1C .�1/a˚b Omx � On

0
y

�
:

Note that we took On0y ´ .nx ;�ny ; n´/. Substitute this into the CHSH
inequality. Our goal is to get a violation. How could we maximize

1

4
. Om0 � . On

0
0 � On

0
1/ � Om1 � . On

0
0 � On

0
1// �

1

2
:

We need to find two vectors whose sum and difference have a large norm.
Thus, we pick On00´ Ó , Om0´

1p
2
. Ó � Ox/, On01´ Ox, and Om1´ � 1p

2
. Ó C Ox/.

Thus,
1

4
.
p
2C
p
2/ �

1

2
D
1

2
.
p
2 � 1/ > 0;

and we have caused nonlocality, finding something in Q2222 which is not
in the L2222 polytope.

Remark 6.4.1 It is reasonable to ask if we could violate this more. Perhaps
surprisingly, the answer is actually no. The proof sketched above shows
the fundamental limits given by quantum mechanics, which cannot be
surpassed. That is, the quantum bound ˇQ � 1, which is greater than
the ˇ D 0 bound.9 9: That is, there are bounds on the

quantum correlations, which stems from
something natural. There are nonlinear
inequalities which bound Q2222, but it
gets really complicated. In our picture,
our bounds also allow some classical,
nonlocal correlations. This is irrelevant
to our discussion.

Quantum mechanics, and notably entanglement, has given us correlations
that we fundamentally cannot produce classically.
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