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The Real Numbers 1

1.1 Field Properties . . . . . . . 3

1.2 Ordered Fields . . . . . . . . 3

1.3 Least Upper Bounds and

Completeness in R . . . . . 4

The set of real numbers, denoted R, form a complete ordered field
when some pieces of structure are attached.1

1: In fact, there is only one such object.
Thus, R is unique up to character
representation.

Since the primary structure
underlying real analysis is clearly the real numbers, we will explore the
properties, some trivial and some more sophisticated, of R.

1.1 Field Properties

First, begin with the set R alongside two binary operations

C W R � R! R W .x; y/ 7! x C y

and
� W R � R! R W .x; y/ 7! x � y:

Additionally, there exist two distinct, respective, identity elements 0; 1 2 R
which maintain the familiar properties associated to them when we have
F D .R;C; �; 0; 1/.2 However, other fields3 share these properties. 2: See Rosenlicht for the full field

axioms.
3: Q, Zp , and C are common examples
of fields.

So what makes R unique? As it turns out, the needed properties are
ordering and completeness which we flesh out in the rest of the first
chapter.

1.2 Ordered Fields

Definition 1.2.1 (Ordered Field) An ordered field is a field F together with
a subset P � F such that4 4: The character P is used to allude to

positive numbers.
(i) 0 … P .
(ii) For all a; b 2 P , both .aC b/; .a � b/ 2 P .5 5: Hereafter we will simply use the

juxtaposition notation ab.(iii) For all a 2 F , where a ¤ 0, either a 2 P or �a 2 P .6

6: That is, F n f0g D P t .�P/, where

�P ´ f�x W x 2 P g:
Example 1.2.1 Choosing F D R, we haveP as the positive real numbers.
Similarly, choosing F D Q, we have P as the positive rationals.7 7: Note that there are no positive

complex numbers.

Definition 1.2.2 (Ordering on F ) If .F ; P / is an ordered field, then we
have the relations .<;�/, defined by

(i) a < b if and only if b � a 2 P .
(ii) a � b if and only if a < b or a D b.

The definition of an ordering on .F ; P / yields some notable consequences
for a; b 2 .F ; P /:8 8: From here on, we will generally write

F for brevity.
(a) a � b if and only if �b � �a.
(b) For all a 2 F , a2 � 0.9 9: That is, a2 2 P for a ¤ 0.
(c) If a 2 P , and b 2 �P , then ab 2 �P .
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Corollary 1.2.1 The complex numbers C is not an ordered field.1010: The proof is trivial by contradiction,
using trichotomy.

Definition 1.2.3 (Absolute Value) The absolute value1111: You may note that absolute values
are constructible in C. Thus, ordering
is not explicitly needed in defining j�j.
However, the definition in C focuses on
behavior in R � C.

jaj of a 2 R is

jaj ´

(
a; a � 0

�a; a � 0:

As such, we now have a function

j�j W R! Œ0;1/ W a 7! jaj:

There are some properties of j�j that are useful to keep in mind:

(a) For all a 2 R, jaj � 0.
(b) For all a; b 2 R, jabj D jajjbj.
(c) For a 2 R, jaj2 D

ˇ̌
a2
ˇ̌
.

Lemma 1.2.2 (The Triangle Inequality) For all a; b 2 R, we have1212: The proof of the triangle inequality
is straightforward in most metric space
structures you have seen, such as inner
product spaces in linear algebra.

jaC bj � jaj C jbj:

Corollary 1.2.3 For all a; b 2 R, we have1313: This corollary is especially useful in
treatments of analysis.

jjaj � jbjj � ja � bj:

Remark 1.2.1 There exists a function, called the metric or distance
function d 1414: The symbol d is used to reference

distance. This will become more intuitive
when we begin our treatment of metric
spaces.

defined by

d W R � R! Œ0;1/ W .a; b/ 7! ja � bj:

We will see that d.a; b/ D ja � bj endows R with a metric.

1.3 Least Upper Bounds and Completeness in R

Definition 1.3.1 (Upper Bound) A subset ¿ ¤ S � R is bounded above if
there exists an a 2 R such that s � a for all s 2 S . Any such a is called an
upper bound of S .

Definition 1.3.2 (Least Upper Bound) Suppose S � R is bounded above.
A number a 2 R is a least upper bound, or supremum, of S if

(i) a is an upper bound of S .
(ii) If b is an upper bound of S , then a � b.

We denote the least upper bound by aµ supS .

Definition 1.3.3 (The Completeness Axiom) The Completeness Axiom
states that any nonempty subset S of R bounded above has a supremum.1515: This axiom fails for Q, usually shown

by
p
2 …Q.
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There is a standard abuse of notation in which we write that supS D 1
is S is not bounded above. Similarly, one can define lower bounds and
greatest lower bound16 16: The greatest lower bound is often

called the infimum, where

infS ´� sup.�S/

and
�S ´ f�s W s 2 Sg:

Remark 1.3.1 Note that an equivalent formulation of The Completeness
Axiom states that if S is a nonempty real subset bounded below, then
the infimum infS exists.

Lemma 1.3.1 For all x 2 R, there exists an n 2 N such that x < n.17 17: We conclude this trivially by
contradiction.

Corollary 1.3.2 For all " > 0, there exists an n 2 N such that 1=n < ".

There are a few interesting consequences which follow from here.

Corollary 1.3.3 For all nonnegative a 2 R such that for all ı > 0, a < ı

implies equality a D 0.

Corollary 1.3.4 For any x 2 R, there exists n 2 Z such that

n � x < nC 1:

Theorem 1.3.5 (Q is dense in R) For all x 2 R and for all " > 0, there
exists a rational r 2 Q such that jx � r j < ".18 18: The density of Q in R is equivalent

to the statement that for all a; b 2 R
with a < b, there exists r 2Q such that
a < r < b.

Theorem 1.3.6 (Existence of Unique Order) For all a < 0, there exists a
unique x > 0 such that x2 D a.





Metric and Topological Spaces 2

2.1 Open and Closed Sets . . . 8

2.2 Convergence . . . . . . . . . 9

2.3 Norms and Completeness . 12

2.4 Topology and Compactness 16

We now give some of our attention to a more general class of spaces than
R. Notably, we look at metric spaces, and their distance-less older sibling
topological spaces. We will study the relevant topological properties for
analysis, such as topological invariants and continuity.

Definition 2.0.1 (Metric Space) A metric space1

1: The definition of a metric space is
worth memorizing.

is a set E together with a
map

d W E �E ! Œ0;1/

such that, for all x; y 2 E,

(i) d.x; y/ D 0 implies x D y.
(ii) d.x; y/ D d.y; x/.
(iii) d.x; ´/ � d.x; y/C d.y; ´/.2 2: Note that this is the triangle

inequality.

That is, a metric space is a pair .E; d/, where d is called a metric.3 3: It is also referred to as the distance
function.

Example 2.0.1 We have a few standard examples of metric spaces that
we are used to:

(a) E ´ R with d W .x; y/ 7! jx � yj.
(b) E ´ Q with d W .x; y/ 7! jx � yj.
(c) E is defined as a set S ¤ ¿ with

d.x; y/ D

(
1; x ¤ y

0; x D y:

(d) E ´ C with4 4: Since C D R2, this is actually a
special case of (e).

d W .x C iy; uC iv/ 7! j.x C iy/ � .uC iv/j

D
�
.x � u/2 C .y � v/2

� 1
2

(e) E ´ Rn with5 5: We know this as “Euclidean distance.”

d2 W .x; y/ 7!

 
nX
iD1

.xi � yi /
2

! 1
2

(f) E ´ Rn with

d1 W .x; y/ 7!

nX
iD1

jxi � yi j

or
d1 W .x; y/ 7! maxfjx1 � y1j; : : : ; jxn � ynjg:

Remark 2.0.1 If .E; d/ is a metric space and QE � E is a subset, then
the pair �

QE; Qd
ˇ̌̌
QE� QE

�
is a metric space.
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Definition 2.0.2 (The `2-norm) The `2-norm on Rn is the function66: Note that d2.x; y/ D kx � yk2.

k�k2 W R
n
! Œ0;1/ W x 7!

 
nX
iD1

x2i

! 1
2

:

Theorem 2.0.1 (Cauchy-Schwarz) For all x; y 2 Rn,ˇ̌̌̌
ˇ nX
iD1

xiyi

ˇ̌̌̌
ˇ � kxk2 � kyk2:

Theorem 2.0.2 (Euclidean Distance is a Metric) For all x; y 2 Rn,

kx C yk2 � kxk2 C kyk2:

Consequently, for all x; y; ´ 2 Rn,

d2.x; ´/ � d2.x; y/C d2.y; ´/:

Corollary 2.0.3 (Euclidean Metric Space) The pair of Rn and Euclidean
distance .Rn; d2/ is a metric space.77: We refer to .Rn; d2/ as Euclidean

space. We often call Rn a metric space by
convention, as d2 is usually understood.

2.1 Open and Closed Sets

Definition 2.1.1 (Open Ball) Let .E; d/ be a metric space. An open ball
centered at x 2 E of radius > 0 is the set

Br .x/ D B.x; r/´ fy 2 E W d.x; y/ < rg:

Definition 2.1.2 (Closed Ball) Similarly, a closed ball centered at x of
radius r is the set

B.x; r/´ fy 2 E W d.x; y/ � rg:

Example 2.1.1 A standard example is the open and closed balls in
E ´ R2 with d ´ d2, which are simply circles, with the former
missing its border.

Definition 2.1.3 (Open Set) A subset U of a metric space .E; d/ is open if
for all x 2 U there exists an r > 0 such that Br .x/ � U .

Example 2.1.2 E ´ R with U ´ .a; b/ is clearly an open set, as

r ´ fja � xj; jb � xjg;

yields Br .x/ � .a; b/.
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Definition 2.1.4 (Closed Set) A subset C of a metric space E is closed if

CC D E n C ´ fx 2 E W x … C g is open.

Theorem 2.1.1 Let .E; d/ be a metric space. Then,8 8: Both E and ¿ are open. Together
with this fact, we have the definition of a
topology.(i) For any collection fUigi2I of open sets in E,[

i2I

Ui

is open.
(ii) Finite intersections of open sets are open.9 9: That is, for all k 2 Z�0 for all open

sets U1; : : : ; Uk ,

k\
iD1

Ui

is open.

(iii) Open balls are open.

Definition 2.1.5 (Open Rectangle) An open rectangle10

10: Note that this object is open.

in Rn is a set U of
the form

U D .a1; b1/ � .a2; b2/ � � � � � .an; bn/;

where ai < bi and i 2 f1; : : : ; ng.

Remark 2.1.1 Similarly,

F ´ Œa1; b1� � Œa2; b2� � � � � � Œan; bn�

is closed.

Definition 2.1.6 (Bounded) A subset ¿ ¤ S � E of a metric space .E; d/
is bounded if for all x 2 E with r > 0, S � Br .x/.

Example 2.1.3 For instance, Œa; b/ � R is bounded, which is clear when
letting x D 0 and r ´ max.jaj; jbj/C 1.11 11: Note that Œ0;1/ is not bounded.

Example 2.1.4 Now, let E be a nonempty set and

d.x; y/ D

(
1; x ¤ y

0; x D y:

Then for all U � E, we have U � B2.x/ for any x 2 E. Thus, any
subset of E is bounded.

Theorem 2.1.2 Suppose ¿ ¤ S � R is closed and bounded. Then
infS; supS exist and are in S .

2.2 Convergence

Definition 2.2.1 (Sequence) A sequence in a set E is a function

s W ZC ! E;
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where by notation we write

s D fsig
1
iD1 D fs1; : : : ; sn; : : : g;

or just sn.

Definition 2.2.2 (Convergence) Let .E; d/ be a metric space and fsngn�1
a sequence. Then, s converges1212: We write sn! L or

lim
n!1

sn D L;

and say “s is convergent” or “L is a limit
of fsng.”

toL 2 E if for all " > 0, there existsN 2 ZC
such that for n > N ,

d.sn; L/ < ":

That is,
sn 2 B".L/:

Example 2.2.1 For instance, let E ´ R and sn´ 1=n. Of course,

1

n
! 0:

Lemma 2.2.1 A sequence fsng in .E; d/ converges to L if and only if for any
open set U � E, with L 2 U , there exists an N 2 ZC, we have sn 2 U .

Lemma 2.2.2 Convergent sequences are bounded.

Remark 2.2.1 Suppose fsng is a sequence in a metric space .E; d/. If
sn ! L1 and sn ! L2, then L1 D L2.1313: See page 46 of Rosenlicht for a proof.

Definition 2.2.3 (Subsequences) Let s W ZC ! E be a sequence. A
subsequence1414: Note that nk � k for all k, by

induction.
of s is a mapping

f W ZC ! E

of the form f D s ı n, where n W ZC ! ZC is strictly increasing. That is

1 � n1 < n2 < � � � < nk < � � � ;

with
s ı n D fsn1 ; sn2 ; : : : ; snk ; : : : g:

Remark 2.2.2 If sn ! L and fsnk g1kD1 a subsequence, then snk ! L.

Lemma 2.2.3 Suppose C is closed in .E; d/, fsng is a sequence in C , and
sn ! L. Then, L 2 C . Conversely, if for any convergent sequence fsng in C
with lim sn 2 C , then C is closed.

Proposition 2.2.4 Suppose fang and fbng are two convergent sequences in
R with limits an ! a and bn ! b. Then,

(i) an C bn ! aC b.
(ii) anbn ! ab.
(iii) for all c 2 R, we have can ! ca.
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(iv) if b ¤ 0 and bn ¤ 0 for all n, then

an

bn
!

a

b
:

(v) if an � bn, then a � b.

Definition 2.2.4 (Interior) Let .E; d/ be a metric space with a subset
S � E. Then, the interior of S , usually denoted Sı, is defined as

Sı´
[
O�S

O;

where O is open. Then, this is the largest open set contained in S .

Definition 2.2.5 (Closure) The closure of S , where our sets are as above,
denoted S , is defined as

S ´
\
S�C

C;

where C is closed. Then, this is the smallest closed set containing S .

Definition 2.2.6 (Boundary) The boundary15 15: Note that none of objects like these
have a metric in their definitions. You
may realize that this implies their
existence in more general, topological
spaces.

of S as above, denoted @S , is
defined as S n Sı.

Example 2.2.2 Let E ´ R with the standard metric. Then, setting
S D Q, for all q 2 Q, for all r > 0, we have

Br .q/ \ .R nQ/ ¤ ¿;

so Qı D ¿, Q D R, and

@Q D Q nQı D R:

Definition 2.2.7 (Exterior) The exterior16 16: Though this is not as commonly
defined in introductory courses, it is an
object often used by analysts.

of S as above, denoted Ext.S/, is
defined as

Ext.S/´ .E n S/ı:

Theorem 2.2.5 Let .E; d/ be a metric space with a subset S � E. Then,

(i) Sı D fx 2 S W there exists an " > 0 such that B".x/ � Sg :
(ii) E n S D .E n S/ı:
(iii) S D fx 2 E W there exists a sequence fsng � S with sn ! xg.
(iv) @S D .E n S/ı \ .E n .E n S/ı/.
(v) E D Sı t @S t .E n S/ı.

Example 2.2.3 For instance, let S ´ f1=n W n � N 2 ZCg as a subset
of R. Then,

(a) Sı D ¿.
(b) S D S [ f0g.
(c) @S D S n Sı D S [ f0g.
(d) Ext.S/ = .R n S/ı D R n S .
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2.3 Norms and Completeness

We now need to come to terms with completeness on the real line.
However, our notion of least upper bounds is not particularly easy to
work with here, so we want to work on concluding that every real Cauchy
sequence converging17 yields completeness on R.17: We will define what this means later.

Definition 2.3.1 (Increasing) A sequence fang in R is increasing1818: Note that constant seuqences are
increasing, as is

an´ 1�
1

n
:

if

a1 � a2 � a3 � � � � � an � � � � :

Definition 2.3.2 (Decreasing) A sequence1919: Thus, constant sequences are also
decreasing, as is

bn´
1

n
:

fbng in R is decreasing if

b1 � b2 � b3 � � � � bn � � � � :

Definition 2.3.3 (Monotone) A sequence is monotone, or monotonic, if it
is decreasing or it is increasing.

Theorem 2.3.1 Any bounded monotonic sequence in R converges.

Example 2.3.1 Suppose fang is defined recursively for all n 2 ZC,

a1´
p
2; a2´

q
2C
p
2; : : : ; an´

p
2C an1 :

Then, fang converges.

Definition 2.3.4 (Divergence) A sequence fang � R diverges toC1 if for
all M 2 R, there exists N 2 ZC such that for n > N , an > M . Similarly,
fang diverges to �1 if f�ang diverges toC1.2020: That is, for all M 2 R there exists

N 2 ZC for n > N , an <M .

Theorem 2.3.2 A monotone sequence in R either converges or diverges to
C1 or diverges to �1.

Remark 2.3.1 Now, suppose T � S � R are bounded. Then,

(i) supT � supS .
(ii) inf T � infS .

Suppose fsng � R is a sequence which is bounded above. Then, for allN ,
let

vN ´ supfsn W n � N g � supfsn W n � N C 1g D vNC1:

We get a monotone sequence, meaning the sequence fvng either converges
or diverges to �1.21.21: The former occurs when fsng is

bounded below

Example 2.3.2 Let sn´ .�1/n, then

vn D sup f.�1/n W n � N g D 1:

That is, vn exists, even when sn 6! L.
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Definition 2.3.5 (Limit Superior) We define

lim sup sn´ lim
N!1

vN :

This limit may be �1.

Definition 2.3.6 Similarly, if fsng is bounded below, we define

lim inf sn´ lim
N!1

inffsn W n � N g:

This limit may beC1.

Example 2.3.3 We have

lim inf.�1/n D lim
N!1

inf f.�1/n W n � N g D �1:

Remark 2.3.2 We get

inf fsn W n � N g � sN � supfsn W n � N g:

Remark 2.3.3 Given an arbitrary sequence fsng. The sets

fsn W n � N g

need not be bounded above. Then,

supfsn W n � N g D C1;

so lim sup sn´C1. Similarly, if

inffsn W n � N g D �1;

we define lim inf sn´ �1.

Example 2.3.4 Let sn´ .�1/n again. Then,

lim sup sn D C1 and lim inf sn D �1:

Theorem 2.3.3 Let fsng be a sequence in R. Then,

(i) If fsng converges or diverges to˙1, then

lim inf sn D lim sn D lim sup sn:

(ii) If
lim inf sn D lim sup sn,22 22: Note that both could be�1 or both

could beC1.
then

lim sn D lim inf sn D lim sup sn:

Definition 2.3.7 (Cauchy Sequence) A sequence fsng in a metric space
.E; d/ is Cauchy if for all " > 0, there exists an N 2 ZC such that for all
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n;m > N ,
d.sn; sm/ < ":

Lemma 2.3.4 Any convergent sequence is Cauchy.2323: We can use an easy "=2 argument as
proof.

Example 2.3.5 Let

sn´

nX
kD1

1

k
:

We have

lim sn´

1X
kD1

1

k
:

This sequence is not Cauchy.

Remark 2.3.4 In a metric space Cauchy sequences need not have limits.

Definition 2.3.8 (Completeness) A metric space is complete if every Cauchy
sequence converges.2424: This gives us that both R and Rn are

complete.

Lemma 2.3.5 Let .E; d/ be a metric space with a Cauchy sequence fsng.
Then, fsngn2ZC is bounded.2525: This gives us a way to determine if a

sequence is not Cauchy.

Lemma 2.3.6 Suppose fsng is Cauchy with a convergent subsequence fsnk g
with

snk ����!
k!1

L;

then
sn ����!

n!1
L

as well.

Our goal is to demonstrate that Rn is complete with respect to d2 as the
Euclidean metric. We first prove that R is complete.

Lemma 2.3.7 (Bolzano-Weierstraß) Let fsng be a bounded sequence in R.
Then, if

L´ lim sup sn;

there exists a subsequence fsnk g of sn such that

snk ����!
k!1

L:

Corollary 2.3.8 (Real Completeness) R is complete.2626: While we defined an axiom
completeness for R earlier, we need to
demonstrate that R actually satisfies the
definition via Cauchy sequences in a
metric space.

We have seen .Rn; d2/ is a metric space where

d2 W .x; y/ 7!

 
nX
iD1

.xi � yi /
2

!1=2
:
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We also have

d1 W .x; y/ 7!

nX
iD1

jxi � yi j

d1 W .x; y/ 7! max
1�i�n

jxi � yi j

as useful metrics on Rn.

Lemma 2.3.9 (Higher Euclidean Completeness) The space .Rn; d1/ is
complete.

Definition 2.3.9 (Norm) A norm on an F -vector space V is a function is a
function

k�k W V! F W x 7! kxk

such that

(i) kxk � 0 for all x and kxk D 0 if and only if x D 0.
(ii) k�xk D j�jkxk
(iii) kx C yk � kxk C kyk.

Recall, we have the norms

kxk1´

nX
iD1

jxi j

kxk2´

 
nX
iD1

x2i

!1=2
kxk1´ sup

1�i�n

fjxi jg:

These are known as the `1, `2, and `1 norms, respectively.

Lemma 2.3.10 Let
k�k W V! F

be a norm. Then,

d W V� V! F W .x; y/ 7! kx � yk

is a metric.27 27: We call a vector space with a norm a
normed vector space. Note that any inner-
product space has the inner-product
induce a norm which induces a metric.

Definition 2.3.10 (Norm Equivalence) Two norms k�k and k�k 0 on a
vector space28 28: We require dim V<1.Vare equivalent if there exist c1; c2 > 0 such that

c1kxk � kxk
0
� c2kxk

for all x 2 V.

Definition 2.3.11 (Metric Equivalence) Two metrics d and d 0 on E are
equivalent if there exist c1; c2 > 0 such that

c1d.x; y/ � d
0.x; y/ � c2d.x; y/

for all x; y.
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Theorem 2.3.11 We have, for all x 2 Rn,

1

n
kxk1 � kxk1 � kxk2 � kxk1:

Remark 2.3.5 Given two norms k�k and k�k0, and there exist c1; c2 > 0
such that

c1kxk � kxk
0
� c2kxk;

for all x, then

c1kx � yk � kx � yk
0
� c2kx � yk:

Thus, the metrics d.x; y/ ´ kx � yk and d 0.x; y/ ´ kx � yk0 are
equivalent.

Lemma 2.3.12 Suppose

d; d 0 W E ! Œ0;1/

are two equivalent metrics.

(i) fsng � E is d -Cauchy if and only if fsng is d 0-Cauchy.
(ii) fsng � E is d -convergent if and only if fsng is d 0-convergent.

Corollary 2.3.13 Both .Rn; d2/ and .Rn; d1/ are complete.2929: That is, all of the Cauchy sequences
in either converge.

2.4 Topology and Compactness

Recall, we previously proved three major properties of open sets in
.E; d/:

(a) Both ¿ and E are open.
(b) If O and O 0 are open, then so is O \O 0.
(c) If fO˛g˛2A is a collection of open sets, then[

˛2A

O˛

is open. It turns out, these properties can actually be turned into a
definition.
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Definition 2.4.1 (Topology) A topology T on a set X is a collection of
subsets of X .30 30: Note that this means

T � P.X/;

the power set ofX .

The elements of T are called “open sets.”

(i) Both ¿; X 2T.
(ii) If O;O 0 2T, then O \O 0 2 T.
(iii) Any collection fO˛g˛2A � Thas[

˛2A

O˛ 2 T:

That is, we have proved that if .E; d/ is a metric space, then there exists
a topology Td induced by d .

Definition 2.4.2 (Topological Space) A topological space is a pair .X;T/
where T is a topology on the set X .

Lemma 2.4.1 Let d and d 0 be two equivalent metrics on a set E. Then, the
induced topologies Td D Td 0 .31 31: That is, they give rise to precisely the

same topologies.

Definition 2.4.3 (Convergence) If .X;T/ is a topological space with a
sequence fsng � X , then

sn ����!
n!1

L 2 X

if for all open sets U � X with L 2 U , there exists an N such that n > N
implies sn 2 U .

Remark 2.4.1 If TD Td for some metric d , then the two notions of
convergence agree.

Corollary 2.4.2 Let E be a set with equivalent metrics d and d 0. Then,

sn ����!
n!1

L 2 E

with respect to d if and only if

sn ����!
n!1

L 2 E

with respect to d 0.

Definition 2.4.4 (Open Cover) Let .X;T/ be a topological space with a
subsetK � X . An open cover ofK is a collection of open sets fO˛g˛2A such
that

K �
[
˛2A

O˛:

Example 2.4.1 Consider the collection

f.n; nC 2/gn2Z:

This is an open cover of R.32 32: Similarly, we could have

f.x; xC 2/gx2R

as an open cover of R.
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Example 2.4.2 If .E; d/ is a metric space, then the collection˚
B1�1=n.x/

	
n2ZC

is an open cover of B1.x/.

Definition 2.4.5 (Compact) A subsetK of a topological spaceX ´ .X;T/

is compact if for every open cover fU˛g˛2A ofK, there exists a finite subcover.
That is, there there exist ˛1; : : : ; ˛k 2 A such that

K � U˛1 [ � � � [ U˛n :

Example 2.4.3 Any finite set K is compact. If fU˛g is an open cover
of K ´ fx1; : : : ; xng, then for all i , xi 2 U˛i for some j̨ 2 A. Thus,
K D

S
fxig D�

S
U˛i .

Lemma 2.4.3 Let .X;T/ be a topological space with K � X compact and
C � K closed. Then, K \ C is compact.

Theorem 2.4.4 Let .E; d/ be a metric space. If K � E is compact with
respect to Td , then K is closed and bounded.

Remark 2.4.2 In general, compact sets do not need to be closed. For
instance, let X ´ fa; bg, with T´ fX;¿; fagg. Then, K D fag is
compact,3333: K is finite. but it is not closed, since X nK D fbg … T.

Theorem 2.4.5 Let .X;T/ be a topological space. A sequence

K1 � K2 � � � � � Kn � � � �

of nested, closed, nonempty, compact sets has

1\
iD1

Ki ¤ ¿:

Definition 2.4.6 (Sequentially Compact) A subset K of a topological
space X is sequentially compact if every sequence in K has a convergent
subsequence whose limit is in K.

Remark 2.4.3 Suppose K � Rn is closed and bounded. Then, K is
sequentially compact.3434: This is essentially proved in the

exercises.

Lemma 2.4.6 Let .E; d/ be a metric space and K � E is compact. Then, K
is sequentially compact.

Definition 2.4.7 (Total Boundedness) A subsetK of a metric space .E; d/
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is totally bounded if for all " > 0, there exist

x1; : : : ; xn 2 K

such that35 35: That is, for all " > 0, K can be
covered by finitely many balls of radius
".

K � B".x1/ [ � � � [ B".xn/:

Lemma 2.4.7 Suppose .E; d/ is a metric space and K � E is sequentially
compact. Then, .K; d/ is complete and totally bounded.

Lemma 2.4.8 Let .E; d/ be a metric space withK � E complete and totally
bounded. Then, K is compact.

That is, for a metric space .E; d/ with a subset K � E, the following are
equivalent:

(i) K is compact.
(ii) K is d -complete and totally d -bounded.

(iii) K is sequentially compact.

We can use this to trivially deduce a well-known analysis result.

Theorem 2.4.9 (Heine-Borel) A subset K � Rn is compact if and only if
K is closed and bounded.
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Having developed the setting of metric spaces and topological spaces, we
will consider the notion of continuous maps. Note that continuous maps
are precisely the arrows of mor Top, where ob Top D .X;T/, topological
spaces.

3.1 Continuity on Metric and Topological

Spaces

Definition 3.1.1 (Continuous at a Point) Let .E; d/ and .E 0; d 0/ be two
metric spaces. A function f W E ! E 0 is continuous at p 2 E if for all
" > 0 there exists a ı > 0 such that for all x 2 E, if

d.x; p/ < ı;

then
d 0.f .x/; f .p// < ":

That is,
f
�
Bdı .p/

�
� Bd

0

" .p/:

Definition 3.1.2 (Continuous) A function f W E ! E 0 is continuous if it
is continuous at every point p 2 E.

Example 3.1.1 Let .E; d/ be a metric space with a point q 2 E. Then,

f W E ! R W p 7! d.p; q/

is continuous at every p 2 E.

Example 3.1.2 Define

f W R! R W x 7!

(
0; x is irrational
1; is rational:

Then, f is not continuous at any point.

Theorem 3.1.1 A function

f W .E; d/! .E 0; d 0/

is continuous if and only if for all open U � E 0 open, f �1.U / is open.

Corollary 3.1.2 A map

f W .E; d/! .E 0; d 0/



22 3 Continuous Functions

is continuous if and only if for all closed C � E 0, f �1.C / is closed.

Definition 3.1.3 (Continuity) A map between two topological spaces

f W .X;T/! .X 0;T0/

is continuous if for all open sets U � X 0, the pre-image f �1.U / is open.

Remark 3.1.1 If d1 and d2 are two metrics on E such that

Td1 D Td2 ;

and d 01 and d 02 are two metrics on E 0 such that

Td 0
1
D Td 0

2
;

then a map
f W .E; d1/! .E 0; d 01/

is continuous if and only if

f W .E; d2/! .E 0; d 02/

is continuous.

Theorem 3.1.3 The composition of two continuous maps is continuous. That
is, if

f W .X;TX /! .Y;TY /

and
g W .Y;TY /! .Z;TZ/

are continuous, then so is

g ı f W .X;TX /! .Z;TZ/

Theorem 3.1.4 Images of compact sets under continuous maps are compact.

Corollary 3.1.5 Let .E; d/ be a metric space, and letX be a topological space
with a continuous map

f W X ! E:

Then, for any compact set K � X , f .K/ is

(i) complete and totally bounded.
(ii) closed.
(iii) sequentially compact.

Corollary 3.1.6 Let .X;T/ be a topological space with f W X ! R
continuous and K � X compact. Then, there exist x1; x2 2 K such that

f .x1/ � f .x/ � f .x2/

for all x 2 K.
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3.2 Limits

Definition 3.2.1 (Cluster Point) Let .X;T/ be a topological space with a
subset S � X . A point x 2 X is called a cluster point if for every open set U
with x 2 U ,1 1: That is, ifX is a metric space, then x

is a cluster point of S if and only if there
exists a sequence fsng � S n fxg such
that

sn ����!
n!1

x:

Note thatU , as in the definition, is called
an open neighborhood of x.

.U n fxg/ \ S ¤ ¿:

Example 3.2.1 Let
S ´ f0g [ Œ1; 2� � R:

Then, the cluster points of S are Œ1; 2�.

Definition 3.2.2 (Limit) Suppose .E; d/ and .E 0; d 0/ are metric spaces
with a subset A � E. Then, take the function

f W A! E 0

with a cluster point p of A.2 2: Note that we are not assumingp 2 A.
Even if p 2 A, we are not requiring that

f .p/ D lim
x!p

f .x/:

Thus, f .p/ need not be defined.

Then

lim
x!p

f .x/ D q

if for all " > 0 there exists a ı > 0 such that for all

x 2 A \ Bı.p/

with x ¤ p, we have
d 0.f .x/; q/ < ":

Lemma 3.2.1 Given metric spaces E and E 0 and a cluster point p of E, we
have that

f W E ! E 0

is continuous at p if and only if

lim
x!p

f .x/ D f .p/:

Theorem 3.2.2 Let E and E 0 be metric spaces. A function f W E ! E 0 is
continuous at p 2 E if and only if every sequence fsng � E with

sn ����!
n!1

p

in E implies
f .sn/ ����!

n!1
f .p/

in E 0.

Theorem 3.2.3 Suppose f; g W .E; d/! R are continuous at a pointp 2 E.
Then, f C g and f � g are continuous at p, and if g.p/ ¤ 0, then so is f=g.

Theorem 3.2.4 Suppose we have a function

f ´ .f1; : : : ; fn/ W .E; d/! Rn
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with a point p 2 E. Then, f is continuous at p if and only if fi is continuous
at p for all 1 � i � n.33: That is, the Euclidean-valued function

is continuous if and only if each of its
components is continuous. This fact is
usually taken for granted in any vector
calculus course.

3.3 Uniform Continuity

Recall that f W .E; d/! .E 0; d 0/ is continuous if for any p 2 E, for all
" > 0 there exists ı D ı";p > 0 such that

d.x; p/ < ı

implies
d 0.f .x/; f .p// < ":

Definition 3.3.1 (Uniform Continuity) A function

f W .E; d/! .E 0; d 0/

is called uniformly continuous if for all " > 0 there exists a ı D ı" > 0 such
that

d.x; p/ < ı

implies
d 0.f .x/; f .p// < "

for all x; p.

Example 3.3.1 For a non-example, consider the function 44: We look at the positive part of R since
if f is not uniformly continuous on the
positives, it is not uniformly continuous
on the whole real line. f W Œ0;1/! R W x 7! x2:

Note that

jf .x/ � f .y/jš
x2�y2

D jx � yj jx C yj—
xCy

� 2minfx; ygjx � yj:

Thus, for any ı, if x; y > 1=ı, and jx � yj D ı=2, we have

jf .x/ � f .y/j � 2 �
1

ı
�
ı

2
D 1:

Lemma 3.3.1 Suppose f W E ! E 0 between metric spaces is uniformly
continuous. Then, for any Cauchy sequence fsng in E, f .fsng/ is Cauchy.55: The proof of this is essentially just

stringing together the two definitions.

Example 3.3.2 Consider the function

f W .0; 1/! R W x 7! sin
�
1

x

�
:

We claim that f is not uniformly continuous.66: Note that we have not rigorously
treated the sine function yet, but that
is alright.

We have that

sn´
1

�=2C �n
����!
n!1

0
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is Cauchy, but

f .sn/ D sin
��
2
C �n

�
D .�1/n;

so f is not uniformly continuous.

Theorem 3.3.2 Suppose f W E ! E 0 is continuous andE is compact. Then,
f is uniformly continuous.7 7: The trick here is to construct the open

cover
fBıx=2.x/gx2E

ofE . Then, we define

ı´ min
n
ıx1
2
; : : : ;

ıxn
2

o
:

3.4 Sequences of Functions

Definition 3.4.1 (Sequence of Functions) A sequence of functions is a map

ZC ! F..E; d/ W .E 0; d 0//

of the form
ffn W .E; d/! .E 0; d 0/g

1

nD1:

Definition 3.4.2 (Pointwise Convergence) The sequence ffng converges
pointwise to f W E ! E 0 if for all p 2 E,

fn.p/! f .p/:

Example 3.4.1 For instance, let E D E 0´ Œ0; 1�with8 8: We can see that the pointwise limit
of continuous functions need not be
continuous.

lim
n!1

xn D

(
1; x D 1

0; 0 � x < 1:

Definition 3.4.3 (Uniform Convergence) Given a sequence of functions

ffn W .E; d/! .E 0; d 0/g;

and a subset A � E, we have that fn ! f uniformly on A if for all " > 0,
there exists an integer N 2 ZC such that n � N implies

d 0.fn.p/; f .p// < "

for all p 2 A.

Equivalently, we have that

(i) given " > 0, there exists an N such that n � N implies

sup fd 0.fn.p/; f .p// W p 2 Ag < ":

(ii)
lim
n!1

sup fd 0.fn.p/; f .p// W p 2 Ag D 0:

Example 3.4.2 Define

fn W Œ0; 1�! Œ0; 1� W x 7! xn
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on A D Œ0; a�with a < 1. Then, ffng converges uniformly.99: Note that ffng converges on the
interval Œ0; 1/, but not uniformly.

Example 3.4.3 Now, let’s take a look at

fn W R! R W x 7!
nx

1C n2x2
����!
n!1

0:

For each n, we end up with a pointwise limit forcing this to 0. Now, for
x ¤ 0, we get ˇ̌̌̌

nx

1C n2x2

ˇ̌̌̌
�

ˇ̌̌ nx
n2x2

ˇ̌̌
D

1

njxj
����!
n!1

0:

However, note that

fn

�
1

n

�
D
1

2
6! 0;

so convergence of ffng is not uniform.

Definition 3.4.4 (Uniformly Cauchy) A sequence of functions

ffn W E ! E 0 g

is uniformly Cauchy on A � E if for all " > 0, there exists an N 2 ZC such
that n;m � N implies

sup fd 0.fn.x/; fm.x// W x 2 Ag < ":

Now, we can simplify this concept by introducing the concept of a metric
on function spaces, but we have some legwork to finish first.

Theorem 3.4.1 Given a sequence of functions

ffn W E ! E 0gn2ZC

with E 0 complete. Then, ffng converges uniformly on A if and only if
ffngn2ZC is uniformly Cauchy.1010: We use that for all x 2 E 0, the map

h W E 0! Œ0;1/ W p 7! d 0.x;p/

is continuous. Theorem 3.4.2 The uniform limit of continuous functions is continuous.

Definition 3.4.5 (Bounded Functions) Let .E; d/ and .E 0; d 0/ be two
metric spaces. A function f W E ! E 0 is bounded if f .E/ � E 0 is bounded.
We construct the space

C.E;E 0/´ ff W E ! E 0 W f is bounded and continuousg:

Definition 3.4.6 (Metric on Continuous Functions) We define the metric
on C.E;E 0/ to be

D W C.E;E 0/ � C.E;E 0/! Œ0;1/

prescribed by

D W .f; g/ 7! supfd 0.f .x/; g.x// W x 2 Eg:
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Now, taking the metric above, we can write that fn ! f in .C.E;E 0/;D/
if and only if fn ! f uniformly. Similarly, ffngn2ZC is Cauchy in
.C.E;E 0/;D/ if and only if ffngn2ZC is uniformly Cauchy.

Theorem 3.4.3 If E 0 is a complete metric space, then .C.E;E 0/;D/ is
complete.

Note that if E ´ ZC � R, then

C.E;E 0/´ bounded sequences in E 0:

3.5 Connectedness

We now take a brief moment to return to our discussion of topology.

Definition 3.5.1 (Connected) A subset Y of a topological space X is
connected if for all open U; V � X with Y � U [ V and

.Y \ U/ \ .Y \ V / D ¿;

either Y � V or Y � U .11 11: In particular, a spaceX is connected
ifX D U [V withU \V D ¿ implies
X D U orX D V .

Example 3.5.1 For a non-example, consider

Y ´ Œ0; 1=2/ [ .1=2; 1� � R;

where R takes the standard topology. Now, Y is not connected, as if
we take U ´ .�1; 1=2/, V ´ .1=2;1/, and .U \ V / D ¿, then

Y D .Y \ U/ [ .Y \ V /:

Definition 3.5.2 (Subspace Topology) Suppose .X;T/ is a topological
space with a subset Y � X . A subspace topology TY on Y is

TY ´ fU \ Y W U 2 Tg:

Remark 3.5.1 TY is a topology.

Remark 3.5.2 If d is a metric on X and dY D d jY�Y , then

TdY D .Td /Y :

Theorem 3.5.1 Œ0; 1�, with the standard real topology, is connected.

Theorem 3.5.2 Suppose f W X ! Y is continuous, where the domain X is
connected. Then, f .X/ � Y is connected.12 12: In particular, any image of Œ0; 1� is

connected.

Corollary 3.5.3 For all a; b 2 R with a < b, the interval Œa; b� is connected.
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Definition 3.5.3 (Path-Connected) A topological spaceX is path-connected
if for all p; q 2 X , there exists a continuous function1313: Note that 
 is called the “path”

between p and q inX .

 W Œ0; 1�! X W 0! p and 1 7! q:

Example 3.5.2 Let X ´ Rn. This is clearly path-connected, as for all
p; q 2 Rn, we have that


.t/ D tp C .1 � q/;

where t 2 Œ0; 1�, is a path from p to q.

Definition 3.5.4 (Convex) A subset X of Rn is convex if for all p; q 2 X ,

tp C .1 � t /q 2 X

for all t 2 Œ0; 1�.

Theorem 3.5.4 Path-connected implies connected.

Lemma 3.5.5 For Y � R, Y is connected if and only if Y is convex.1414: That is, for all y1; y2 2 Y , the
segment Œy1; y2� � Y , so Y � R
connected implies Y path-connected.

Theorem 3.5.6 (Intermediate Value Theorem) Suppose X is connected
and f W X ! R is continuous. Then, for all y1; y2 2 f .X/ such that
y1 < y2, the segment Œy1; y2� � f .X/.

Example 3.5.3 Suppose f W Œ0; 1� ! Œ0; 1� is continuous. Then, f
has a fixed point. That is, there exists x 2 Œ0; 1� such that f .x/ D x.
This is a standard olympiad-style problem, but given our tools, we
get this essentially for free. Consider g.x/´ f .x/ � x. Then, g.0/ D
f .0/ � 0 � 0 and g.1/ D f .1/ � 1 � 0, so IVT gives that there exists
an x such that g.x/ D 0.

Example 3.5.4 We want a set A � R2 which is connected and not
path-connected. Let

B ´

��
x; sin

1

x

�
W x > 0

�
:

Note that
f W .0;1/! B W x !

�
x; sin

1

x

�
is continuous and surjective, having that .0;1/ connected implies B
is connected. If

x´
1

�=2C �k
;

then
sin

1

x
D sin

��
2
C �k

�
D .�1/k :

Now, take
A´ .f0g � Œ�1; 1�/ [ B:
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4.1 Differentiability

Definition 4.1.1 (Differentiable) Let U � R be open. Then, a map f W
U ! R is differentiable at a 2 U if

lim
x!a

f .x/ � f .a/

x � a

exists.1 1: If f is differentiable at a, we write
f 0.a/ or

df
dx
.a/

for
lim
x!a

f .x/� f .a/

x � a
:

Example 4.1.1 With U ´ R and f .x/´ x, take a 2 U .

lim
x!a

f .x/ � f .a/

x � a
D lim
x!a

x � a

x � a
D 1;

so
dx
dx
.a/ D 1:

Example 4.1.2 Let f .x/ D c, a constant. Then,

df
dx

.a/ D lim
x!a

c � c

x � a
D lim
x!a

0

x � a
D 0:

Example 4.1.3 Let
U ´ fx 2 R W x ¤ 0g

and f .x/´ 1=x. Then, for all a 2 U ,

lim
x!a

1=x � 1=a

x � a
D lim
x!a

a � x

ax.x � a/
D lim
x!a

�1

xa
D �

1

a2
:

Thus,
d

dx

�
1

x

�
D �

1

x2
:

Definition 4.1.2 (Equivalent Differentiability) We can rewrite our
definition at a 2 U :

(i)
lim
h!0

f .aC h/ � f .a/

h
exists.

(ii) There exists an f 0.a/ 2 R such that

lim
x!a

1

x � a
.f .x/ � f .a/ � f 0.a/.x � a// D 0:

Lemma 4.1.1 If f W U ! R is differentiable at a, then f is continuous at a.
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Lemma 4.1.2 (Chain Rule) Suppose f is differentiable at a and g is
differentiable at f .a/, then g ı f is differentiable at a, and

.g ı f /0.a/ D g0.f .a//f 0.a/:

Corollary 4.1.3 Suppose f is differentiable at a and f 0.a/ ¤ 0. Then.

k.x/´
1

f .x/

is differentiable at a and

k0.a/ D �
1

f .a/2
f 0.a/

Theorem 4.1.4 (Derivative Operations) Suppose f; g are differentiable at
a, and let c 2 R be a constant. Then, cf , f C g, and f � g are differentiable
at a. If g.a/ ¤ 0, f=g is differentiable at a.22: Rosenlicht proves this theorem

differently, not using the Chain Rule.
Lerman decided the way we have written
would be far quicker.

(i) .cf /0.a/ D cf 0.a/.
(ii) .f C g/0.a/ D f 0.a/C g0.a/.
(iii) .f � g/0.a/ D f 0.a/g.a/C f .a/g0.a/.
(iv) �

f

g

�0
.a/ D

f 0.a/g.a/ � f .a/g0.a/

g.a/2
:

Theorem 4.1.5 (Derivative at Extrema) Suppose f W U ! R is
differentiable at a and a is an extremal point for f .33: That is, f achieves a local maximum

or a local minimum at a.
Then, f 0.a/ D 0.

Example 4.1.4 Let f .x/´ x.1 � x/ D x � x2. Let us try to find

supff .x/ W x 2 Œ0; 1�g and infff .x/ W x 2 Œ0; 1�g:

We know these exist, since Œ0; 1� is compact and f is continuous. Now,

f .0/ D 0 D f .1/ D infff .x/ W x 2 Œ0; 1�g;

as f .x/ � 0 on Œ0; 1�. For x 2 .0; 1/, f 0.x/ D 1 � 2x, and f 0.x/ D 0 if
and only if x D 1=2, where

f

�
1

2

�
D
1

2
�
1

4
D
1

4
;

so
supff .x/ W x 2 Œ0; 1�g D

1

4
:

Remark 4.1.1 Note that x0 D 1, and

.xn/0 D nxn�1:

Additionally,

.x1=n/0 D
1

n
x1=n�1:
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Theorem 4.1.6 (Rolle’s Theorem) Let f W Œa; b�! R be continuous and
differentiable on .a; b/ with f .a/ D f .b/ Then, there exists a c 2 .a; b/
such that f 0.c/ D 0.

Theorem 4.1.7 (Mean Value Theorem) Take f W Œa; b� ! R to be
continuous and differentiable on .a; b/. Then, there exists c 2 .a; b/ such
that

f 0.c/ D
f .b/ � f .a/

b � a
:

Corollary 4.1.8 Suppose f W .a; b/! R is differentiable, and f 0.x/ D 0
for all x 2 .a; b/. Then, f is constant.

Corollary 4.1.9 If we have that f; g W .a; b/ ! R with both differentiable
and f 0.x/ D g0.x/. Then, for all x 2 .a; b/, f .x/ � g.x/ is constant.

Example 4.1.5 Suppose f W R ! R, and suppose there exists ˛ > 1

such that
jf .x/ � f .y/j < jx � yj˛;

for al x; y 2 R. Then, f is constant.4 4: We first prove this function is
differentiable via the defintion, and then
use the corollary to show f is constant.

Lemma 4.1.10 Suppose f W .a; b/ ! R is differentiable and f 0.x/ is
bounded on .a; b/. Then, f is uniformly continuous.

Theorem 4.1.11 Suppose f W .a; b/! R is differentiable on .a; b/. Then,

(i) if f 0.x/ > 0 for all x, then f is strictly increasing.5 5: Note that the converse is trivially false.
For instance, if f .x/´ x3, f is strictly
increasing but f 0.0/ D 0.

(ii) if f 0.x/ < 0 for all x, then f is strictly decreasing.
(iii) f 0.x/ � 0 for all x if and only if f is non-decreasing.
(iv) f 0.x/ � 0 for all x if and only if f is non-increasing.

Theorem 4.1.12 (Inverse Function Theorem) Supposef W .a; b/! .c; d/

is a continuous bĳection. Fix x0 2 .a; b/, where f is differentiable at x0 and
f 0.x0/ ¤ 0. Then,

f �1 W .c; d/! .a; b/

is differentiable at y0 D f .x0/ and6 6: Note that

x D f �1.f .x//;

so if we know that f is differentiable at
y0 D f .x0/, so Chain Rule gives the
formula we have.

.f �1/0.y0/f
0.x0/ D 1:

The harder, more interesting part of this proof, comes from the topological
concerns of the continuity of the inverse of a continuous bĳection. Clearly,
this inverse is continuous if and only if f is a homeomorphism. We will
instead use a lemma for the metric space setting.7 7: Note that we could be more general,

but the metrics are nice for the proof.

Lemma 4.1.13 Let .S; d/ and .S 0; d 0/ be two metric spaces with S compact
and f W S ! S 0 continuous. Then,

g´ f �1 W S 0 ! S

is continuous.
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Theorem 4.1.14 (Inverse Function Theorem) Let

f W .a; b/! .c; d/

be a a continuous bĳection,f be differentiable at x0 2 .a; b/, andf 0.x0/ ¤ 0.
Then,

g´ f �1 W .c; d/! .a; b/

is differentiable at y0µ f .x0/ and88: That is,

.f �1/0..f .x0/// D
1

f 0.x0/
: g0.y0/f

0.x0/ D 1:

Example 4.1.6 Let f .x/´ sin x and x 2 .��=2; �=2/, then

g.y/ D f �1.y/ D arcsin.y/:

We get that

g0.sin.x// D
1

f 0.x/
D

1

cos.arcsin x/
D

1p
1 � y2

:

Definition 4.1.3 (k-Times Differentiable) A function

f W .a; b/! R

is twice differentiable iff is differentiable on .a; b/ andf 0.x/ is differentiable.99: We write

f 00.x/ D .f 0.x//0: Similarly, f is k-times differentiable if f is .k � 1/ differentiable and f .k�1/
is differentiable.

Definition 4.1.4 (Infinitely Differentiable) We say f , as above, is infinitely
differentiable if f is differentiable for all k.

4.2 Function Spaces and Series

Definition 4.2.1 (Function Spaces) We define the function space

Ck.a; b/´
˚
f W .a; b/! R W f k-differentiable, f .k/ continuous

	
We also also have the space1010: Note that an easy object in this space

are the polynomials.
C1.a; b/´ ff W .a; b/! R W f is differentiable for all k g;

which equals
1[
kD0

Ck.a; b/;

where C0.a; b/ is the space of continuous functions.

Example 4.2.1 Define

f .x/´

(
e�1=x ; x > 0

0; x � 0:
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Then,
lim
x#0

e�1=x D lim
x#0

1

e1=x
D lim
u!1

1

eu
D 0;

so f is continuous at 0. Additionally,

lim
x#0

f 0.x/ D lim
x#0

e�1=x
1

x2
D lim
u!1

e�uu2 D 0;

where the final equality comes from L’Hopital’s rule, which we have
not proven yet. By induction, f 2 C1, and f .k/.0/ D 0 for all n.

Theorem 4.2.1 (Taylor’s Theorem of Finite Taylor Series) Let U � R be
an open interval, and f W U ! R is n-times differentiable. Fix a 2 U . For
all x 2 U , there exists a c between a and x such that

f .x/ D

n�1X
kD0

f .k/.a/

kŠ
.x � a/k C

f .n/.c/

nŠ
.x � a/n

›
error term

:

Example 4.2.2 If we have

f .x/´

(
e�1=x ; x > 0

0; x � 0;

with a´ 0 and U ´ R. Taylor’s Theorem then states that

f .x/ D

k�1X
kD0

0xk C
f .n/.c/

nŠ
xn

for some c.11 11: So, here the theorem is not very
useful.

Example 4.2.3 Let f .x/ ´ sin x, in which case f 0.x/ D cos x,
f 00.x/ D � sin x, f .3/.x/ D � cos x, and f .4/.x/ D sin x, so the
period is four. If we take a´ 0, then12 12: We’d like to note that it took Lerman

about five minutes to figure out how to
get the enumeration correct, so if your
indexing work is shoddy, you may still
have a chance at a mathematics career.

sin.n/.a/ D sin.n/.0/ D

(
0; 2 j n

.�1/.n�1/=2; 2 − n;

so

sin.x/ D
n�1X
kD0

.�1/k

.2k C 1/Š
x2kC1:

Corollary 4.2.2 Suppose f 2 C1.�a; a/, and there existsM;C > 0 such
that for all k 2 ZC, for all x 2 .�a; a/,ˇ̌̌

f .k/.x/
ˇ̌̌
�MC k :
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Then, for all x 2 .�a; a/,

f .x/ D

1X
kD0

f .n/.0/

kŠ
xk ´ lim

N!1

NX
kD0

f .k/.0/

kŠ
xk :

Thus, in the case of f .x/´ sin x,ˇ̌̌
f .n/.x/

ˇ̌̌
� 1;

so we can takeM ´ 1 and C ´ 1, yielding

sin.x/ D
1X
nD0

.�1/n

.2nC 1/Š
x2nC1:

Remark 4.2.1 (Mean Value Theorem) If n D 1, the theorem says that

f .x/ D
f .0/.a/

0Š
.x � a/0 C

f 0.c/

1Š
.x � a/Š:

That is, there exists a c such that

f 0.c/ D
f .x/ � f .a/

x � a
;

which is precisely the Mean Value Theorem.

Example 4.2.4 Suppose f .x/´ cos x. Since jf .n/.x/j � 1. Then, the
corollary applies, so

cos x D
1X
kD0

cos.k/.0/
kŠ

xk D

1X
nD0

.�1/nx2n

.2n/Š
;

for all x.

Definition 4.2.2 (Real Analytic) A function f is real analytic on an open
set U � R if f is C1 on U and for all x 2 U there exists ı > 0 such that

f .x/ D

1X
kD0

f .k/.a/

kŠ
.x � a/k

for all x 2 .a � ı; aC ı/.1313: Thus, sinx, cosx, ex , and all
polynomials are real analytic. Yet,

f .x/´

�
e�1=x ; x ¤ 0

0; x D 0

is not.

Example 4.2.5 The function f .x/´ 1=.1C x/ is real analytic on the
open set R n f�1g.
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5.1 Darboux Integration

First, we have a remark on notation. We take f W Œa; b�! R to be bounded,
S � Œa; b� to be a nonempty subset S ¤ ¿, and we define

M.f; S/´ supff .x/ W x 2 Sg

and
m.f; S/´ infff .x/ W x 2 Sg:

Then, the big idea is that for nonnegative f W Œa; b�! R,l b

a

f D the area under the graph of f:

Remark 5.1.1 If S is the interval of length `, and we have f jS � 0,
then1 1: We assume from here on that

f W Œa; b�! Ru

is bounded.

we expect

m.f; S/ � ` �

l
S

f �M.f; S/ � `:

Definition 5.1.1 (Partition) A partition P of an interval Œa; b� is a finite,
strictly increasing sequence

P ´ fa D t0 < t1 < � � � < tn�1 < tn D bg:

Definition 5.1.2 (Upper Darboux Sum) We define the upper Darboux
sum U.f; P / of f W Œa; b�! R, with respect to the partition above, as

U.f; P /´

nX
kD1

M.f; Œtk�1; tk �/.tk � tk�1/:

Definition 5.1.3 (Lower Darboux Sum) The lower Darboux sum, with the
same parameters as above, is defined as2 2: Realistically, theseM andmnotations

are rather annoying, so we will usually
writeX

inf
�
f
ˇ̌
Œtk�1;tk �

�
.tk � tk�1/

when possible, and the same for
U.f;P /.

L.f; P / D

nX
kD1

m.f; Œtk�1; tk �/.tk � tk�1/:

Remark 5.1.2 Note that for any partition P ,

U.f; P / �

nX
kD1

M.f; Œa; b�/.tk � tk�1/ DM.f; Œa; b�/.b � a/:
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Similarly, for the lower sums,

L.f; P / � m.f; Œa; b�/.b � a/:

Thus, for any partition P , we have

.b � a/m.f; Œa; b�/ � L.f; P / � U.f; P / �M.f; Œa; b�/.b � a/:

Definition 5.1.4 (Darboux Integrable) A bounded functionf W Œa; b�! R
is Darboux integrable if U.f / D L.f /.33: Now, we can define

U.f /´ inf
P
.U.f;P //

and

L.f /´ sup
P

.L.f;P //:

In this case, we definel b

a

f .x/dx D

l
Œa;b�

f ´ U.f / D L.f /:

Example 5.1.1 (Dirichlet Function) Define44: This is the standard pathological
example to give analysis students that
certain functions, like Dirichlet, require
more involved treatments of integration.
In this case, we need Lebesgue Integration,
usually covered in an introductory
graduate course on the subject.

f W Œ0; 1�! R W x 7!

(
1; x irrational
0; x rational:

For any partition
P ´ ft1 < � � � < tng;

U.f; P / D

nX
kD1

M.f; Œtk�1; tk �/.tk ; tk�1/ D b � a

L.f; P / D

nX
kD1

m.f; Œtkk � 1; tk �/.tk � tk�1/ D 0:

Thus, f is not Darboux integrable.

Lemma 5.1.1 With f W Œa; b�! R bounded, P;Q, two partitions of Œa; b�,
and P � Q, then

L.f; P / � L.f;Q/ � U.f;Q/ � U.f; P /:

Corollary 5.1.2 Let f W Œa; b�! R and let P;Q be two partitions. Then,

L.f; P / � U.f;Q/:

Theorem 5.1.3 With f W Œa; b�! R bounded,55: Note that at this point, we really have
no way to deal with anything besides
bounded functions.

we have

L.f / � U.f /:

Theorem 5.1.4 (Cauchy Criterion for Integrability) Take a bounded
function f W Œa; b�! R. Then, f is integrable if and only if for all " > 0,
there exists a partition P of Œa; b� such that

0 � U.f; P / � L.f; P / � ":

We now wish to work towards a definition of Riemann integrability,
which was, in fact, the first rigorous definition of an integral.
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5.2 Riemann Integrability

Definition 5.2.1 (Mesh) The mesh6 6: Note that the book uses rather
outdated terminology in these
definitions

of a partition P ´ ft0 < t1 < � � � <
tng is

mesh.P /´ max
i
.ti � ti�1/:

Definition 5.2.2 (Riemann Sum) Let f W Œa; b� ! R be a bounded
function and let P ´ fa D t0 < � � � < tn D bg be a partition. Then, choose
xk 2 Œtk�1; tk � for all k. The corresponding Riemann sum is

S ´

nX
kD1

f .xk/.tk � tk�1/:

Definition 5.2.3 (Riemann Integrable) A bounded function f W Œa; b�!
R is Riemann integrable if there exists R 2 R such that for all " > 0, there
exists ı > 0 with the property that for all partitions P with mesh.P / < ı,
for all Riemann sums of f associated to P ,7 7: Note thatR is the value of the integral.

jS �Rj < ":

As you can see, this is a terrible definition to work with.8 As such, we 8: With all due respect to Riemann, I
suppose.would like to just work with Darboux integrals.

Theorem 5.2.1 (Integrability Equivalence) A bounded function f W

Œa; b�! R is Riemann integrable if and only if f is Darboux integrable.9 9: The values of the integrals agree.

5.3 Properties of Integrals

Theorem 5.3.1 Every monotonic function f W Œa; b�! R is integrable.10 10: Otherwise we would live in a very
sad mathematical world.

Note that for all x 2 Œa; b�, f .a/ � f .x/ � f .b/, so f is bounded.

Theorem 5.3.2 Every continuous function f W Œa; b�! R is integrable.

Once again we can leave out the word bounded, since continuous functions
maps preserve compactness.11 11: The proof of this property begins

with noting that compactness of Œa; b�
implies f is uniformly continuous. This
is not trivial to prove, needing some open
covers, but clearly these notes have given
no attnetion to including proofs.

Theorem 5.3.3 Suppose f; g W Œa; b�! R are bounded and integrable.

(i) For all c 2 R, cf is integrable andl
Œa;b�

cf D c

l
Œa;b�

f:
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(ii) f C g is integrable andl
Œa;b�

.f C g/ D

l
Œa;b�

f C

l
Œa;b�

g:

Remark 5.3.1 This implies that

(i) integrable functions form a vector space.
(ii) The map l

Œa;b�

W integrable functions ! R

is linear.

Theorem 5.3.4 Suppose a < b < c, f W Œa; c� ! R is bounded, and
f jŒa;b�; f jŒb;c� is integrable. Then, f is integrable andl

Œa;c�

f D

l
Œa;b�

f C

l
Œb;c�

f:

Remark 5.3.2 At this point, given integrable f W Œa; b�! R, we can
define l a

b

f .x/dx´ �

l
Œa;b�

f:

Then, l b

a

f .x/dx C

l c

b

f .x/dx D

l c

a

f .x/dx ;

even if b is not between a and c.1212: We take this provided that f is
integrable on the three relavent intervals.

However, it is important to note thatl b

a

f .x/dx

is not an integral of a function. That is, it is an integral of the 1-form
f .x/dx, so it is an oriented integral.

Theorem 5.3.5 If f; g W Œa; b�! R are integrable and f .x/ � g.x/ for all
x, then l

Œa;b�

f �

l
Œa;b�

g:



5.4 A Few Big Theorems 41

Corollary 5.3.6 If f W Œa; b�! R is integrable, then so is jf j , and13 13: Note that this does not work if we
use 1-forms, as our orientability messes
with the sign.ˇ̌̌̌

ˇ̌̌̌ l
Œa;b�

f .x/

ˇ̌̌̌
ˇ̌̌̌ � l

Œa;b�

jf .x/j:

Corollary 5.3.7

(i) For all integrable functions q W Œa; b�! R, q2 is integrable
(ii) If f; g W Œa; b�! R are integrable then so is f � g.

5.4 A Few Big Theorems

Theorem 5.4.1 (Composition Integrability) Let f W Œa; b� ! Œc; d � be
integrable and g W Œc; d �! R be continuous. Then, h´ g ıf W Œa; b�! R
is integrable.

Œa; b� Œc; d � R

 

!

h integrable

 

!
f integrable

 

!
g continuous

Figure 5.1: Diagram of Theorem 5.3.9.

Theorem 5.4.2 (Fundamental Theorem of Calculus I) Suppose we have
continuous g W Œa; b� ! R, differentiable gj.a;b/, and g0 is bounded and
integrable and Œa; b�. Then,14 14: “If you head over to Loomis,

they will state that every function is
integrable. I highly recommend not
arguing with them, as they will likely
tell you to go to Altgeld. It is a weird
North American phenomenon."

– Eugene Lerman

l
Œa;b�

d
dx
g.x/ D

bl
a

g0.x/dx D g.b/ � g.a/:

Corollary 5.4.3 (Integration by Parts) Suppose f; g W Œa; b� ! R is
continuous and differentiable on .a; b/, and that f 0; g0 are integrable on
Œa; b�. Then,l

Œa;b�

fg0 D .f .b/g.b/ � f .a/g.a// �

l
Œa;b�

f 0g:

Theorem 5.4.4 (Fundamental Theorem of Calculus II) Suppose we have
integrable f W Œa; b�! R. Then,

F.x/ D

l x

a

f .u/du

is uniformly continuous. Moreover, if f is continuous at x0 2 .a; b/, then F
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is differentiable at x0, and1515: The usual phrasing from calculus
books will assume that f is continuous
everywhere, thereforeF is differentiable
everywhwere and has value f .x/. This
is less precise, so in analysis books it will
be stated as it is here.

d
dx
F.x0/ D F

0.x0/ D f .x0/:

Note that

f W R! R W x 7!

(
1=q; if x D p=q and gcd.p; q/ D 1
0; if x irrational

is integrable, and

g W R! R W x 7!

(
1; x > 0

0; x � 0

is integrable, yet

g ı f W R! R W x 7!

(
1; x 2 Q

0; x 2 R nQ;

which is not integrable.16 Thus, we cannot really do better than our16: Recall that this is the Dirichlet
indicator function. composition theorem requiring continuity of g.x/.

Theorem 5.4.5 (Change of Variables) Let I; J be open intervals,u W I ! J

be differentiable, and u0 is continuous.1717: That is, u 2 C1.I /. Suppose f W J ! R is continuous.
Then, for all a; b 2 I ,l b

a

.f ı u/.x/u0.x/dx D

l u.b/

u.a/

f .u/du :

5.5 Natural Logarithm and exp.x/

Let us take a look at the function

f W .0;1/! R W x 7!
1

x
:

Since f .x/ is continuous and differentiable, we can define

F.x/´

l x

1

1

u
du :

Moreover, F 0.x/ D 1=x > 0, so

F W .0;1/! R

is strictly increasing. Then, we can define1818: This is a properly rigorous defintion
of the natural logarithm. As you may have
already noticed, many mathematical
texts will simply write

log.x/ D loge.x/ D ln.x/;

and this is a matter of preference. (Who
cares about base-10?)

ln.x/´ F.x/ D

l x

1

du
u
:

We will soon see that
ln W .0;1/! R
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is a bĳection. We define

exp.y/´ F �1.y/;

and by the Inverse Function Theorem we get

.F �1/0.y/ D
d

dy

ˇ̌̌̌
y

.F �1/ D
1

F 0.F �1.y//
D

1

1= exp.y/
D exp.y/:

Additionally, note that

ln.1/ D

l 1

1

du
u
D 0;

so exp.0/ D 1.19 19: Once we get to power series, we will
define sin.x/ and cos.x/.

Lemma 5.5.1

(i) ln.xy/ D ln.x/C ln.y/.
(ii) ln.1=y/ D � ln.y/.
(iii) ln.xn/ D n ln.x/ for all n 2 Z.

Since ln.2/ > ln.1/ D 0,

ln.2n/ D n ln.2/ ����!
n!1

1:

The Intermediate Value Theorem gives that ln W .0;1/! R is onto.20 20: As such, we can have the domain of
exp.x/ to be all of R.

Remark 5.5.1 If we take a look at21 21: This is similar to the proofs you
may have seen in linear algebra that the
inverse of a linear map is a linear map.ln

�
exp.x/ exp.y/

�
D ln

�
exp.x/

�
C ln

�
exp.y/

�
D x C y;

so
exp.x/ exp.y/ D exp.x C y/:

Additionally, we get

exp.�x/ exp.x/ D exp.0/ D 1;

meaning

exp.�x/ D
1

exp.x/
:

Definition 5.5.1 For x > 0, define

x˛ W .0;1/! R W x 7! exp.˛ ln.x//:

As a sanity check, for n 2 ZC we get

xn D exp.n ln.x// D exp.ln.x// � � � exp.ln.x//Ÿ
n times

D xn:

We could have also used our previous result to give that

exp.ln.xn// D xn:
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Theorem 5.5.2
2222: This might be the most dull theorem

we do in this course. In fairness, it gives
us a lot of freedom to work with the
operations we like.

(i) x˛xˇ D x˛Cˇ .
(ii) x˛=xˇ D x˛�ˇ .
(iii) .x˛/ˇ D x˛ˇ .
(iv) .xy/˛ D x˛y˛ .
(v) d =dx .x˛/ D ˛x˛�1.
(vi) d =d˛ .x˛/ D ln.x/x˛ .

Definition 5.5.2 (ex) Define e´ exp.1/. Then,2323: We have that ln.e/ D 1.

e˛ D exp.˛ ln.e// D exp.˛/;

so
exp.x/ D ex :

Lemma 5.5.3 Another common definition2424: However, this is not how we defined
it, so we can prove it from our version.

of e is

lim
n!1

�
1C

1

n

�
D e:
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6.1 Operations on Sequences of Functions

We will begin with a few examples of why interchanging limits, derivatives,
and integrals is a delicate subject.

Example 6.1.1 Define the sequence of functions

fn W Œ0; 2�! R W x 7!

(
n; 1=n � x � 2=n

0; otherwise:

Then, l 2

0

fn D 1;

but for all x 2 Œ0; 2�,
lim
n!1

fn.x/ D 0;

meaning

lim

� l
Œ0;2�

fn

�

¤

l
Œ0;2�

limfn:

Now, we will do some construction so we can find a theorem for when
we have nice behavior in such sequences.1 1: Yuck; construction is the bane of the

author’s existence.

Example 6.1.2 There exists a sequence of integrable functions

ffn W Œ0; 1�! Rgn2ZC

such that
f .x/ D lim

n!1
fn.x/

is not integrable. We construct the countable Q \ Œ0; 1�, so there exists
a bĳection

ZC ! Q \ Œ0; 1� W n 7! rn;

meaning we can define

fn W Œ0; 1�! R W x 7!

(
1; if x D r1; : : : ; rn
0; otherwise:

Then, each fn is integrable with value 0, and2 2: We denote Dirichlet’s indicator
function by 1Q.

lim
n!1

fn.x/ D 1Q:
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Theorem 6.1.1 Suppose ffn W Œa; b�! Rgn2ZC is a sequence of integrable
functions and suppose fn ! f uniformly. Then, f is integrable andl

Œa;b�

f D

l
Œa;b�

lim
n!1

f D lim
n!1

l
Œa;b�

fn:

Recall that fn ! f uniformly on Œa; b� if for all " > 0 there exists an
N 2 ZC such that

sup
x2Œa;b�

jfn.x/ � f .x/j < "

for all n � N .

Theorem 6.1.2 Suppose ffn W .a; b/ ! Rgn2ZC is a sequence of C1

functions, and that ff 0ng converge uniformly to some function g. Assume
further that there exists a c 2 .a; b/ such that ffn.c/g converges. Then, ffng
converges pointwise to a differentiable function f , and f 0 D g. 33: That is to say,

lim.f 0n/ D .limfn/
0:

6.2 Feynman’s Trick

Theorem 6.2.1 (Feynman’s Trick) Suppose a < b, c < d , and f is
continuous. Recall

S D Œa; b� � .c; d/ D
˚
.x; y/ 2 R2 W a � x � b; c < y < d

	
:

Assume further that for all x, y 7! f .x; y/ is differentiable and that

.x; y/ 7!
@f

@y

is continuous. Then,44: Note that Feynman’s Trick is often
called by mathematicians as Leibniz’s
Integral Rule, as he did discover it first.
However, Feynman used this trick with
parametrization to evaluate n � 1 loop
integrals in Feynman diagrams, which
is pretty neat.
The theorem is also called
“Differentiating Under the Integral Sign”
but that is simply boring.

F W .c; d/! R W y 7!

l b

a

f .x; y/dx

is differentiable with derivative

d
dy
F.y/ D

l b

a

@

@y
f .x; y/dx :

Here, we present an alternative way of wording Feynman’s Trick, in case
the rewording makes it easier to digest.

Theorem 6.2.2 (Leibniz’s Rule) Let R´ Œa; b� � Œc; d �, U be an open set
in R2 with R � U , and f W U ! R be continuous. Assume further that

@f

@x
W U ! R
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exists and is continuous. Then,

F.x/´

l d

c

f .x; y/dy

is differentiable on .a; b/ and

F 0.x/ D
d

dx

l d

c

f .x; y/dy D

l d

c

@

@x
f .x; y/dy :

It is important to check that the hypotheses do, in fact, hold, before
computing your integral using Feynman’s Trick. Also, many of the cases
where this is useful happens when considering improper integrals or
complex-valued functions, and the rule often requires some sort of
Lebesgue consideration. We will give an example using the rule in the
complex-valued case, despite the fact that we only proved it for R.

Example 6.2.1 Computel �

0

ecosx cos.sin x/dx :

Solution. We will use that for any ´ 2 C,

e2 D

1X
nD0

´n

nŠ

exists and
d
d´
e´ D e´:

Consequently, for any differentiable function f W .a; b/! C,5 5: Technically, we could simply work via
real numbers and compute directly, but
this is so much easier and it works.d

dx
.ef .x// D e

f .x/f 0.x/:

Let

I.b/´

l �

0

eb cosx cos.sin x/›
even

dx

D
1

2

l �

��

eb cosx cos.b sin x/dx

D
1

2

l 2�

0

eb cosx cos.b sin x/dx :

Now,
ebe

ix

D ebi cisx
D eb cosxeib sinx ;

which we can rewrite as

eb cosx.cos.b sin x/C i sin.b sin x//;

yielding
eb cosx cos.b sin x/ D Re

�
ebe

ix

:
�
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Finally,

I.b/ D Re

 
1

2

l 2�

0

ebe
ix dx ;

!
and differentiating gives us

d
db

 
1

2

l 2�

0

ebe
ix dx

!
D
1

2

l 2�

0

ebe
ix

eix dx ;

meaning

dI
db

Re

�
1

2

l 2�

0

ebe
ix

eix dx•
uDeix

�

D Re

�
1

2i

l u.2�/

u.0/

ebu du

�

D Re
�
1

2ib
.eb.u.2�// � ebu.0//

�
D 0:

Therefore,

I.1/ D I.0/ D

l �

0

e0 cos.0/dx D �:

6.3 Aside on Improper Integrals

Suppose f W R! R is integrable on every closed interval Œa; b�.

Definition 6.3.1 (Improper Integral I) In this case, we can definel 1

a

f .x/dx D lim
b!1

l b

a

f .x/dx :

Definition 6.3.2 (Improper Integral II) Similarly,l b

�1

f .x/dx D lim
a!�1

l b

a

f .x/dx :

Note that l 1

�1

f .x/dx D lim
a!�1

lim
b!1

l b

a

f .x/dx :

Remark 6.3.1 Note further that

lim
a!1

l a

�a

sin x dx D 0;
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but l 1

�1

sin x dx

does not exist.6 6: This is contrary to what quantum
mechancis courses will have you believe.

If f W R! R is integrable on Œa; b� and f .x/ D 0 for x … Œa; b�. Then,l 1

�1

f .x/dx

exists and equals l
Œa;b�

f:

6.4 Series

For notation, recall that if fakg1kD0 is a sequence of numbers,7 then we 7: It does not matter whether we use R
or C here.define

1X
nD0

an D lim
N!1

NX
nD0

an:

If the limit exists we say that “the series
P
an converges.”

Remark 6.4.1 A series does not need to start with 0. If fang1k0 is a
sequence with k0 2 Z, then

1X
kDk0

ak ´ lim
N!1

NX
kDk0

ak :

Example 6.4.1 (Geometric Series) We have that

1X
kD0

qk D 1C q1 C q3 C � � � :

We observe that we can write for q ¤ 1 that

1C q C � � � C qn D
1 � qnC1

1 � q
;

so
1X
kD0

qk D lim
N!1

1 � qNC1

1 � q
D

(
1=.1 � q/; jqj < 1

does not exist, otherwise:

Definition 6.4.1 (Absolutely Convergent) A series
P
an converges

absolutely if
1X
nD0

janj converges.
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Theorem 6.4.1 (Cauchy Criterion for Series) We have that

1X
nD0

an converges

if and only if

Sn D

nX
kD0

ak is Cauchy;

which is true if and only if for all " > 0, there exists an N 2 ZC such that
n > m � 1 > N implies ˇ̌̌̌

ˇ nX
kDm

ak

ˇ̌̌̌
ˇ < ":

Corollary 6.4.2 If
P
an converges, then an ! 0.8

8: As you may recall from calculus, the
converse of this statement is not even
close to true. If an ! 0, then you still
have very little information about

P
an,

besides that it may converge.

Lemma 6.4.3 If
P
an converges absolutely, then

P
an converges.99: This is just a sanity check via the

triangle inequality.

Note that a good amount of these theorems are “agnostic” of whether we
are in R or C, since all we need is the triangle inequality and completeness
to make them work.

Definition 6.4.2 (Conditionally Convergent) A series
P
an converges

conditionally if it converges but
P
janj does not converge.

Definition 6.4.3 (Rearrangement) A series
P
bn is a rearrangement of a

series
P
an if there exists a bĳection

f W ZC ! ZC W bn 7! af .n/:

Theorem 6.4.4 Suppose
P
an converges absolutely. Then, for any bĳection

f W ZC ! ZC,
P
bn converges absolutely where bn D af .n/ for all n.1010: Additionally, we have the agreementX

an D
X
bn:

Remark 6.4.2 If we apply the argument with an’s replaced with
janj’s and bn’s replaced with jbnj’s, then we have that

P
bn converges

absolutely and the limits agree.

As a warning, this is certainly false if
P
an converges conditionally. In

fact, a conditionally convergent series can be rearranged to converge to
any value you want.

Theorem 6.4.5 (Comparison Test)

(i) Suppose
P
bn converges with bn � 0 for all n, and fang is a sequence

with janj � bn for all n. Then,
P
an converges absolutely.

(ii) Suppose fang and fbng are two sequences with 0 < an � bn for all N ,
and

P
an diverges. Then,

P
bn diverges.
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Theorem 6.4.6 (Root Test) Let fang be a sequence and define11 11: This is probably the most powerful of
our tests. Note that we take ˛ 2 R[1
on the extended real line, which gives us
a bit more for (ii). We proved this solely
for the finite case, but since we have a
necessary condition of the absolute value
of our terms to zero out, we also get our
infinite case for free.

˛´ lim sup
n!1

janj
1=n
D lim
n!1

�
sup
k�n

jakj
1=k
�
:

(i) If ˛ < 1, then
P
an converges absolutely.

(ii) If ˛ > 1, then
P
an diverges.

(iii) If ˛ D 1, the test gives no information.

Note that
P
1=n diverges, whereas

P
1=n2 converges. We have

lim
n!1

�
1

n

�1=n
D lim
n!1

exp
�

ln.1=n/
n

�
D exp.0/ D 1;

and

lim
n!1

�
1

n

�1=n
D lim
n!1

 �
1

n

�1=n!2
D 12 D 1;

Proof for
P
1=n.

2nX
kD1

1

k
D

nX
kD1

1

k
D

1

nC 1
C

1

nC 2
C � � � C

1

nC n
�

n

2n
D
1

2
;

so
P
1=n diverges by Cauchy criterion.

Theorem 6.4.7 (Ratio Test) Suppose fxng is a sequence of nonzero real
numbers.

(i) If there exists r with 0 < r < 1 and k 2 ZC such thatˇ̌̌̌
xnC1

xn

ˇ̌̌̌
< r

for n � k, then
P
xn converges absolutely.

(ii) Suppose there exists k 2 ZC such thatˇ̌̌̌
xnC1

xn

ˇ̌̌̌
� 1

for n � k. Then,
P
xn diverges.

Theorem 6.4.8 (Dirichlet Test) Let fang and fbng be sequences, and take
that (

NX
nD1

an

)1
ND1

is bounded with
b1 � b2 � � � � � bn � � � � � 0;

and lim bn D 0. Then,
P
anbn converges.12 12: This is occasionally known by the

name “summation by parts,” because of
its parallels with integration by parts.
The proof of this goes back to Abel.
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We will give the approach for power series on R, though you can do
precisely the same thing on C.

7.1 Radius of Convergence

Definition 7.1.1 (Power Series) Let fang be a sequence of real numbers and
x0 2 R. Then,

1X
nD0

an.x � x0/
n

is called a power series centered at x0.

Note that

f W x 7!

1X
nD0

an.x � x0/
n

is a function of x1 defined on 1: Well, I would hope so, since making it
a function of the other parameters would
be silly.

n
x 2 R W the series

X
an.x � x0/

n converges
o
:

Example 7.1.1

1X
nD0

.x � 3/n D
1

1 � .x � 3/

is defined when jx � 3j < 1.

Example 7.1.2

ex D

1X
nD0

xn

nŠ

converges for all x.

Theorem 7.1.1 Given a power series
P
an.x � x0/

n, take2

2: When extended to formal power
series over C, this result is known as
the Cauchy-Hadamard theorem. Since we
have the root test in our toolkit, the proof
is pretty trivial.

ˇ´ lim sup jakj1=k

and R´ 1=ˇ.3 3: If ˇ D 0, thne R D C1, and if
ˇ D C1, thenR D 0.

(i) The power series converges absolutely for all x 2 .x0 �R; x0 CR/.
(ii) The power series diverges for x with x … Œx0 �R; x0 CR�.4 4: You have to check the endpoints

separately.

Definition 7.1.2 (Radius of Convergence) R, as above, is called the radius
of convergence.
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Example 7.1.3 Taking
1X
nD1

xn

n
;

we get

lim sup janj1=n D lim sup
�
1

n

�1=n
D 1;

so the series converges absolutely on .�1; 1/. If x D 1, we get
P
1=n,

which diverges, and if x D �1 then
P
.�1/n=n converges by Dirichlet.

Thus, the interval of convergence is Œ�1; 1/.55: We have not used this exact language
yet, but you know what it means.

Example 7.1.4 If we take

1X
kD0

3�k.x � 5/2k ;

then

ak D

(
3�k=2; 2 j k

0; 2 − k;
so

lim sup
k

jakj
1=k
D

1
p
3
:

Hence, the series converges absolutely on .5�
p
3; 5C

p
3/. It diverges

on both endpoints.

7.2 Weierstraß M and Integrating Series

Lemma 7.2.1 Let fang be a sequence and an ¤ 0 for all n. If

lim
n!1

janC1j

janj
D L;

then
L D lim sup

n!1

janj
1=n:

Example 7.2.1 Consider

1X
kD1

.x � 2/k

k2
:

Then, x0 D 2, ak D 1=k2, and

1

k
D lim sup

k

�
1

k2

�1=k
D lim
k!1

1=.k C 1/2

1=k2
D 1:

Thus, the series converges on .2 � 1; 2C 1/.
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Example 7.2.2 Now, take a look at

1X
nD0

xn

nŠ
:

We get an D 1=nŠ, and

lim
n!1

anC1

an
D lim
n!1

nŠ

.nC 1/Š
D lim
n!1

1

nC 1
D 0;

so the series converges everywhere.

Example 7.2.3 Let us look at6 6: Note that this is precisely cos.x/.

f .x/´

1X
nD0

.�1/nx2n

.2n/Š
:

What is the radius of convergence? Well, consider

g.y/´

1X
nD0

.�1/nyn

.2n/Š
:

Then, f .x/ D g.x2/,7 7: Thus, if g converges then so does f .yielding

anC1

an
D
1=.2nC 2/Š

1=.2n/Š
D

1

.2nC 1/.2nC 2/
����!
n!1

0:

Thus, f .x/ converges for all x.

Recall that a sequence ffn W D ! Rg converges uniformly to a function
f if and only if given " > 0, there exists N 2 ZC such that n;m � N
implies

jfn.x/ � fm.x/j < "

for all x 2 D.

Remark 7.2.1 A series
P
gn.x/ converges uniformly onD if and only

if given " > 0, there exists N 2 ZC so that n � m � 1 > N impliesˇ̌̌̌
ˇ nX
kDm

gk.x/

ˇ̌̌̌
ˇ < ":

In particular, we must have jgn.x/j < " for all n > N .8 8: We might have stated this previously,
neither Lerman nor the author
remembers.

Theorem 7.2.2 (WeierstraßM -Test) Suppose fMkgk2ZC is a sequence of
nonnegative real numbers such that

P
k2ZC

Mk converges. Suppose

fgk W D ! Rgk2ZC

is a sequence of functions such that

jgk.x/j �Mk

for all x 2 D and for all k. Then,
P
k2ZC

gk.x/ converges uniformly onD.9 9: We are takingD � R to be a domian,
but this works perfectly fine on C, as
do most of the results we state in this
section.
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Example 7.2.4 Consider

1X
kD0

2�kxk
2 on Œ�1; 1�:

If you look at ˇ̌̌
2�kxk

2
ˇ̌̌
� 2�k :

Sine
P
2�k converges,1010: This is just the geometric series

1X
kD0

�
1

2

�k
:

The series
P
2�kxk

2 converges uniformly on
the interval Œ�1; 1�.

Note that the WeierstraßM -test is sufficient for uniform convergence, but
it is not strictly necessary.

Definition 7.2.1 (Indicator Function) For A � R,

�A.x/´

(
1; x 2 A

0; otherwise:

One example of an indicator function we have seen before is �Q D 1Q,
the Dirichlet function.

Example 7.2.5 Consider

gk.x/´ x�Œ1=kC1;1=k/.x/;

for x 2 Œ0; 1/. Then,

NX
kD1

gk.x/ D x.�Œ1=2;1/.x/C �Œ1=3;1=2/.x/C � � � C �Œ1=NC1;1=N/.x//;

which we can simply write as

x�Œ1=NC1;1/.x/:

Thus,

lim
N!1

NX
kD1

gk.x/ D lim
N!1

x�Œ1=NC1;1/.x/ D x

on Œ0; 1/. We claim that
P
gk.x/ converges uniformly to x.We use the

Cauchy criterion to conclude this: given " > 0, we can chooseN > 1=3.
Then, for m > n � 1 > N ,ˇ̌̌̌

ˇ mX
kDn

gk.x/

ˇ̌̌̌
ˇ D x�Œ1=mC1;1=n/ � 1

n
< ":

Note that in the example above, if we applied Weierstraß,

sup
x2Œ0;1/

gk.x/ D
1

x
;

and
P
1=k does not converge.
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Corollary 7.2.3 Suppose
P
fn.x/ is a series of integrable functions on Œa; b�.

Assume further that
P
fn.x/ converges uniformly to f . Then,l

Œa;b�

 
1X
nD0

fn.x/

!
D

1X
nD0

� l
Œa;b�

fn.x/

�

:

Corollary 7.2.4 For all R1 with 0 < R1 < R,
P
an.x � x0/

n converges
uniformly on Œx0 �R1; x0 CR1�.11 11: We just prove this via the Weierstraß

M -test, looking at the series
1X
kD0

jak jy
k :Theorem 7.2.5 Suppose f .x/´

P
anx

n has radius of convergenceR > 0.
Then, for all x 2 .�R;R/,l x

0

 
1X
nD0

ant
n

!
dt D

1X
nD0

an

nC 1
xnC1:

Lemma 7.2.6 Suppose the radius of convergence of
P
anx

n is R. Then, the
radii of convergence ofX an

nC 1
xnC1 and

X
nanx

n�1

are also R.12 12: We combine the statements
for integrating term-by-term and
differentiating term-by-term.

Theorem 7.2.7 Suppose
P
anx

n has radiusR > 0. Then, f is differentiable
on .�R;R/ and

f 0.x/ D
X

nanx
n�1:

Example 7.2.6 Consider X xn

nŠ
:

The radius isC1, and

f 0.x/ D

1X
nD0

n
xn�1

nŠ
D

1X
nD1

xn�1

.n � 1/Š
D

1X
nD0

xn

nŠ
D f .x/:

Definition 7.2.2 (Sine and Cosine) We define the symbols13 13: Note that this gives us what Lerman
calls an “anti-intuitive definition, not
even unintuitive, as you really get no
information of why these things are
periodic. All you know is that they are
infinitely differentiable.”

sin.x/´
1X
nD0

.�1/nx2nC1

.2nC 1/Š

and

cos.x/´
1X
nD0

.�1/nx2n

.2n/Š
:

Note that this definition of sine and cosine extends perfectly to C and
Mn.C/.14 14: We can define a norm k�k on Mn.C/

by
kAk D sup

kxkD1

kAxk;

getting kA2k � kAk 2. Then we can just
use WeierstraßM -test.

We can now define � by� ´ 2 � inffx 2 .0;1/ W cos.x/ D 0g.
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We now diverge from our standard analysis treatment to consider the
theory of Lebesgue Integration, as usually covered in the beginning of
a graduate real analysis course. Hereafter, we will use a lot of the
Œ0;1� D Œ0;1/[1, the extended half-real line. Additionally, unlike the
rest of the notes, this section will include proofs of our results.1

1: This is largely because the author
found the proofs in the standard analysis
material incredibly boring, but maybe the
measure theoretic proofs will be more
interesting.

8.1 Sums Over Sets

Definition 8.1.1 (Sum Over Set) Given a set S and an associated function
f W S ! Œ0;1�, the sum of f over S is2 2: This value could be finite, or it could

equal1.X
s2S

f .s/´ supff .s1/C � � � C f .sn/ W n > 0; s1; : : : ; sn 2 Sg:

Now, as a sanity check, consider the following proposition.

Proposition 8.1.1 For any f W ZC ! Œ0;1�,

X
s2ZC

f .s/ D

1X
nD1

f .n/:

Proof. We clearly have that

X
s2ZC

f .s/ �

NX
nD1

f .n/;

for all N . Hence,

X
s2ZC

f .s/ � lim
N!1

NX
nD1

f .n/ D

1X
nD1

f .n/:

On the other hand, given fn1; : : : ; nkg � ZC, let

N ´ maxfn1; : : : ; nkg;

which yields

f .n1/C � � � C f .nk/ �

NX
nD1

f .n/ �

1X
nD1

f .n/:

As such, we get that3 3: Thus, both directions of the weak
inequality holds.X

s2ZC

f .s/ D supff .n1/C � � � C f .nk/ W k > 0g �
1X
nD1

f .n/:
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Proposition 8.1.2 Suppose S is uncountable, and let f W S ! Œ0;1�. IfP
s2S f .s/ <1, then f .s/ D 0 for all but countably many s 2 S .44: That is, f .s/ D 0 almost everywhere.

Proof. Consider

Sn´

�
s 2 S W f .s/ �

1

n

�
:

Since
P
s2S f .s/ is finite, each Sn has to be finite. Since the countable

union of finite sets is countable,[
n2ZC

Sn is countable.

On the other hand, f .s/ > 0 if and only if s 2 Sn, for some n. Thus,[
n2ZC

Sn D fs 2 S W f .s/ > 0g:

Definition 8.1.2 (Disjoint Union) We write A D B t C if A D B [ C
and B \ C D ¿. We say “A is a disjoint union of B and C .”

Similarly,
A D

a
n2ZC

Sn

if and only if A D
S
n2ZC

Sn and Si \ Sj D ¿ for i ¤ j .

Definition 8.1.3 (Length) Given .a; b/ � R, its length is `..a; b// ´
b � a.

The question we are trying to figure out is if we can extend ` to a
function

� W P.R/! Œ0;1�;

such that

(i) �..a; b// D `..a; b// D b � a:
(ii) For all S D

`
i2ZC

Si ,

�.S/ D �

� a
i2ZC

Si
�
D

X
i2ZC

�.Si /:

Theorem 8.1.3 No such � exists.

Proof. This is hard. It turns out, this is equivalent to the axiom of choice.

The solution to this problem is to restrict the domain of � (“measure”) to
a subset M� P.R/, where M is the set of Lebesgue measurable sets. This
brings us to our main theorem.
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Theorem 8.1.4 There exists a collection M � P.R/ and an associated
function � WM! Œ0;1� such that

(i) �..a; b// D b � a.
(ii) For all E 2M, EC D R nE 2M.
(iii) For all countable collections fEngn2ZC �M,[

n2ZC

En DM:

Moreover, if Ei \Ej D ¿ for i ¤ j ,5 5: That is,[
n2ZC

En D
a
n2ZC

En:

�

� [
n2ZC

En
�
D

X
n2ZC

�.En/:

We will come back to prove this theorem after developing some nice
tools.

8.2 Lebesgue Outer Measure

We first define
�� W P.R/! Œ0;1�;

called the Lebesgue outer measure.

Definition 8.2.1 (Lebesgue Outer Measure) For all S � R, we define6 6: Our appraoch will be to define the
Lebesgue measure from ��, and then
hopefully arrive at a more intuitive
definition afterwards.��.S/ D inf

�X
I2C

`.I / W C open interval cover of S
�
:

Proposition 8.2.1

(i) ��.¿/ D 0.
(ii) For all S; T � R with S � T , ��.S/ � ��.T /.
(iii) For all fSngn2ZC � P.R/,

��
� [
n2ZC

Sn
�
�

X
n2ZC

��.Sn/:

(i) Proof. Given " > 0, ¿ � .0; "/, trivially, so ��.¿/ � `..0; "// D ".
Therefore, ��.¿/ D 0.

(ii) Proof. Suppose C is a cover of T by open intervals. Then, since
S � T , C is also a cover of S . Thus,

��.S/ D inf
�X
I2C0

`.I / W C0 cover of S
�

� inf
�X
I2C

`.I / W C cover of T
�

D ��.T /:
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(iii) Proof. For all k, Sk �
S
n2ZC

Sn, so

��.Sk/ � �
�

� [
n2ZC

Sn
�
:

So, if ��.Sk/ D 1 for some k, then ��.
S
Sk/ D 1, meaning

the statement reduces to 1 � 1. Next, suppose ��.Sn/ < 1.
Fix " > 0. For all n, there exists an open cover Cn of Sn by open
intervals X

I2Cn

`.I / � ��.Sn/C
"

2n
:

Let C´
S
n2ZC

Cn. Then,77: As you can see, even when
considering outer measures, proving
anything takes a fair amount of work.

��.S/ �
X
I2C

`.I / �
X
n2ZC

X
I2Cn

`.I /

�

X
n2ZC

�
��.Sn/C

"

2n

�
D

X
��.Sn/C "

X
n�1

1

2n

D

X
��.Sn/C ":

8.3 Lebesgue Measure

Definition 8.3.1 (Carethéodory’s Criterion) A set E � R is Lebesgue
measurable if for all T � R,88: The use of the character T as our

general subset is common notation,
converying a notion of “testing”E . ��.T \E/C ��.T \EC / D ��.T /:

If E is measurable, we define the Lebesgue measure � of E by

�.E/´ ��.E/:

Remark 8.3.1 For all A;B � R,

��.A [ B/ � ��.A/C ��.B/:

For all T ,
T D .T \E/ [ .T \EC /;

we get
��.T / � ��.E \ T /C ��.T \EC /:

Thus, E is measurable if and only if

��.T / � ��.T \E/C ��.T \EC /:

Remark 8.3.2 E is measurable if and only if EC is measurable.99: Just take a look at Carethédory’s
Criterion: if it is true for E , it is true
for the complement.
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Remark 8.3.3 We know ¿ is measurable, as for all T , T \ ¿ D ¿,
T \ ¿C D T , and ��.¿/ D 0. Hence, we need to check ��.T / D
0C ��.T /:

We need a few more results to continue building this technical
machinery.

Proposition 8.3.1 If E;F � R are measurable, then so is E [ F .

Proof. Let T � R be a set.10 Since E;F are measurable, the following 10: We hope to use Remark 8.3.1 to
deduce that the union is measurable.hold:

(1) ��.T / D ��.T \E/C ��.T \EC /.
(2) ��.T \.E\F // D ��..T \.E\F //\E/C��.T \.E\F /\EC /.
(3) ��.T \EC / D ��..T \EC / \ F /C ��..T \EC / \ F C /.11 11: So far, all we have done is state the

definition three times with three “test”
sets.Therefore,

��.T / D

��.T\E/ from .2/

£
��.T \ .E [ F // � ��.T \ F \EC /

C ��.T \EC \ F /C ��.T \EC \ F C /”
��.T\EC / from (3)

D ��.T \ .E [ F //C ��.T \ .E [ F /C /;

and we are done.

Corollary 8.3.2 If E;F are measurable, then so is E \ F .

Proof. The proof is that .E \ F /C D EC [ F C .12 12: Complements are measurable if and
only if their original set is measurable,
and we determined that unions are too.

Note that nothing we have done that has really used the fact that we are
on the real line, as we could have simply used a higher-order notion of
intervals in our definition of ��.

Proposition 8.3.3 The Lebesgue measure

� WM! Œ0;1�

is countably additive. That is, given a collection of pairwise disjoint measurable
sets fEkgk2ZC ,13 13: Take a look at the Banach-Tarski

paradox, it is “spectacular” after learning
some measure theory, according to
Lerman.�

� a
k2ZC

Ek
�
D

X
k2ZC

m.Ek/:

Proof. We need to show that for all T � R,

��.T / � ��.T \ U/C ��.T \ UC /;

where U D
S
Ek . For all n 2 ZC, let

Un´

n[
kD1

Ek D

na
kD1

Ek :
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By the above work, and some induction, each Un is measurable, so

��.T / D ��.T \ Un/C �
�.T \ UCn /:

Since Un � U;UCn � UC , so

��.T \ UCn / � �
�.T \ UC /;

meaning we get

��.T / � ��.T \ Un/C �
�.T \ UC /:

We claim that1414: The proof directly follows from here.

lim
n!1

��.T \ Un/ D �
�.T \ U/;

as

��.T \ Uk/ D �
�..T \ Uk/ \EK/C �

�..T \ Uk/ \E
C
k /

D ��.T \Ek/C �
�.T \ Uk�1/:

By induction on k,

��.T \ Un/ D

nX
kD1

��.T \Ek/:

Now, by monotonicity of the outer measure,

nX
kD1

��.T \Ek/ D �
�.T \ Uk/ � �

�.T \ U/;

which we can rewrite as1515: This is a finite sum and a sum (or
infinity), so we can take our limits in R
pretty easily.

��

 
1[
nD1

.T \En/

!
�

1X
kD1

��.T \Ek/

Hence,

1X
kD1

��.T \Ek/ D lim
n!1

 
nX
kD1

��.T \Ek/

!
� ��.T \ U/

�

1X
kD1

��.T \Ek/:

It follows that
lim
n!1

��.T \ Un/ D �
�.T \ U/:

Since ��.T / � ��.T \ Un/C ��.T \ UC /, as n!1we get

��.T \ U/C ��.T \ UC /;

meaning
��.T / � ��.T \ U/C ��.T \ UC /;
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so U D
`
Ek is measurable. Finally, let T D R. Then,

�

 
1a
nD1

En

!
D �.U \ R/ D lim

n!1
��.Un \ R/

D lim
n!1

nX
kD1

��.Ek \ R/

D

1X
kD1

��.Ek/ D

1X
kD1

�.Ek/

Corollary 8.3.4 For any sequence fEkg1kD1 of measurable, the union16 16: This is not a direct result, as we are
making the union countably arbitrary.

1[
kD1

Ek is measurable.

Proof. LetUn´
Sn

Ek ,F1´ U1,F2´ U2nU1, andFn´ UnnUn�1.17 17: We get a lot of measurable things
here, as set difference is an intersection
with complement, both of which are
measurable.

Now, theUn are measurable, as they are finite unions of measurable. Since

Fn D Un \ U
C
n�1;

the Fn are measurable. Also, Fi \ Fj D ¿ and
S
Fi D

S
Fj , so

S
Ej is

measurable.

Proposition 8.3.5 If ��.E/ D 0, then E is measurable.18 18: Of course, �.E/ D 0.

Proof. For any T ,
��.E \ T / � ��.E/ D 0:

Hence, ��.E \ T / D 0. Since

��.T / � ��.EC \ T / D ��.EC \ T /C ��.E \ T /;

E is measurable with �.E/ D 0.

Corollary 8.3.6 Countable sets are measurable and have measure zero.

Proof. For all x 2 R, ��.fxg/ D 0. Then, for any countable E � R,
E D

`
x2E fxg.

Remark 8.3.4 There are sets of measure 0 that are not countable.19 19: For instance, consider Cantor sets.

We still need to prove that intervals are measurable, and for any interval
I , �.I / D `.I /.

Definition 8.3.2 (Interval) Note that in this course, an interval is a connected,
bounded subset of R.20 20: That is, a st of the form .a; b/, .a; b�,

Œa; b/, and Œa; b�.
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Definition 8.3.3 (Ray) Similarly, a ray is a connected set of the form .a;1/,
Œa;1/, .�1; b/, or .�1; b�.

Lemma 8.3.7 A ray R � R is measurable.2121: The method we use here is extremely
painful in higher dimensions. However,
over R, it is a nice way to cheat.

Proof. We need to show that for all T � R,

��.T / � ��.T \R/C ��.T \RC /:

If ��.T / D1, we are done, so suppose ��.T / <1. Then, for all " > 0,
there exists a cover Cof T by open intervals such that2222: We use that

��.T / D inf
C0

X
I2C0

`.T /: X
I2C

`.I / � ��.T /C
"

2
:

Since
P
I2C `.I / is finite, `.I / ¤ 0 for at most countably many I . Since

the I are open, I D ¿ for all but countably many I . Thus, we may
assume C is countable, hence, C is finite or countably infinite. As such,
we can assume CD fIngn2ZC . For all n,

In \R and In \R
C

are intervals, and2323: We still do not know anything about
the measures yet. If we did, we would be
done. Note that Lerman has said “I don’t
want to do the cases,” about six times
during this proof, finding a slick way to
avoid them. I think he might not want to
do the cases.

`.In \R/C `.In \R
C / D `.I /:

For all n, choose open intervals Jn; Kn such that In \R � Jn, In \RC �
Kn, and

`.Jn/ � `.In \R/C
"

2nC2
; `.Kn/ � `.In \R

C /C
"

2nC2
:

Then, fJngn2ZC (fKngn2ZC ) is an open cover by T \R (T \RC ). What
do we have? Well,

��.T \R/C ��.T \RC / �
X
n2ZC

.Jn/C
X
n2ZC

.Kn/;

and we can bound this above by

X
n2ZC

`.In \R/C
X
n2zC

`.In \R
C /C 2

1X
nD1

"

2nC2
:

We get X
n2ZC

`.In/C
"

2
� ��.T /C ":

Since " is arbitrary,

��.T \R/C ��.T \RC / � ��.T /:

Corollary 8.3.8 Intervals are measurable.
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Theorem 8.3.9 For any interval J ,

`.J / D �.J / D ��.J /:

First, note that if S is an interval, the indicator �S is Riemann integrable
on any Œa; b�. If S � Œ�R;R�, thenl

Œ�R;R�

�S D `.S/ for all R:

In particular,24 24: Necessarily, this intergral exists.l 1

�1

�S .x/dx D `.S/:

Proof. We first argue that �.J / � `.J /. For any " > 0, there exists an
open interval J 0 such that J � J 0 and `.J 0/ D `.J /C ". Then, for all ",

�.J / D inf
C

X
I2C

`.I / � `.J 0/ D `.J /C ":

Now, let Cbe a cover J by open intervals. This tells us that

J �
[
I2C

I:

Given " > 0, there exists a closed interval K such that K � J and
`.K/ � `.J / � ". Since K is compact, there exists

fI1; : : : ; Ing � C

such that
K � I1 [ � � � [ In:

Then, �K � �I1 C � � � C �In , so

`.K/ D

l 1

�1

�K.x/dx �

l 1

�1

�I1.x/dx C � � � C

l 1

�1

�In.x/dx ;

which we can simply bound above by

`.I1/C � � � `.In/ �
X
I2C

`.I /:

Hence,
`.J / � " �

X
I2C

`.I /

for all Cand ", yielding that

`.J / � " � ��.J /;

meaning `.J / � ��.J /. Thus,

`.J / D �.J /:
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At this point, we have that the ordered triple .R;M; �/ is an example of a
measure space. We want to use this environment to integrate. Integration
via these measures we have developed requires a certain amount of
careful attention. We begin with a definition.

9.1 Measurable and Simple Functions

Definition 9.1.1 (Measurable Function) A function f W R! Œ�1;1�

is measurable if the sets

f �1..a;1�/ D fx 2 R W f .x/ > ag

are measurable for all a.1 1: We are almost ready to integrate, but
we need a bit more.

Note that we state the domain of f to be R, but we could really take any
measurable set, and it would state make sense.

Definition 9.1.2 (Simple Function) A function s W R! R is simple if it is
measurable and takes only finitely many values.2 2: This is a step function.

This amounts to: there exists N 2 ZC and c1; : : : ; cN 2 R such that

s D

NX
nD1

cn�En ;

where En D s�1.cn/.

Example 9.1.1 Take the function

f .x/´

�
0; x … Œ0; 1�

1; x 2 Œ0; 1� nQ

1=2; x 2 Œ0; 1� \Q:

The function f is a simple function, where we use that countable sets
are measurable.3 3: After we define our integral, it is clear

that IŒ0;1�.f / D 1, and it takes almost
no effort.

Definition 9.1.3 (Simple Integral) Let s W R! Œ0;1� be a nonnegative
simple function, andE � R be a measurable set. We define the integral IE .s/
of s over E by

IE .s/ D

NX
iD1

ci � �.E \Ei /;

where c1; : : : ; cN are values of s, and Ei D s�1.ci /.4 4: We leave it as an exercise to show
that if f W R ! R is measurable, then
f �1.c/ is measurable for any c.

Remark 9.1.1 IE .s/ can beC1, as �.E \Ei /may beC1.



74 9 Lebesgue Integration

Proposition 9.1.1 The integral

IE W

�
nonnegative

simple functions

�
! Œ0;1�

is “linear” and monotone:

(i) IE .cs/ D cIE .s/ for all s and c � 0.55: We generally take 0 � 1 D 0, as we
want the integral of the 0 function over
all of R to be 0.

(ii) IE .s1 C s2/ D IE .s1/C IE .s2/ for all s1; s2.
(iii) If s1.x/ � s2.x/ for all x, then IE .s1/ � IE .s2/ for all s1; s2.

(ii) Proof. Let c1; : : : ; cm be the distinct values of s1, and d1; : : : ; dn the
distinct values of s2. We take Ei ´ s�11 .ci / and Fj ´ s�12 .dj /.We
can write that

R D
a

Ei D
a

Fj ;

and for all x 2 Ei \ Fj , the sum

.s1 C s2/.x/ D ci C dj :

Hence,

IE .s1 C s2/ D
X
i;j

.ci C dj / � �.E \Ei \ Fj /

D

X
i

ci
X
j

�..E \ Fj / \Ei /

C

X
j

dj C
X
i

�..E \Ei / \ Fj /

D

X
i

ci�.E \Ei /C
X
j

dj�.E \ Fj /

D IE .s1/C IE .s2/

(iii) Proof. We have that s2 � s1 is a nonnegative simple function, and
s2 D .s2 � s1/C s1. Hence,

IE .s2/ D IE .s2 � s1/C IE .s1/ � IE .s1/:

Proposition 9.1.2 Let f W R! Œ�1;1�. The following are equivalent:

(i) f �1..a;1�/ are measurable for all a.
(ii) f �1.Œa;1�/ are measurable for all a.
(iii) f �1.Œ�1; a// are measurable for all a.
(iv) f �1.Œ1; a�/ are measurable for all a.
(v) The sets f �1.f�1g/, f �1.f1g/, and f �1..a; b// are measurable

for all a < b.

Proof.

(i)) (ii)

f �1.Œa;1�/ D

1\
nD1

f �1
��
a �

1

n
;1

��
:

(ii)) (iii)
f �1.Œ�1; a// D R n f �1.Œa;1�/:
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(iii)) (iv)

f �1.Œ�1; a�/ D

1\
nD1

f �1
��
�1; aC

1

n

��
:

(iv)) (v)

f �1.Œ�1; b// D

1[
nD1

f �1
��
�1; b �

1

n

��
:

Hence, we have

f �1..a; b// D f �1.Œ�1; b// n f �1.Œ�1; a�/;

f �1.f�1g/ D

1\
nD1

f �1.Œ�1;�n�/

and6 6: The remainder of this equivalence is
left as an exercise.

f �1.f1g/ D

1\
nD1

f �1.Œn;1�/ D : : : :

(v)) (i)

f �1..a;1�/ D f �1.f1g/ [

1[
nD1

f �1..a; aC n//:

Corollary 9.1.3 Simple functions are measurable.

Proof.
f �1.a/ D f �1.Œ�1; a�/ \ f �1.Œa;1�/:

9.2 Nonnegative Lebesgue Integral

We now define our Lebesgue integral for a nonnegative function.

Definition 9.2.1 (Nonnegative Lebesgue Integral) Let f W R! Œ0;1�

be a nonnegative measurable function, and E � R be measurable. Then, we
define the Lebesgue integral7 7: Note that the d� is just to follow

tradition, showing that we are taking this
supremum with respect to a measure �.l

E

f d�´ supfIE .s/ W 0 � s � f and s is simpleg:

Proposition 9.2.1 Let s W R! Œ0;1� be nonnegative and simple. Then,8 8: This is simply to ensure our definition
is consistent.

IE .s/ D

l
E

s d�

Proof. Since s � s,

IE .s/ � supfIE .s0/ W s0 � sg:
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One the other hand, for all simple s0 with s0 � s,

IE .s
0/ � IE .s/;

meaning
IE .s/ � supfIE .s0/ W s0 � sg:

Theorem 9.2.2 Let f W R ! Œ0;1� be measurable. Then, there exists a
sequence of nonnegative simple functions

0 � s1 � s2 � � � � � f

such that sn ! f pointwise. If f is bounded, sn ! f uniformly.99: This is a pretty long proof.

Proof. Consider Œ0; n/ � R such that n 2 ZC. Take1010: We are going to “chop up” the range.

Ii ´

�
t 2 R W

i � 1

2n
� t <

i

2n

�
;

where 1 � i � n2n.11 Let Ei ´ f �1.Ii / and Fn´ f �1.Œn;1//. Then,11: Yuck; combinatorics are the bane of
the author’s existence.

R D

 
n2na
iD1

Ei

!
t Fn;

giving

sn.x/ D

n2n�1X
iD1

i � 1

2n
�Ei .x/C n�Fn.x/

For any x 2 Ei , we can write

i � 1

2n
� f .x/ <

i

2n
and sn.x/ D

i � 1

2n
:

Therefore, sn.x/ � f .x/ for all x 2 Ei and for all i . For x 2 Fn,
sn.x/ D n and n � f .x/, so sn.x/ � f .x/ for all x. We first claim that
sn.x/ � snC1.x/.12 We can write12: We clearly want our sequence to be

increasing to match the statement. �
i � 1

2n
;
i

2n

�
š

I

D

�
2i � 2

2nC1
;
2i � 1

2nC1

�
œ

I 0

[

�
2i � 1

2nC1
;
2i

2nC1

�
›

I 00

:

Let E ´ f �1.I /, E 0 ´ f �1.I 0/, and E 00 ´ f �1.I 00/. Then, for all
x 2 E,

sn.x/ D
i � 1

2n
;

snC1.x/ D
i � 1

2n
D
2i � 1

2nC1

for x 2 E 0, and
snC1.x/ D

2i � 1

2nC1

for x 2 E 00.13 Our second claim is that for all x,13: Similarly, sn.x/ � snC1.x/ for all
x 2 Fn. We skip the proof for brevity.

sn.x/ ����!
n!1

f .x/:
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There are two cases.

(C1) If f .x/ D C1, then x 2 Fn for all n, so sn.x/ D n, and n!1 as
n!1.14 14: Fascinating.

(C2) If f .x/ is finite, then f .x/ < n0 for some n0 2 ZC. Then, for n > n0,
f .x/ … Œn;1/. Hence,

i � 1

2n
� f .x/ <

i

2n

for some i . Finally, since sn.x/ D .i � 1/=2n,

jf .x/ � sn.x/j <
1

2n
;

giving us pointwise convergence. Moreover,15 for n > n0, 15: If f is bounded there exists an n0
such that f .x/ < n0 for all x.

jf .x/ � sn.x/j <
1

2n

for all x, so sn ! f uniformly.

We now list some properties of Lebesgue integrals of nonnegative
functions. We will explore Lebesgue integrals with a wider class of
functions soon.16 16: It turns out, the set of all Lebesgue

integrable functions forms a vector space
L1.R/ which is complete with respect
to the metric induced by theL1 norm.Proposition 9.2.3 (Properties) Let E;F � R be measurable sets, and take

f; g to be nonnegative measurable functions.

(i) If f � g, then

l
E

f d� �

l
E

g d�.

(ii) If E � F , then

l
E

f d� �

l
F

f d�.

(iii) If �.E/ D 0, then

l
E

f d� D 0.

(i) Proof. Since f � g,

supfIE .s/ W 0 � s � f g � supfIE .s/ W 0 � s � gg:

(ii) Proof. If f D �G for some measurable G, thenl
E

�G D �.G \E/ � �.G \ F / D

l
F

�G :

If f D
P
ci�Gi , thenl
E

f D
X

ci

l
E

�Gi �
X

ci

l
F

�Gi D

l
F

f:

For arbitrary f ,17 17: This general strategy extends well
to a lot of cases, starting with indicator
functions, moving to simple functions,
and then other functions.
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E

f D sup

(l
E

s W 0 � s � f

)

� sup

(l
F

s W 0 � s � f

)
D

l
F

f:

(iii) Proof. If f D �G and �.E/ D 0,

0 �

l
E

�G D �.E \G/ � �.E/ D 0:

If f D
P
ci�Gi ,l

E

f D
X

ci

l
E

�Gi D
X

ci � 0 D 0:

Finally, for arbitrary f ,l
E

f d� D sup

(l
E

s W 0 � s � f

)
D sup.f0g/ D 0:

9.3 Arithmetic on the Extended Line

We now take an aside on how to do arithmetic on the extended real line.1818: We probably should have done this
earlier. For x 2 R,

x C .˙1/ D ˙1

x � .˙1/ D �1:

Additionally,

.C1/C .C1/ D C1 D .C1/ � .�1/:

Note that .C1/C .�1/ and .C1/� .C1/ are not defined. For x 2 R,

x � .˙1/ D .˙1/ � x D

�
˙1; x > 0

0; x D 0

�1; x > 0:
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9.4 Lebesgue L1.E;d�/ Space

Definition 9.4.1 (Function Parity Components) Given f W R !
Œ�1;1�, we define

fC.x/´

(
f .x/; f .x/ � 0

0 f .x/ � 0

f�.x/´

(
�f .x/; f .x/ � 0

0; f .x/ � 0:

Note that f D fC � f� and jf j D fC C f�.

Lemma 9.4.1 If f W R! Œ�1;1� is measurable, then so are fC and f�.

Proof. For a � 0,

.fC/
�1..a;1�/ D f �1..a;1�/:

For a < 0,
.fC/

�1..a;1�/ D R:

Similarly, for a < 0,
.f�/

�1..a;1�/ D R:

For a > 0,
x 2 .f�/

�1..a;1�/

if and only if�f .x/ 2 .a;1�, which is true if and only if f .x/ 2 Œ�1; a/,
which holds if and only if

x 2 f �1.Œ�1; a//:

Thus, f� is measurable.

Definition 9.4.2 (Lebesgue Integral) Let f W R ! Œ�1;1� be
measurable, and E � R is measurable. Supposel

E

fC d� ;

l
E

F� d�

are finite. We definel
E

f d�´

l
E

fC d� �

l
E

f� d� :

Note that it may happen thatl 1

�1

f .x/dx D lim
R1;R2!�1

l R1

R2

f .x/dx

exists, but l
R

fC d� ;

l
R

f� d�
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are infinite. Then,

l
R

f d� does not exist.1919: This is precisely the difference
betwen absolute and conditional
convergence.

Example 9.4.1 Let

f .x/´

(
.�1/n

n
; n � 1 � x < n

0; x < 0:

Then, l 1

�1

f .x/dx D
1X
nD1

.�1/n

n

Proposition 9.4.2 Suppose f; g W R! Œ�1;1� are measurable and f Cg
is defined. Then, f C g is measurable.2020: This proof uses a fun trick.

Proof. For all x 2 R, let us take a look at

fx W f .x/C g.x/ > ag D fx W f .x/ > a � g.x/g:

However, this is also the same as

fx W f .x/ > r > a � g.x/ for some r 2 Qg:

Since we have rationals in the middle, so we can write that the set equals[
r2Q

.fx W f .x/ > rg \ fx W r > a � g.x/g/;

which is measurable.2121: There is a similar statement for
products, but we are skipping it so we
can get somewhere interesting.

Corollary 9.4.3 If f is measurable, so is jf j.

Lemma 9.4.4 Take a simple map s W R! Œ0;1/. Let

E1 � E2 � � � � � En � � � �

be a sequence of measurable sets. Define E ´
S
En. Then,2222: It takes a bit of work, but this also

holds for general functions. l
E

s d� D lim
n!1

l
En

s d� :

Proof. It is no loss of generality to assume s D �G for some measurable
set G.23 Note that23: We have done such proofs before.

Oftentimes, proving for the indicator
gives you everything you need.

l
En

s d� D �.En \G/:

Since G \E1 � G \E2 � � � � , and

1[
nD1

G \En D G \E;

�.G \E/ D lim
n!1

�.G \En/:
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Theorem 9.4.5 (Monotone Convergence Theorem) Let

0 � f1 � f2 � � � � � fn � � � �

be a sequence of measurable functions. Define f ´ limfn and let E � R
be measurable. Then,24 24: Recall that the RHS isl

E

limfn d� :lim
n!1

l
E

fn d� D

l
E

f d� :

Proof. Since fn � f for all n,l
E

fn d� �

l
E

f d�

lim
n!1

l
E

fn d� �

l
E

f d� :

The hard part is proving the other direction. Consider a simple function
s such that 0 � s � f . We now argue that

lim
n!1

l
E

fn d� �

l
E

s d� :

Choose " > 0, and let

En´ fx 2 E W fn.x/ > .1 � "/sg:

This is the same as

En D fx 2 R W ." � 1/s C fn.x/ > 0g \E

is measurable. Also,
S
En D E, since fn ! f � s. By the earlier lemma,

lim
n!1

.1 � "/

l
En

s d� D .1 � "/

l
E

s d� :

Hence,

lim
n!1

l
E

fn d� � lim
n!1

.1 � "/

l
En

s d� D .1 � "/

l
E

s d� :

We get that25 25: We use " being arbitrary.

lim
n!1

l
E

fn d� �

l
E

s d� ;

so equality holds via the supremum definitions of integrals.26 26: We will use this to prove that the
integral of the sum is the sum of the
integrals for measurable functions.

Theorem 9.4.6 Let f; g W R! Œ0;1� be nonnegative measurable functions.
Take c > 0 and E to be measurable. Then,

(i)

l
E

cf d� D c

l
E

f d�.
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(ii)

l
E

.f C g/d� D

l
E

f d�C

l
E

g d�.

(i) We leave this as an exercise.2727: Check this for simple functions, then
take the supremum. (ii) Proof. If f; g are simple and nonnegative, then

IE .s C t / D IE .s/C IE .t/:

In general, choose sequences of simple functions

0 � s1 � � � � � sn � � � � � f; sn ! f

0 � t1 � � � � � tn � � � � � g; tn ! g:

Then, sn C tn ! f C g.28 By the Lebesgue monotone convergence28: Remember, we put a fair amount of
effort into showing these sequences exist. theorem, l

E

.f C g/d� D lim
n!1

l
E

.sn C tn/d� ;

which we can write2929: This is our result.

lim
n!1

l
E

sn d�C lim
n!1

l
E

tn d� :

Corollary 9.4.7 Suppose ffng1nD1 is a sequence of nonnegative measurable
functions. Then,

P
fn is a nonnegative measurable function, and for any

measurable E, l
E

 
1X
nD1

!
d� D

1X
nD1

l
E

fn d� :

Proof. Let

Fn´

nX
iD1

fi :

Then,

0 � F1 � F2 � � � � � Fn � � � � �

1X
iD1

fn:

Then,
P
fn D limFn is measurable, so3030: Because of our buildup, this was very

easy! l
E

1X
nD1

d� D lim
n!1

Fn d� D lim
n!1

nX
iD1

l
E

fi d� D
1X
nD1

l
E

fi d� :

Recall that f W R! Œ�1;1� is integrable over E ifl
E

fC d� ;

l
E

f� d� <1:
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Then, we set l
E

f d� D

l
E

fC d� �

l
E

f� d� :

Lemma 9.4.8 f W R! Œ�1;1� is integrable over E if and only ifl
E

jf jd� <1:

Proof. Since jf j D fCCf�, andfC; f� are measurable, jf j is measurable.
Moreover, l

E

jf jd� D

l
E

fC d�C

l
E

f� d� ;

so the result follows.31 31: The LHS is finite if and only if the
RHS is finite.

Definition 9.4.3 (L1 Space) We define32 32: Take f to be measurable.

L1.E;d�/´

(
f W

l
E

jf jd� <1

)
:

Definition 9.4.4 (L1 Norm) We define the norm33 33: It is not trivially clear why this is
a norm, nor is it clear that L1 forms a
vector space.

kf kL1 ´

l
E

jf jd� :

Recall that for x 2 Rn,34 34: This is the `1 or L1 or L1 norm.
As you can tell, notation is not very
standardized.

kxk 1 D jx1j C � � � C jxnj:

Theorem 9.4.9 Let E � R be measurable, f; g 2 L1.E/, c 2 R. Then,35 35: We prove these the ugly way, as the
more sophistacted approach takes a long
time.

(i) cf 2 L1.E/ and

l
E

.cf /d� D c

l
E

f d�.

(ii) f C g 2 L1.E/ and

l
E

.f C g/d� D

l
E

f d�C

l
E

g d�.

(i) Proof. If c > 0,
.cf /CcfC; .cf /� D cf�;

so l
E

.cf /d� D

l
E

cfC d�C

l
E

cf� d�

D c

 l
E

fC d� �

l
E

f� d�

!
:

If c D �1, then

.cf /C D .�f /C D Cf�; .cf /� DD fC:
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Then, l
E

.�f /d� D

l
E

f� d� �

l
E

f d�

D .�1/

l
E

f d� :

(ii) Proof. Let h D f C g. Assume f; g; h do not change sign on E. We
get 6 sub-cases:

(1) f � 0, g � 0, h � 0 on E.
(2) f � 0, g � 0, h � 0.
(3) f � 0, g � 0, h � 0.

:::

(1) If f; g � 0, we knowl
E

f d�C

l
E

g d� D

l
E

.f C g/d� :

(2) l
E

.�h/d� D

l
E

.�f /d�C

l
E

.�g/d�

�

l
E

hd� D �

l
E

f d�C .�1/

l
E

g d� :

(3) h D f Cg is equivalent to f D hC.�g/, so again, everything
reduces to (1).
:::

Now, write
E D E1 tE2 t � � � tE6;

where
Ei ´ fx 2 E W case i holds g:

Then, l
E

f d� D
6X
iD1

l
Ei

f d� :

Similar formulas hold for g and h.

Corollary 9.4.10 L1.E;d�/ D L1.E/ is a vector space.3636: If you want to do quantum
mechanics, you will use L2.Rn/,
looking at complex valued wave
functions ‰.x; t/ W Rn ! C, and
taking squares to be Lebesgue integrable. Corollary 9.4.11 With f; g 2 L1.E/, f � g impliesl

E

f d� �

l
E

g d� :
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Proof. Well, f � g implies that g � f � 0, so

0 �

l
E

.g � f /d� D

l
E

g d� �

l
E

f d� :

Hence, the result holds.

Corollary 9.4.12 If f 2 L1.E/, thenˇ̌̌̌
ˇ
l
E

f d�

ˇ̌̌̌
ˇ �

l
E

jf jd� :

Proof.

�f; f � jf jl
E

f d� �

l
E

jf jd�

�

l
E

f d� D

l
E

.�f /d� �

l
E

jf j;

so ˇ̌̌̌
ˇ
l
E

f d�

ˇ̌̌̌
ˇ �

l
E

jf jd� :

Finally, as a remark, we define the vector space Lp.E/.

Definition 9.4.5 (Lp Space) We define

Lp.E/´

(
f W

l
E

jf jp d� <1

)
:

Definition 9.4.6 (Lp Norm) We define

kf kp ´

 l
E

jf jp d�

!1=p
:
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