HonNors REAL ANALYSIS

A COLLECTION OF NOTES ON MAJOR DEFINITIONS AND RESULTS, SOLUTIONS, AND
COMMENTARY BASED ON THE CORRESPONDING COURSE AT [LLINOIS, AS INSTRUCTED
BY LERMAN.

Lecture Notes By

DuEeeraAN E. WiGGINS

DEPARTMENT OF M ATHEMATICS
Uni1versIiTY OF ILLINOIS URBANA-CHAMPAIGN









Disclaimer

The lecture notes in this document were based on Honors Real Analysis [424], as instructed by Eugene
Lerman [Department of Mathematics] in the Spring semester of 2024 [SP24] at the University of Illinois
Urbana-Champaign. All non-textbook approaches, exercises, and comments are adapted from Lerman’s
lectures.

Textbook

The progression of topics was selected from Introduction to Analysis, by Maxwell Rosenlicht. The three texts
Analysis I and Analysis 11, by Terence Tao, and Principles of Mathematical Analysis, by Walter Rudin, were also
used as references. The final section ON LEBESGUE INTEGRATION Was loosely based on the Measiire Theory notes
by Jim Belk.

Author Information
Dheeran E. Wiggins is, at the time of writing [Spring, 2024], a first-year student at Illinois studying
mathematics and physics. All typesetting and verbiage are his own.

dheeran2@illinois.edu


https://math.illinois.edu/directory/profile/lerman
https://math.illinois.edu/directory/profile/lerman
https://math.illinois.edu/
https://courses.illinois.edu/schedule/2024/spring
https://store.doverpublications.com/0486650383.html
https://link.springer.com/book/10.1007/978-981-10-1789-6
https://link.springer.com/book/10.1007/978-981-19-7284-3
https://maa.org/press/maa-reviews/principles-of-mathematical-analysis
https://jimbelk.github.io/web/measuretheory/index.htm
mailto:dheeran2@illinois.edu

The greatest ambition in a mathematician’s life is to become an adjective.

— Eugene Lerman






Contents

Contents

ON ORrDER, METRICS, AND CONTINUITY

1 The Real Numbers

11 Field Properties . . ... .. ... .. ... ... ...
12 OrderedFields . . . .. ... ... ... . ..
1.3 Least Upper Bounds and CompletenessinR . . . ... .. ..... .. ..... ... .....

2 Metric and Topological Spaces

21 OpenandClosedSets . . . . ... ... ... ... e
2.2 CONVEIZENCE . . . v v v v vttt e e e
2.3 Normsand Completeness . . . . . . .. ... ... . . . . e
2.4 Topology and Compactness . . . . . .. .. ... .. ... ...

3 Continuous Functions

3.1 Continuity on Metric and Topological Spaces . . . . . . ... ... ... ............
32 Limits . . ..o e
3.3 Uniform Continuity . . . . ... .. ... ... . .
3.4 Sequencesof Functions . . . ... ... .. ... ... .. .. ... o
35 Connectedness . . . . . ... .. ...

ON DIFFERENTIATION AND RIEMANN-DARBOUX INTEGRATION
4 Differentiation
41 Differentiability . . . . . .. ...

4.2 Function Spacesand Series . . . . . .. . ... ... o

5 Integration

51 DarbouxIntegration . . . . ... ... ... L L
52 Riemann Integrability . . . . . ... ... .. . o
5.3 PropertiesofIntegrals . . . . . . .. ... .. L
54 AFewBigTheorems . .. ... ... .. . ... ... e
5.5 Natural Logarithmand exp(x) . . . .. ... ... ... .. ... .. .. .

ON INTERCHANGE OF LiMiT OPERATIONS

6 Interchangeability and Series

6.1 Operations on Sequences of Functions . . . . . .. ... .. ...................
6.2 Feynman'sTrick . . ... ... ... ... .. ...
6.3 AsideonImproperIntegrals . . .. .. .. ... ... .. .. .. L o o
6.4 Series . .. ...

7 Power Series
71 Radiusof Convergence . . . . . .. .. ... .. ...
7.2 Weierstrafl M and Integrating Series . . . . . .. ... ... ... ... ... . ... ...

= W W Ww

O 0 3

16

21
21
23
24
25
27

29

31
31
34

37
37
39
39
41
42

45

47
47
48
50
51

55
55
56



ON LEBESGUE INTEGRATION

8 Lebesgue Measures

8.1
8.2
8.3

Sums Over Sets . . . . ..
Lebesgue Outer Measure
Lebesgue Measure . . . .

9 Lebesgue Integration
Measurable and Simple Functions . . . . .. ... ... ... L Lo L Lo
Nonnegative Lebesgue Integral . . . . . . .. .. ... ... ... .. ... o L.
Arithmetic on the Extended Line . . . . . . .. . ... ... ... .. L L

9.1
9.2
9.3
9.4

Lebesgue L!(E, du) Space

61

63
63
65
66

73
73
75
78
79



ON ORrDER, METRICS, AND CONTINUITY






The Real Numbers

The set of real numbers, denoted R, form a complete ordered field
when some pieces of structure are attached.! Since the primary structure
underlying real analysis is clearly the real numbers, we will explore the
properties, some trivial and some more sophisticated, of R.

1.1 Field Properties

First, begin with the set R alongside two binary operations
+:RxR—=>R:(x,y)>x+y

and
S RXR—=>R:(x,y) > x-y.

Additionally, there exist two distinct, respective, identity elements 0, 1 € R
which maintain the familiar properties associated to them when we have
F = (R, +,-,0, 1).2 However, other fields® share these properties.

So what makes R unique? As it turns out, the needed properties are
ordering and completeness which we flesh out in the rest of the first
chapter.

1.2 Ordered Fields

Definition 1.2.1 (Ordered Field) An ordered field is a field F together with
a subset P C F such that*

(i) 0 ¢ P.
(ii) Foralla,b € P, both (a + b), (a-b) € P.5
(iii) Forall a € [F, where a # 0, eithera € P or —a € P°

Example 1.2.1 Choosing [ = R, we have P as the positive real numbers.
Similarly, choosing F = @, we have P as the positive rationals.”

Definition 1.2.2 (Ordering on F) If (F, P) is an ordered field, then we
have the relations (<, <), defined by

(i) a <bifandonlyifb—a € P.
(ii) a < bifand onlyifa < bora = b.

The definition of an ordering on (I, P) yields some notable consequences
fora,b € (F, P):3

(@) a <bifand only if —b < —a.
(b) Foralla € F,a? > 0.
(c) Ifae P,andb € —P,thenab € —P.

1.1 Field Properties . . ... .. 3

1.2 Ordered Fields . . . . .. .. 3

1.3 Least Upper Bounds and
CompletenessinR . .. .. 4

1: In fact, there is only one such object.
Thus, R is unique up to character
representation.

2: See Rosenlicht for the full field
axioms.

3: Q,Zp, and C are common examples
of fields.

4: The character P is used to allude to
positive numbers.

5: Hereafter we will simply use the

juxtaposition notation ab.

6: Thatis, F \ {0} = P U (—P), where
—P:={—x:x € P}

7: Note that there are no positive
complex numbers.

8: From here on, we will generally write
[F for brevity.

9: Thatis, a? € P fora # 0.



4 1 The Real Numbers

10: The proof is trivial by contradiction,
using trichotomy.

11: You may note that absolute values
are constructible in C. Thus, ordering
is not explicitly needed in defining |-|.
However, the definition in C focuses on
behaviorin R C C.

12: The proof of the triangle inequality
is straightforward in most metric space
structures you have seen, such as inner
product spaces in linear algebra.

13: This corollary is especially useful in
treatments of analysis.

14: The symbol d is used to reference
distance. This will become more intuitive
when we begin our treatment of metric
spaces.

15: This axiom fails for @, usually shown

by v/2 ¢ Q.

Corollary 1.2.1 The complex numbers C is not an ordered field.°

Definition 1.2.3 (Absolute Value) The absolute value" |a| of a € R is

a, a>0

la] := _
—a, a<o.

As such, we now have a function

|| : R — [0,00) : @ > |al.

There are some properties of |-| that are useful to keep in mind:

(a) Foralla € R, |a| > 0.
(b) Foralla,b € R, |ab| = |a]|b|.
(c) Fora € R, |a]* = |a2|.

Lemma 1.2.2 (The Triangle Inequality) For all a, b € R, we have'?

la + b| < |a| + |b].

Corollary 1.2.3 Forall a, b € R, we have®

lla] —1b]| < |a —b.
Remark 1.2.1 There exists a function, called the metric or distance
function d'* defined by

d:RxR—[0,00): (a,b) — |a—b|.

We will see that d(a, b) = |a — b| endows R with a metric.

1.3 Least Upper Bounds and Completeness in R

Definition 1.3.1 (Upper Bound) A subset @ # S < R is bounded above if
there exists an a € R such that s < a forall s € S. Any such a is called an
upper bound of S.

Definition 1.3.2 (Least Upper Bound) Suppose S C R is bounded above.
A number a € R is a least upper bound, or supremum, of S if

(i) a is an upper bound of S.
(ii) If b is an upper bound of S, then a < b.

We denote the least upper bound by a =: sup S.

Definition 1.3.3 (The Completeness Axiom) The Completeness Axiom
states that any nonempty subset S of R bounded above has a supremum.'
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There is a standard abuse of notation in which we write that sup S = oo
is S is not bounded above. Similarly, one can define lower bounds and

greatest lower bound'®

Remark 1.3.1 Note that an equivalent formulation of The Completeness
Axiom states that if S is a nonempty real subset bounded below, then
the infimum inf S exists.

Lemma 1.3.1 For all x € R, there exists an n € N such that x < n.”

Corollary 1.3.2 For all ¢ > 0, there exists an n € N such that 1/n < e.

There are a few interesting consequences which follow from here.

Corollary 1.3.3 For all nonnegative a € R such that forall § > 0,a < §
implies equality a = 0.

Corollary 1.3.4 For any x € R, there exists n € Z such that

n<x<n-+1.

Theorem 1.3.5 (Q is dense in R) For all x € R and for all ¢ > 0, there
exists a rational r € Q such that |x —r| < &.18

Theorem 1.3.6 (Existence of Unique Order) For all a < 0, there exists a
unique x > 0 such that x*> = a.

16: The greatest lower bound is often
called the infimum, where

inf S := —sup(—S)

and

—S:={-s5:5€ 8}

17: We conclude this trivially by
contradiction.

18: The density of Q in R is equivalent
to the statement that for all a,b € R
with a < b, there exists r € Q such that
a<r<b.






Metric and Topological Spaces

We now give some of our attention to a more general class of spaces than
R. Notably, we look at metric spaces, and their distance-less older sibling
topological spaces. We will study the relevant topological properties for
analysis, such as topological invariants and continuity.

Definition 2.0.1 (Metric Space) A metric space' is a set E together with a
map
d:ExE —]0,00)

such that, forall x,y € E,
(i) d(x,y) = 0implies x = y.

(i) d(x,y) = d(y,x).
(iii) d(x,z) <d(x,y)+d(y,z).2

That is, a metric space is a pair (E, d), where d is called a metric.?

Example 2.0.1 We have a few standard examples of metric spaces that
we are used to:

(@) E :=Rwithd : (x,y) > |x —y|.
(b) E:=Qwithd : (x,y) —~ |x —y|.
(c) E is defined as a set S # @ with

I, x#y

d(x,y) = 0. x=y

(d) E := C with®
d: (x4 iy +iv) e [+ i) — @+ iv)|
— (= +(y —v)?)?
() E := R with®

dy: (x,y) (Z(xi - yi)2>

i=1
(f) E :=R" with .,
dy:(x.y) = Y |xi = il
or -
doo : (x,y) = max{|x1 — yil,- -, |Xn — Ynl}.

Remark 2.0.1 If (£, d) is a metric space and E C E is a subset, then
the pair
(2.4 )
ExE

is a metric space.

2.1 Open and Closed Sets ... 8
2.2 Convergence . ........ 9
2.3 Norms and Completeness . 12

2.4 Topology and Compactness 16

1: The definition of a metric space is
worth memorizing.

2: Note that this is the triangle
inequality.

3: It is also referred to as the distance
function.

4: Since C = R?, this is actually a
special case of (e).

5: We know this as “Euclidean distance.”
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6: Note that da(x,y) = [|lx — »|l».

7: We refer to (R”,d») as Euclidean
space. We often call R” a metric space by
convention, as d2 is usually understood.

Definition 2.0.2 (The £2-norm) The £>-norm on R" is the function®

1

n 2
Il : R = [0,00) : x > (Zx,?) :
i=1
Theorem 2.0.1 (Cauchy-Schwarz) For all x,y € R",

n
> xivi

i=1

< [lxllz - Iy 1l2-

Theorem 2.0.2 (Euclidean Distance is a Metric) For all x,y € R",
I+ yll2 = lIxlly + 1yl
Consequently, forall x, y,z € R”,
da(x,2) < da(x,y) + d2(y, 2).

Corollary 2.0.3 (Euclidean Metric Space) The pair of R* and Euclidean
distance (R", dy) is a metric space.”

2.1 Open and Closed Sets

Definition 2.1.1 (Open Ball) Let (E, d) be a metric space. An open ball
centered at x € E of radius > 0 is the set

B, (x) = B(x,r):={y e E:d(x,y) <r}.
Definition 2.1.2 (Closed Ball) Similarly, a closed ball centered at x of
radius r is the set
B(x,r):={y € E :d(x,y) <r}.
Example 2.1.1 A standard example is the open and closed balls in

E := R? with d := d,, which are simply circles, with the former
missing its border.

Definition 2.1.3 (Open Set) A subset U of a metric space (E, d) is open if

forall x € U there exists an r > 0 such that B,(x) C U.

Example 2.1.2 E := Rwith U := (a, D) is clearly an open set, as
r:={la—x|,|b—x|},

yields B, (x) C (a, b).



Definition 2.1.4 (Closed Set) A subset C of a metric space E is closed if

CC=E\C:={xecE:x¢C) is open.

Theorem 2.1.1 Let (E, d) be a metric space. Then,®

(i) For any collection {U; }ier of open sets in E,

Uu

iel
is open.
(ii) Finite intersections of open sets are open.’
(iii) Open balls are open.

Definition 2.1.5 (Open Rectangle) An open rectangle'® in R is a set U of
the form
U= (al,bl) X (az,bz) X e X (an,b,,),

where a; < by and i € {1,...,n}.

Remark 2.1.1 Similarly,
F :=lay,b1] x [az,ba] X -+ X [an, by]

is closed.

Definition 2.1.6 (Bounded) A subset @ # S C E of a metric space (E, d)
is bounded if for all x € E withr > 0, S € B, (x).

Example 2.1.3 For instance, [a,b) C Risbounded, which is clear when
letting x = 0 and r := max(|a|, |b]) + 1.1

Example 2.1.4 Now, let £ be a nonempty set and

1, x
d(x,y) = 0 xii

Then for all U € E, we have U C B,(x) for any x € E. Thus, any
subset of E is bounded.

Theorem 2.1.2 Suppose @ # S < R is closed and bounded. Then
inf §,sup S exist and are in S.

2.2 Convergence

Definition 2.2.1 (Sequence) A sequence in a set E is a function

s:Zy — E,

2.2 Convergence | 9

8: Both E and & are open. Together
with this fact, we have the definition of a

topology.

9: That is, for all k € Z>( for all open
sets Uy, ..., Uy,

k

(Ui

i=1

is open.

10: Note that this object is open.

11: Note that [0, 00) is not bounded.
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12: We write s,; — L or
lim s, =L,
n—o0

and say “s is convergent” or “L is a limit
of {sn}.”

13: See page 46 of Rosenlicht for a proof.

14: Note that nxy > k for all k, by
induction.

where by notation we write
S = {8152 ={S1,--sSns--- )

or just sy.

Definition 2.2.2 (Convergence) Let (E, d) be a metric space and {s, }n>1
a sequence. Then, s converges'? to L € E ifforall e > 0, there exists N € Z
such that forn > N,

d(sy, L) < e.

That is,
sp € B:(L).

Example 2.2.1 For instance, let £ := R and s, := 1/n. Of course,

1
— — 0.
n

Lemma 2.2.1 A sequence {s, } in (E, d) converges to L if and only if for any
openset U C E, with L € U, there existsan N € Z 1, we have s, € U.

Lemma 2.2.2 Convergent sequences are bounded.

Remark 2.2.1 Suppose {s,} is a sequence in a metric space (E, d). If
sp — Lyand s, — Ly, then L1 = L,.18

Definition 2.2.3 (Subsequences) Let s : Zy — E be a sequence. A
subsequence™ of s is a mapping

f:Zy —>E
of the form f = s on, wheren : Z — Z is strictly increasing. That is
l<ni<ny<---<np<---,
with
SO0 ={Sn; Snos---sSngs--- )

Remark 2.2.2 If s, — L and {sy,, jg=, a subsequence, then s,, — L.

Lemma 2.2.3 Suppose C is closed in (E, d), {sn} is a sequence in C, and
Sp — L. Then, L € C. Conversely, if for any convergent sequence {s,} in C
withlims, € C, then C is closed.

Proposition 2.2.4 Suppose {a, } and {b,} are two convergent sequences in
R with limits a, — a and b, — b. Then,

(1) an +bn —d +b
(ii) apb, — ab.
(iii) forall ¢ € R, we have ca, — ca.



(iv) if b # 0and b, # O for all n, then

1N

n

bn

—

SR

(v) ifa, < by, thena < b.

Definition 2.2.4 (Interior) Let (E,d) be a metric space with a subset
S C E. Then, the interior of S, usually denoted S°, is defined as

§° = U 0,
ocsS

where O is open. Then, this is the largest open set contained in S.

Definition 2.2.5 (Closure) The closure of S, where our sets are as above,
denoted S, is defined as
S = ﬂ C,

scC

where C is closed. Then, this is the smallest closed set containing S.

Definition 2.2.6 (Boundary) The boundary® of S as above, denoted 9S, is
defined as S \ S°.

Example 2.2.2 Let £ := R with the standard metric. Then, setting
S =Q,forallg € Q, for all » > 0, we have

By (¢) N(R\ Q) # 2,
s0Q° =g, Q =R, and

IR=Q\Q° =R

Definition 2.2.7 (Exterior) The exterior'® of S as above, denoted Ext(S), is
defined as
Ext(S) := (E \ §)°.

Theorem 2.2.5 Let (E, d) be a metric space with a subset S C E. Then,

(1) S° ={x € S : thereexistsan ¢ > 0 such that B;(x) C S}.
(i) E\S = (E\S)°.
(iii) S = {x € E : there exists a sequence {s,} C S with s, — x}.
(iv) 0S = (E\S)°N(E\(E\S)°).

(v) E=S°UdSU(EN\S)".

Example 2.2.3 For instance,let S := {I/n:n > N € Z} as a subset
of R. Then,

(@) S° =@.

(b) S =S U{0.

() 3S =S\ S°=SU{0.
(d) Ext(S)=(R\ S)°=R\S.

2.2 Convergence | 11

15: Note that none of objects like these
have a metric in their definitions. You
may realize that this implies their
existence in more general, topological
spaces.

16: Though this is not as commonly
defined in introductory courses, it is an
object often used by analysts.
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17: We will define what this means later.

18: Note that constant seuqences are
increasing, as is
1
ap:=1——.
n
19: Thus, constant sequences are also

decreasing, as is

1
by = —.
n

20: That is, for all M € R there exists
NeZ,yforn>N,ap, <M.

21: The former occurs when {s;,} is
bounded below

2.3 Norms and Completeness

We now need to come to terms with completeness on the real line.
However, our notion of least upper bounds is not particularly easy to
work with here, so we want to work on concluding that every real Cauchy
sequence converging'’ yields completeness on R.

Definition 2.3.1 (Increasing) A sequence {a,} in R is increasing'® if

a1<ay<az<---<ap<---.

Definition 2.3.2 (Decreasing) A sequence'® {by} in R is decreasing if
by =by=by=byp ="

Definition 2.3.3 (Monotone) A sequence is monotone, or monotonic, if it
is decreasing or it is increasing.

Theorem 2.3.1 Any bounded monotonic sequence in R converges.

Example 2.3.1 Suppose {a,} is defined recursively for alln € Z,

a ;= 2 as : \/2—{— =2+ ap,.

Then, {a,} converges.

Definition 2.3.4 (Divergence) A sequence {a,} < R diverges to +oo if for
all M € R, there exists N € Z such that forn > N, a, > M. Similarly,
{ay} diverges to —oo if {—ay} diverges to +00.%°

Theorem 2.3.2 A monotone sequence in R either converges or diverges to
+o0 or diverges to —oo.

Remark 2.3.1 Now, suppose ' € S C R are bounded. Then,

() supT <supS.
(i) inf7 > inf S.

Suppose {s,} € R is a sequence which is bounded above. Then, for all N,
let
vy i=supl{sp:n >N} >supl{s, :n >N+ 1} =vni1.

We get a monotone sequence, meaning the sequence {v, } either converges
or diverges to —oo.%..

Example 2.3.2 Let s, := (—1)", then
vy, =sup{(-1)":n>N}=1.

That is, v, exists, even when s, /4 L.
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Definition 2.3.5 (Limit Superior) We define

limsups, := lim vy.
N—oo

This limit may be —oo.

Definition 2.3.6 Similarly, if {s,} is bounded below, we define

liminfs, := A}im inf{s, :n > N}.
—>00

This limit may be 4-oco.

Example 2.3.3 We have

liminf(—-1)" = lim inf{(-1)" :n > N} = —1.
N —o0

Remark 2.3.2 We get

inf{s, :n >N} <sy <sup{s,:n> N}

Remark 2.3.3 Given an arbitrary sequence {s,}. The sets
{$n :1n >N}
need not be bounded above. Then,
sup{s, :n > N} = +o0,
so limsup s, := +o00. Similarly, if
inf{s, :n > N} = —o0,

we define liminf s, := —oo.

Example 2.3.4 Let s, := (—1)" again. Then,

limsups, = +o00 and liminfs, = —oo.

Theorem 2.3.3 Let {s,,} be a sequence in R. Then,

(i) If {sn} converges or diverges to 00, then
liminfs, = lims, = limsup s,.

(ii) If
liminfs, = limsup Sn, 22 22: Note that both could be —oo or both

could be 4-00.
then

lims, = liminfs, = limsup sj,.

Definition 2.3.7 (Cauchy Sequence) A sequence {s,} in a metric space
(E.d) is Cauchy if for all ¢ > 0, there exists an N € Z 4 such that for all
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23: We can use an easy /2 argument as
proof.

24: This gives us that both R and R are
complete.

25: This gives us a way to determine if a
sequence is not Cauchy.

26: While we defined an axiom
completeness for R earlier, we need to
demonstrate that R actually satisfies the
definition via Cauchy sequences in a
metric space.

n,m> N,
d(Sp, Sm) < &.

Lemma 2.3.4 Any convergent sequence is Cauchy.?

Example 2.3.5 Let

We have
21
lims, = Z T
k=1

This sequence is not Cauchy.
Remark 2.3.4 In a metric space Cauchy sequences need not have limits.

Definition 2.3.8 (Completeness) A metric space is complete if every Cauchy
sequence converges.*

Lemma 2.3.5 Let (E, d) be a metric space with a Cauchy sequence {s,}.
Then, {Sn}nez ., is bounded.*®

Lemma 2.3.6 Suppose {s,,} is Cauchy with a convergent subsequence {sy, }
with
Sp, — L,

k—>o0
then
S —> L
n—>oo
as well.

Our goal is to demonstrate that R” is complete with respect to d; as the
Euclidean metric. We first prove that R is complete.

Lemma 2.3.7 (Bolzano-Weierstraf3) Let {s, } be a bounded sequence in R.
Then, if
L :=limsup s,,

there exists a subsequence {sy, } of s, such that

Sp, — L.
k—o00

Corollary 2.3.8 (Real Completeness) R is complete.?

We have seen (R”, d3) is a metric space where

n 1/2
da: (x,y) (Z(xi —y,->2) .

i=1



We also have

n
dy: (x,9) P Y |xi = yil
i=1

deo @ (x,y) = max |x; — yi|
1<i<n
as useful metrics on R”.

Lemma 2.3.9 (Higher Euclidean Completeness) The space (R", d;) is
complete.

Definition 2.3.9 (Norm) A norm on an [F-vector space V' is a function is a
function
-l : ¥ — F:x— ||x||

such that

(i) ||x|| = 0 forall x and ||x|| = 0 if and only if x = 0.
(i) JAx] = |Allx]
(i) |x + yl < llxl + Iyl

Recall, we have the norms

n
Ixlly ==l

i=1

(2”: x}) 1/2

i=1

[l -

sup {[x;[}.

1<i<n

XMoo :
These are known as the £;, {5, and £, norms, respectively.

Lemma 2.3.10 Let
Il =V - F

be a norm. Then,
d: VXV —F:(x,y) = x—yl

is a metric.?

Definition 2.3.10 (Norm Equivalence) Two norms ||-|| and |-|" on a
vector space™ Y are equivalent if there exist c1, ¢y > 0 such that

callxl < Ix]" < eallx||
forallx € V.
Definition 2.3.11 (Metric Equivalence) Two metrics d and d' on E are
equivalent if there exist ¢y, ca > 0 such that
Cld(x, J’) = d,(x7 Y) = Czd(X, .V)

forall x, .

2.3 Norms and Completeness | 15

27: We call a vector space with a norm a
normed vector space. Note that any inner-
product space has the inner-product
induce a norm which induces a metric.

28: We require dim % < oo.
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Theorem 2.3.11 We have, for all x € R”,

1
Slxlly = Nxlloo = llxllz = flxfly-

Remark 2.3.5 Given two norms |-|| and |-||’, and there exist ¢1,c; > 0
such that
cillxll < lIx)l” < eallxll,

for all x, then
callx =yl < llx =yl" < callx = yll.

Thus, the metrics d(x,y) := ||x — y| and d'(x,y) := ||x — y|’ are
equivalent.

Lemma 2.3.12 Suppose
d,d' : E —[0,00)
are two equivalent metrics.

(i) {sn} € E is d-Cauchy if and only if {s,} is d’-Cauchy.
(ii) {sn} C E is d-convergent if and only if {s,} is d'-convergent.

29: That s, all of the Cauchy sequences Corollary 2.3.13 Both (R", d5) and (R", dwo) are complete.”
in either converge.

2.4 Topology and Compactness

Recall, we previously proved three major properties of open sets in
(E,d):

(a) Both @ and E are open.
(b) If O and O’ are open, thensois O N O'.
(c) If {Oq}aea is a collection of open sets, then

U o
a€A

is open. It turns out, these properties can actually be turned into a
definition.



2.4 Topology and Compactness | 17

Definition 2.4.1 (Topology) A topology I on a set X is a collection of
subsets of X.>* The elements of 7 are called “open sets.”

(i) Both @, X €.
(i) If 0,0 €T, then O N O’ € 9J.
(iii) Any collection {Ogy}qea S T has

anea‘.

a€A

That is, we have proved that if (£, d) is a metric space, then there exists
a topology J; induced by d.

Definition 2.4.2 (Topological Space) A topological space is a pair (X, J)
where I is a topology on the set X.

Lemma 2.4.1 Let d and d’ be two equivalent metrics on a set E. Then, the

induced topologies Ty = Ty

Definition 2.4.3 (Convergence) If (X,J) is a topological space with a
sequence {sp} < X, then

s ——> L eX
n—00

if for all open sets U € X with L € U, there exists an N such that n > N
implies s, € U.

Remark 2.4.1 If I = J; for some metric d, then the two notions of
convergence agree.

Corollary 2.4.2 Let E be a set with equivalent metrics d and d’. Then,
sp —— L e E
n—oo
with respect to d if and only if
s, —— L eE
n—>oo

with respect to d’.

Definition 2.4.4 (Open Cover) Let (X, J) be a topological space with a
subset K € X. An open cover of K is a collection of open sets { Og }aca such

that
K< | 0.

a€A

Example 2.4.1 Consider the collection

{n.n +2)jnez.

This is an open cover of R.%?

30: Note that this means
T € 2(X),

the power set of X.

31: That s, they give rise to precisely the
same topologies.

32: Similarly, we could have

{Ge, x +2)}xer

as an open cover of R.
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33: K is finite.

34: This is essentially proved in the
exercises.

Example 2.4.2 If (E, d) is a metric space, then the collection

{Bl_l/n(x)}n€Z+

is an open cover of Bj(x).

Definition 2.4.5 (Compact) A subset K of a topological space X := (X, T)
is compact if for every open cover {Uqy }qca of K, there exists a finite subcover.
That is, there there exist o, . .., o € A such that

KC Uy U---Ul,.

Example 2.4.3 Any finite set K is compact. If {U,} is an open cover
of K := {x1,...,x,}, thenfor all i, x; € Uy, for some o; € A. Thus,

K =Uixi} =€ UUy-.

Lemma 2.4.3 Let (X, 9) be a topological space with K € X compact and
C C K closed. Then, K N C is compact.

Theorem 2.4.4 Let (E, d) be a metric space. If K C E is compact with
respect to Jy, then K is closed and bounded.

Remark 2.4.2 In general, compact sets do not need to be closed. For
instance, let X := {a,b}, with T := {X, @, {a}}. Then, K = {a} is
compact,®® but it is not closed, since X \ K = {b} ¢ J.
Theorem 2.4.5 Let (X, J) be a topological space. A sequence

Ki2Ky 22Ky 2+

of nested, closed, nonempty, compact sets has

0o
ﬂ K; ;é a.
Sl

Definition 2.4.6 (Sequentially Compact) A subset K of a topological
space X is sequentially compact if every sequence in K has a convergent
subsequence whose limit is in K.

Remark 2.4.3 Suppose K € R” is closed and bounded. Then, K is
sequentially compact.®*

Lemma 2.4.6 Let (E, d) be a metric space and K C E is compact. Then, K
is sequentially compact.

Definition 2.4.7 (Total Boundedness) A subset K of a metric space (E, d)
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is totally bounded if for all € > 0, there exist
X1,...,X, € K

such that®®
K C Be(x1) U+ U Be(xp).

Lemma 2.4.7 Suppose (E, d) is a metric space and K C E is sequentially
compact. Then, (K, d) is complete and totally bounded.

Lemma 2.4.8 Let (E, d) be a metric space with K € E complete and totally
bounded. Then, K is compact.

That is, for a metric space (E, d) with a subset K C E, the following are
equivalent:

(i) K is compact.
(if) K is d-complete and totally d-bounded.
(iii) K is sequentially compact.

We can use this to trivially deduce a well-known analysis result.

Theorem 2.4.9 (Heine-Borel) A subset K € R” is compact if and only if
K is closed and bounded.

35: That is, for all ¢ > 0, K can be
covered by finitely many balls of radius
e.






Continuous Functions

Having developed the setting of metric spaces and topological spaces, we 3.1 Continuity on Metric and

will consider the notion of continuous maps. Note that continuous maps Topological Spaces . . . . . 21
are precisely the arrows of mor Top, where ob Top = (X, J), topological =~ 3-2Limits . ............ 23
spaces. 3.3 Uniform Continuity . ... 24
3.4 Sequences of Functions . . 25
3.5 Connectedness. . . ... .. 27

3.1 Continuity on Metric and Topological
Spaces

Definition 3.1.1 (Continuous at a Point) Let (E, d) and (E’,d’) be two
metric spaces. A function f : E — E'is continuous at p € E if for all
& > 0 there exists a § > 0 such that forall x € E, if

d(x, p) <8,

then
d'(f(x), f(p) <e.

That is, )
I (B{(p)) < B (p).

Definition 3.1.2 (Continuous) A function f : E — E’ is continuous if it
is continuous at every point p € E.

Example 3.1.1 Let (E, d) be a metric space with a point ¢ € E. Then,

fE—->R:p—d(p,q)

is continuous at every p € E.

Example 3.1.2 Define

0, x isirrational
fR>R:x+ ] ]
1, isrational.

Then, f is not continuous at any point.

Theorem 3.1.1 A function
f(E,d)— (E'.d)

is continuous if and only if for all open U C E’ open, f~1(U) is open.

Corollary 3.1.2 A map
fi(E.d)— (E'.d")
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is continuous if and only if for all closed C € E', f~1(C) is closed.

Definition 3.1.3 (Continuity) A map between two topological spaces
[ (X, 9)—> X9

is continuous if for all open sets U C X', the pre-image f~1(U) is open.

Remark 3.1.1 If d; and d, are two metrics on E such that

Ja, = Ja

29

and d{ and d} are two metrics on E’ such that

Tu; = Tuy.

then a map
[ (E,d)— (E'.d))

is continuous if and only if
f i (E.dy) — (E'.d3)

is continuous.

Theorem 3.1.3 The composition of two continuous maps is continuous. That
is, if
[ (X, Ix) > (Y. 9y)

and
g: (Y, 9y) - (Z£.9z)

are continuous, then so is

gof (X, 9%)— (Z£,9z)
Theorem 3.1.4 Images of compact sets under continuous maps are compact.

Corollary 3.1.5 Let (E, d) be a metric space, and let X be a topological space
with a continuous map
f:X—>E.

Then, for any compact set K € X, f(K) is

(i) complete and totally bounded.
(ii) closed.
(1ii) sequentially compact.

Corollary 3.1.6 Let (X,9) be a topological space with f : X — R
continuous and K € X compact. Then, there exist x1, x5 € K such that

S(x1) = f(x) < f(x2)

forall x € K.



3.2 Limits

Definition 3.2.1 (Cluster Point) Let (X, 9") be a topological space with a
subset S € X. A point x € X is called a cluster point if for every open set U
withx e U}

U\{xHNS #@.
Example 3.2.1 Let

S:={0}U[l1,2] C R

Then, the cluster points of S are [1, 2].
Definition 3.2.2 (Limit) Suppose (E,d) and (E',d") are metric spaces
with a subset A € E. Then, take the function
f:A—E

with a cluster point p of A.> Then

i s =g
if for all € > 0O there exists a § > 0 such that for all

x € AN Bs(p)

with x # p, we have
d'(f(x),q) <e.

Lemma 3.2.1 Given metric spaces E and E’ and a cluster point p of E, we
have that
f:E—E

is continuous at p if and only if

L ey = )

Theorem 3.2.2 Let E and E’ be metric spaces. A function f : E — E'is
continuous at p € E if and only if every sequence {s,} < E with

Sp ———
n—>o00

in E implies
) —= f(p)
in E'.

Theorem 3.2.3 Suppose f, g : (E,d) — Rare continuous at a point p € E.
Then, f + g and f - g are continuous at p, and if g(p) # O, then sois f/g.

Theorem 3.2.4 Suppose we have a function

f =1, fn): (E,d) > R"

3.2 Limits 23

1: That s, if X is a metric space, then x
is a cluster point of S if and only if there
exists a sequence {s,} € S \ {x} such
that

Sp —> X.
n—oo

Note that U, as in the definition, is called
an open neighborhood of x.

2: Note that we are not assuming p € A.
Evenif p € A, we are not requiring that

S(p) = lim f(x).
X—>p

Thus, f(p) need not be defined.



24 3 Continuous Functions

3: Thatis, the Euclidean-valued function
is continuous if and only if each of its
components is continuous. This fact is
usually taken for granted in any vector
calculus course.

4: We look at the positive part of R since
if f is not uniformly continuous on the
positives, it is not uniformly continuous
on the whole real line.

5: The proof of this is essentially just
stringing together the two definitions.

6: Note that we have not rigorously
treated the sine function yet, but that
is alright.

withapoint p € E. Then, f is continuous at p ifand only if f; is continuous
at pforall1 <i <n.

3.3 Uniform Continuity

Recall that f : (E,d) — (E’,d’) is continuous if for any p € E, for all
€ > 0 there exists § = §;,, > 0 such that

dx,p)<é

implies

d'(f(x), f(p)) <e.

Definition 3.3.1 (Uniform Continuity) A function
f(E,d)— (E'.d"

is called uniformly continuous if for all ¢ > 0 there exists a § = 6, > 0 such
that
d(x,p) <§

implies
d'(f(x), f(p) <&
forall x, p.

Example 3.3.1 For a non-example, consider the function *

f:[0,00) > R:x > x2.

Note that

/() = SO = |x = y| |x + y| = 2min{x, y}lx — y|.

N —— — N— —
x2_y2 x+y

Thus, for any §, if x,y > 1/§, and |x — y| = §/2, we have

=1.

o | =
| S

lfx)—fODI=2-

Lemma 3.3.1 Suppose f : E — E' between metric spaces is uniformly
continuous. Then, for any Cauchy sequence {s,} in E, f({sn}) is Cauchy.®

Example 3.3.2 Consider the function

f:(O,])—)RZ)CI—)Sin(l).

X
We claim that f is not uniformly continuous.® We have that

1
Spi=m——— 50
/2 4+ wn n—>oo
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is Cauchy, but
(T n
f(sy) =sin (5 + nn) = (-D",

so f is not uniformly continuous.

Theorem 3.3.2 Suppose f : E — E'is continuous and E is compact. Then,

f is uniformly continuous.” 7: The trick here is to construct the open
cover
{Bs./2(*)} ek
. of E. Then, we define
3.4 Sequences of Functions s s
8 :=min{ﬂ,,,,, Xn }
2 2
Definition 3.4.1 (Sequence of Functions) A sequence of functions is a map
Zy — F((E,d):(E' d))
of the form
{fo i (E.d) — (E',d) 2y
Definition 3.4.2 (Pointwise Convergence) The sequence { f} converges
pointwise to f : E — E' ifforall p € E,
Ja(p) = f(p).

Example 3.4.1 For instance, let E = E’ := [0, 1] with® 8: We can see that the pointwise limit
of continuous functions need not be
continuous.

. n 1, x=1
lim x" =
n—00 0, 0<x<1.

Definition 3.4.3 (Uniform Convergence) Given a sequernce of functions

{fu:(E.d) —> (E'.d)},

and a subset A C E, we have that f, — f uniformly on A if forall ¢ > 0,
there exists an integer N € Z 1. such that n > N implies

d'(fa(p). f(p)) <&
forall p € A.

Equivalently, we have that

(i) given e > 0, there exists an N such thatn > N implies

sup {d'(fa(p). f(p)) : p € A} <e.
(ii)
lim sup {d'(fu(p). f(p)): p € A} = 0.
Example 3.4.2 Define

Jn i [0,1] = [0,1] : x > x"
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9: Note that {f,} converges on the on A = [0,a] with a < 1. Then, { f,} converges uniformly.’
interval [0, 1), but not uniformly.

Example 3.4.3 Now, let’s take a look at

nx
For each n, we end up with a pointwise limit forcing this to 0. Now, for
x # 0, we get

IA

‘ nx

‘ nx ‘_ 1
1 + n2x2

n?x2 _n|x| n—>00

However, note that
1 1
fn (_) T2 7L> 0’
n 2

so convergence of { f, } is not uniform.

Definition 3.4.4 (Uniformly Cauchy) A sequence of functions
{fn: E—E'}

is uniformly Cauchy on A C E if for all ¢ > 0, there exists an N € Z 4 such
that n,m > N implies

sup{d'(fu(x), fm(x)) : x € A} <e.

Now, we can simplify this concept by introducing the concept of a metric
on function spaces, but we have some legwork to finish first.

Theorem 3.4.1 Given a sequence of functions

{fn E— E/}I’LEZ+

with E' complete. Then, { f,} converges uniformly on A if and only if
10: We use that for all x € E’, the map {fn }neZ+ is uniformly Cauchy.lo

h:E —[0,00): p+—>d'(x,p)

is continuous. Theorem 3.4.2 The uniform limit of continuous functions is continuous.

Definition 3.4.5 (Bounded Functions) Let (E,d) and (E’,d’) be two
metric spaces. A function f : E — E’is bounded if f(E) € E’ is bounded.
We construct the space

G(E,E') :={f: E — E': fisbounded and continuous}.
Definition 3.4.6 (Metric on Continuous Functions) We define the metric
on B(E, E’) to be

D:QG(E,E')xB(E,E") — [0,00)
prescribed by

D :(f.g) > sup{d'(f(x),g(x)):x € E}.
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Now, taking the metric above, we can write that f, — f in (6(E, E’), D)
if and only if f, — f uniformly. Similarly, { f4}nez, is Cauchy in
(B(E,E'), D) ifand only if { f, }nez_, is uniformly Cauchy.

Theorem 3.4.3 If E' is a complete metric space, then (6(E, E’), D) is
complete.

Note that if £ := Z4 C R, then

®(E, E’) := bounded sequences in E’.

3.5 Connectedness

We now take a brief moment to return to our discussion of topology.

Definition 3.5.1 (Connected) A subset Y of a topological space X is
connected if for all open U,V € X withY C U UV and

YNnU)NYNV)=g,

either Y CVorY cUN 11: In particular, a space X is connected
ifX =UUV withUNV = & implies
X=UorX=V.
Example 3.5.1 For a non-example, consider
Y :=1[0,1/2) U (1/2,1] € R,

where R takes the standard topology. Now, Y is not connected, as if
we take U := (—00,1/2), V := (1/2,00),and (U N V) = &, then

Y= NU)uEnv).

Definition 3.5.2 (Subspace Topology) Suppose (X, ) is a topological
space with a subset Y < X. A subspace topology Iy on Y is

Jy :={UNY :UeT}.
Remark 3.5.1 Jy is a topology.

Remark 3.5.2 If d is a metricon X and dy = d|yy, then

Tay = Ta)y-
Theorem 3.5.1 [0, 1], with the standard real topology, is connected.

Theorem 3.5.2 Suppose f : X — Y is continuous, where the domain X is

connected. Then, f(X) CYis connected.? 12: In particular, any image of [0, 1] is
connected.

Corollary 3.5.3 Forall a,b € R with a < b, the interval [a, b] is connected.
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13: Note that y is called the “path”
between p and g in X.

14: That is, for all y1,y> € Y, the
segment [y1,y2] € Y,s0Y < R
connected implies Y path-connected.

Definition 3.5.3 (Path-Connected) A topological space X is path-connected
ifforall p,q € X, there exists a continuous function®

y:[0,1] > X :0— pand 1 — q.

Example 3.5.2 Let X := R". This is clearly path-connected, as for all
P, q € R", we have that

y(@) =tp+(1—q),

where ¢ € [0, 1], is a path from p to q.

Definition 3.5.4 (Convex) A subset X of R" is convex if forall p,q € X,
tp+(1—-t)geX

forallt € [0, 1].
Theorem 3.5.4 Path-connected implies connected.

Lemma 3.5.5 For Y C R, Y is connected if and only if Y is convex.'*

Theorem 3.5.6 (Intermediate Value Theorem) Suppose X is connected
and f : X — R is continuous. Then, for all y,,y, € f(X) such that

Y1 < Y2, the segment [y1, y2] € f(X).

Example 3.5.3 Suppose f : [0,1] — [0, 1] is continuous. Then, f
has a fixed point. That is, there exists x € [0, 1] such that f(x) = x.
This is a standard olympiad-style problem, but given our tools, we
get this essentially for free. Consider g(x) := f(x) — x. Then, g(0) =
f(0)—0=>0and g(1) = f(1) — 1 <0, s0 IVT gives that there exists
an x such that g(x) = 0.

Example 3.5.4 We want a set A € R? which is connected and not
path-connected. Let

pim(nn ) o].

f:(O,oo)—>B:x—> (x’sjné)

Note that

is continuous and surjective, having that (0, co) connected implies B

is connected. If |

Con/2+4 wk’
then .
. . z IVERTY
sm;-sm(2 +7Tk> = (—=D*.
Now, take
A:= ({0} x[-1,1])) U B.
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4.1 leferentlablllty 4.1 Differentiability . . . .. .. 31

4.2 Function Spaces and Series 34

Definition 4.1.1 (Differentiable) Let U < R be open. Then, a map f :
U — R is differentiable at a € U if

o S0 = f@
im ———~
x—a X —a
exists. 1: If f is differentiable at a, we write
Sf'(a) or
47 @)
Example 4.1.1 With U := Rand f(x) := x, takea € U. for dx
. fx) - fa)
_ _ lim ——————=.
lim f(X) f(a) = lim X a — 1’ xX—a X—a
x—a X —a x—a x —da
SO 4
X
(@) =1
e (a)

Example 4.1.2 Let f(x) = ¢, a constant. Then,

d — 0
4 @) = tim £ = Jim — 0.
dx x—>ax—a x—>ax-—da
Example 4.1.3 Let
U:={xeR:x#0}
and f(x) := 1/x. Then, foralla € U,
. 1/x—=1/a . a—x =1 1
lim ——— = lim —— = lim — = ——.
x—>a X —a x—aax(x —a) x—axa a?

Thus,
d/ry 1
dxr\x/ —  x%

Definition 4.1.2 (Equivalent Differentiability) We can rewrite our
definition at a € U:

(i)
lim L@+ = f@)
im —————
h—0 h

(i) There exists an f’(a) € R such that

exists.

. 1
lim
X—>a X —ad

(f(x) = f(a) = f'(@)(x —a)) = 0.

Lemma 4.1.1If f : U — R is differentiable at a, then f is continuous at a.
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2: Rosenlicht proves this theorem

differently, not using the Chain Rule.

Lerman decided the way we have written
would be far quicker.

3: Thatis, f achieves a local maximum
or a local minimum at a.

Lemma 4.1.2 (Chain Rule) Suppose f is differentiable at a and g is
differentiable at f(a), then g o f is differentiable at a, and

(g0 f)(a) =g (f(@)f(a)

Corollary 4.1.3 Suppose f is differentiable at a and f'(a) # 0. Then.

1
e
is differentiable at a and
1 _ 1 ’
K@) =~ /'@

Theorem 4.1.4 (Derivative Operations) Suppose f, g are differentiable at
a, and let ¢ € R be a constant. Then, cf, f + g, and f - g are differentiable
ata.If g(a) # 0, f/g is differentiable at a.>

i) (cf)(a) = cf'(a).
i) (f +¢g)'(@) = f'(a) + g'(a).
(iii) (f -8)'(a) = f'(@)g(a) + f(a)g'(a).

(iv)
. . f@gla)— fla)g'(a)
- (a) - 2 o
g g(a)

Theorem 4.1.5 (Derivative at Extrema) Suppose f : U — R is
differentiable at a and a is an extremal point for f.3 Then, f'(a) = 0.

Example 4.1.4 Let f(x) := x(1 — x) = x — x2. Let us try to find
sup{f(x) : x € [0,1]} and inf{f(x):x € [0, 1]}.
We know these exist, since [0, 1] is compact and f is continuous. Now,
f(0) =0=f(1) =inf{ f(x) : x € [0, 1]},

as f(x) >0on|0,1]. Forx € (0,1), f/(x) =1—2x,and f'(x) = 0if
and only if x = 1/2, where

SO .
sup{f(x) : x € [0,1]} = T

Remark 4.1.1 Note that x’ = 1, and
(x") =nx""1.

Additionally,

1
1/ny/ 1/n—1
X = —X o
( )



Theorem 4.1.6 (Rolle’s Theorem) Let f : [a,b] — R be continuous and
differentiable on (a, b) with f(a) = f(b) Then, there exists a ¢ € (a,b)
such that f'(c) = 0.

Theorem 4.1.7 (Mean Value Theorem) Take f : [a,b] — R to be
continuous and differentiable on (a, b). Then, there exists ¢ € (a,b) such

that
f(b) — f(a)
T

—a

fle) =

Corollary 4.1.8 Suppose f : (a,b) — R is differentiable, and f'(x) = 0
forall x € (a,b). Then, f is constant.

Corollary 4.1.9 If we have that f, g : (a,b) — R with both differentiable
and f'(x) = g'(x). Then, for all x € (a,b), f(x) — g(x) is constant.

Example 4.1.5 Suppose f : R — R, and suppose there exists o > 1
such that

|f(x) = fOD] < x = y[%,

foral x,y € R. Then, f is constant.*

Lemma 4.1.10 Suppose f : (a,b) — R is differentiable and f’'(x) is
bounded on (a, b). Then, f is uniformly continuous.

Theorem 4.1.11 Suppose f : (a,b) — R is differentiable on (a, b). Then,

(i) if f'(x) > O forall x, then f is strictly increasing.®
(ii) if f'(x) < O forall x, then f is strictly decreasing.
(iii) f'(x) > 0 for all x if and only if f is non-decreasing.
(iv) f'(x) <0 forall x if and only if f is non-increasing.

Theorem 4.1.12 (Inverse Function Theorem) Suppose f : (a,b) — (c,d)
is a continuous bijection. Fix xo € (a,b), where f is differentiable at xo and

f'(xg) # 0. Then,
f'i(e,d) = (a,b)

is differentiable at yo = f(xo) and®
(ST o) f(x0) = 1.

The harder, more interesting part of this proof, comes from the topological
concerns of the continuity of the inverse of a continuous bijection. Clearly,
this inverse is continuous if and only if f is a homeomorphism. We will
instead use a lemma for the metric space setting.”

Lemma 4.1.13 Let (S, d) and (S’, d') be two metric spaces with S compact
and f : S — S’ continuous. Then,

g:=f":8->8

is continuous.
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4: We first prove this function is
differentiable via the defintion, and then
use the corollary to show f is constant.

5: Note that the converse is trivially false.
For instance, if f(x) := x3, f is strictly
increasing but f/(0) = 0.

6: Note that

x= 71O,

so if we know that f is differentiable at
yo = f(x0), so Chain Rule gives the
formula we have.

7: Note that we could be more general,
but the metrics are nice for the proof.
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8: Thatis,

“1y _ 1
(T ((f(x0))) = o)

9: We write

fx) =)

10: Note that an easy object in this space
are the polynomials.

Theorem 4.1.14 (Inverse Function Theorem) Let
f :(a,b) = (c,d)

be a a continuous bijection, f be differentiableat xo € (a, b),and f’(xo) # 0.
Then,

g:=f"li(c.d)— (a,b)
is differentiable at yo =: f(xo) and®

g'(¥0) f'(xo) = 1.

Example 4.1.6 Let f(x) :=sinx and x € (—n/2,7/2), then
g(y) = f71(y) = arcsin(y).
We get that

1 1 1
f'(x)  cos(arcsinx) /1 —y2

g'(sin(x)) =

Definition 4.1.3 (k-Times Differentiable) A function
f:(a,b)—>R

is twice differentiable if f is differentiableon (a, b) and f'(x) is differentiable.’
Similarly, f is k-times differentiable if f is (k — 1) differentiable and f%*=1
is differentiable.

Definition 4.1.4 (Infinitely Differentiable) Wesay f, as above, is infinitely
differentiable if f is differentiable for all k.

4.2 Function Spaces and Series

Definition 4.2.1 (Function Spaces) We define the function space
€*(a,b) = {f :(a.b) = R: f k-differentiable, f® continuous}
We also also have the space'
€>°(a,b) :={f : (a,b) — R : f is differentiable for all k },

which equals
oo
| €*@.b).
k=0

where 6%(a, b) is the space of continuous functions.

Example 4.2.1 Define

e Ux x>0

J(x) = 0, x <0.
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Then,

1 1
lime Y% = lim = lim — =0,
x40 x}0 e 1x 7 usoo e

so f is continuous at 0. Additionally,

_iyx 1 L
Ux = lim e *u? =0,
2 U—>00

lim f/(x) = lime

xJ0 x{0
where the final equality comes from L'Hopital’s rule, which we have
not proven yet. By induction, f € €%, and f®(0) = 0 for all n.

Theorem 4.2.1 (Taylor’s Theorem of Finite Taylor Series) Let U R be
an open interval, and f : U — R is n-times differentiable. Fix a € U. For
all x € U, there exists a ¢ between a and x such that

nol ol (n)
f) =" / k!(a) (x —a)* + A n!(c) (x—a)".

k=0 ~—————_—
error term

Example 4.2.2 If we have

e VX x>0

fx) = 0. ©<0.

with a := 0 and U := R. Taylor’s Theorem then states that
()
Z ko f(e)
Sy =2 0+ T
for some c.!!

Example 4.2.3 Let f(x) := sinx, in which case f'(x) = cosx,
f"(x) = —sinx, f®(x) = —cosx, and f®(x) = sinx, so the
period is four. If we take a := 0, then'?

0, 2| n

() — gin®
sin(a) = sin"V(0) = —1)yD/2. 24,

SO

. (—D¥
sin(x) = Z TR (2kH1

Corollary 4.2.2 Suppose [ € 6€°°(—a, a), and there exists M, C > 0 such
that forallk € Z , forall x € (—a, a),

10| <

11: So, here the theorem is not very
useful.

12: We’d like to note that it took Lerman
about five minutes to figure out how to
get the enumeration correct, so if your
indexing work is shoddy, you may still
have a chance at a mathematics career.
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13: Thus, sinx, cosx,

4 Differentiation

eX, and all

polynomials are real analytic. Yet,

is not.

Fx) =

e /X x+£0

s

x=0

Then, forall x € (—a,a),

>, f™(0) al
f(x) = kz = Z
=0 k=0

k
( )(0) K

Thus, in the case of f(x) :=sinux,

O] =1,

so we can take M :=1and C := 1, yielding

(=D" 4y
sin(x) = Z s 1)' 2+l

Remark 4.2.1 (Mean Value Theorem) If n = 1, the theorem says that

@) o, /()
1!

fx) = T(x —a) + (x —a)l.

That is, there exists a ¢ such that

f(x) = fa)

X —a

f(e) =

which is precisely the Mean Value Theorem.

Example 4.2.4 Suppose f(x) := cosx. Since | f ™ (x)] < 1. Then, the
corollary applies, so

cos®(0) (=1)nx2n
COSX—];) k. k Z (271)' )

for all x.

Definition 4.2.2 (Real Analytic) A function f is real analytic on an open
set U C Rif fis €% on U and for all x € U there exists § > 0 such that

X (k)
=3 IO o
k=0 ’
forallx € (a —§8,a + 8).B

Example 4.2.5 The function f(x) := 1/(1 + x) is real analytic on the
openset R\ {—1}.



Integration

5.1 Darboux Integration

First, we have a remark on notation. We take f : [a, b] — R tobebounded,

S C [a, b] to be a nonempty subset S # &, and we define
M(f.S) :=sup{f(x):xeS}

and

m(f,S) :=inf{ f(x) : x € S}.

Then, the big idea is that for nonnegative f : [a,b] — R,

b
/ f = the area under the graph of f.
a

Remark 5.1.1 If § is the interval of length ¢, and we have f|g > 0,
then! we expect

m(ﬁS)-€5/ f<M(f.S)-L.

N

Definition 5.1.1 (Partition) A partition P of an interval [a, b] is a finite,
strictly increasing sequence

P={a=ty<ti <---<ty_1 <ty =b}.

Definition 5.1.2 (Upper Darboux Sum) We define the upper Darboux
sum U(f, P) of f : [a,b] — R, with respect to the partition above, as

U(f, P) =Y M(f i1, i)tk — k).

k=1

Definition 5.1.3 (Lower Darboux Sum) The lower Darboux sum, with the
same parameters as above, is defined as?

L(f,P) =Y m(f [t te]) (tx — ).

k=1
Remark 5.1.2 Note that for any partition P,

U(f.P) <Y M(f.la.b)(tc — ti—1) = M(f.[a.B])(b —a).

k=1

5.1 Darboux Integration . ... 37
5.2 Riemann Integrability . . . 39
5.3 Properties of Integrals . . . 39
5.4 A Few Big Theorems . . .. 41
5.5 Natural Logarithm and

eXp(X) v v v 42

1: We assume from here on that
fila,b] > Ry

is bounded.

2: Realistically, these M and m notations
are rather annoying, so we will usually
write

Zinf (f|[tk,1 ,tk])(tk —tk—1)

when possible, and the same for

U(f, P).
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3: Now, we can define
U(f) == inf(U(f, P))
and

L(f):= SI;P(L(f, P)).

4: This is the standard pathological
example to give analysis students that
certain functions, like Dirichlet, require
more involved treatments of integration.
In this case, we need Lebesgue Integration,
usually covered in an introductory
graduate course on the subject.

5: Note that at this point, we really have
no way to deal with anything besides
bounded functions.

Similarly, for the lower sums,

L(f. P) z m(f.[a.b])(b—a).

Thus, for any partition P, we have

(b—aym(f.[a.b]) = L(f. P) =U(f. P) = M(f.[a.b])(b —a).

Definition 5.1.4 (Darboux Integrable) A bounded function f : [a,b] — R
is Darboux integrable if U(f) = L(f). In this case, we define

b
/f(X)dX= / f=U(f) = L.

[a.b]

Example 5.1.1 (Dirichlet Function) Define*

f:0,1] >R:x I, x irre.itional
0, x rational.

For any partition
P:={t <---<ty}

U(f.P) =Y M(f[te—1. i)tk te-1) = b —a

k=1

L(f,P) = ) m(flk — L)) (tx — tx—1) = 0.

k=1
Thus, f is not Darboux integrable.

Lemma 5.1.1 With f : [a,b] — R bounded, P, Q, two partitions of [a, b],
and P C Q, then

L(f.P)<L(f.Q) <U(f.Q) <U(f. P).

Corollary 5.1.2 Let f : [a,b] — Rand let P, Q be two partitions. Then,

L(f.P) =U(f. Q).

Theorem 5.1.3 With f : [a,b] — R bounded,® we have

L(f) =U(f).

Theorem 5.1.4 (Cauchy Criterion for Integrability) Take a bounded
function f :[a,b] — R. Then, f is integrable if and only if for all ¢ > 0,
there exists a partition P of [a, b] such that

0=<U(f.P)-L(f.P)=e.

We now wish to work towards a definition of Riemann integrability,
which was, in fact, the first rigorous definition of an integral.



5.2 Riemann Integrability

Definition 5.2.1 (Mesh) The mesh® of a partition P := {1ty <t; < -+ <
tnh}is
mesh(P) := max(t; —ti—1).
1

Definition 5.2.2 (Riemann Sum) Let f : [a,b] — R be a bounded
function and let P := {a =ty < --- < t, = b} be a partition. Then, choose
Xk € [tg—1,t] for all k. The corresponding Riemann sum is

Si= )" fOr)(tk — k1)

k=1

Definition 5.2.3 (Riemann Integrable) A bounded function f : [a,b] —
R is Riemann integrable if there exists R € R such that for all & > 0, there
exists 8 > O with the property that for all partitions P with mesh(P) < §,
for all Riemann sums of f associated to P,”

|S —R| <e.

As you can see, this is a terrible definition to work with.8 As such, we
would like to just work with Darboux integrals.

Theorem 5.2.1 (Integrability Equivalence) A bounded function f :
[a,b] — R is Riemann integrable if and only if f is Darboux integrable.’

5.3 Properties of Integrals

Theorem 5.3.1 Every monotonic function f : [a,b] — R is integrable.’
Note that for all x € [a,b], f(a) < f(x) < f(b),so f is bounded.
Theorem 5.3.2 Every continuous function f : [a,b] — R is integrable.

Once again we can leave out the word bounded, since continuous functions
maps preserve compactness.!!

Theorem 5.3.3 Suppose f, g : [a,b] — R are bounded and integrable.
(i) Forall c € R, cf is integrable and

cfzc/f.

[a,b] [a,b]

5.2 Riemann Integrability | 39

6: Note that the book uses rather
outdated terminology in these
definitions

7: Note that R is the value of the integral.

8: With all due respect to Riemann, I
suppose.

9: The values of the integrals agree.

10: Otherwise we would live in a very
sad mathematical world.

11: The proof of this property begins
with noting that compactness of [a, b]
implies f is uniformly continuous. This
is not trivial to prove, needing some open
covers, but clearly these notes have given
no attnetion to including proofs.
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(ii) f + g is integrable and

/(f+g)= / f+/g.

[a.b] [a.b] [a.b]

Remark 5.3.1 This implies that

(i) integrable functions form a vector space.
(ii) The map

/ : integrable functions — R

[a,b]

is linear.

Theorem 5.3.4 Suppose a < b < ¢, f : [a,c] — R is bounded, and
Slia,p1s S ip,c] is integrable. Then, f is integrable and

[ ]

[a,c] [a,b] [b,c]

Remark 5.3.2 At this point, given integrable f : [a,b] — R, we can

define

/ fx)dx :=— / J:

b
[a,b]

Then,

b c c

/ fx)dx +/ fx)dx = / S(x)dx,
a b a
12: We take this provided that f is even if b is not between a and c¢."?

integrable on the three relavent intervals.

However, it is important to note that

b
/ f(x)dx

is not an integral of a function. That is, it is an integral of the 1-form
Jf(x)dx, so it is an oriented integral.

Theorem 5.3.5If f, g : [a,b] — R are integrable and f(x) < g(x) for all

x, then
/ff / e
[

la,b] a,b]



Corollary 5.3.6 If f : [a,b] — R is integrable, then so is | f |, and™

fx)| = / FACIIE

[a,b] [a,b]

Corollary 5.3.7

(i) For all integrable functions q : [a,b] — R, g is integrable
(ii) If f, g : [a,b] — R are integrable then sois f - g.

5.4 A Few Big Theorems

Theorem 5.4.1 (Composition Integrability) Let f : [a,b] — [c,d] be
integrable and g : [c, d] — R be continuous. Then, h := go f :[a,b] — R
is integrable.

h integrable

T

[c,d] R

g continuous

[a.b]

f integrable

Theorem 5.4.2 (Fundamental Theorem of Calculus I) Suppose we have
continuous g : [a,b] — R, differentiable g|, ), and g’ is bounded and
integrable and [a, b]. Then,**

b

d
LW =/ g'(x)dx = g(b) — g(a).
X

[a.b] @

Corollary 5.4.3 (Integration by Parts) Suppose f.g : [a,b] — R is
continuous and differentiable on (a,b), and that f', g’ are integrable on
[a, b]. Then,

/fg’=(f(b)g(b)—f(a)g(a))— / f'g.

[a,b] [a,b]

Theorem 5.4.4 (Fundamental Theorem of Calculus II) Suppose we have
integrable f : [a,b] — R. Then,

F(x) :/ f(u)du

is uniformly continuous. Moreover, if f is continuous at xo € (a, b), then F
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13: Note that this does not work if we
use 1-forms, as our orientability messes
with the sign.

Figure 5.1: Diagram of Theorem 5.3.9.

14: “If you head over to Loomis,
they will state that every function is
integrable. I highly recommend not
arguing with them, as they will likely
tell you to go to Altgeld. It is a weird
North American phenomenon."

- Eugene Lerman
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15: The usual phrasing from calculus
books will assume that f is continuous
everywhere, therefore F is differentiable
everywhwere and has value f(x). This
is less precise, so in analysis books it will
be stated as it is here.

16: Recall that this is the Dirichlet
indicator function.

17: Thatis, u € ®1(I).

18: This is a properly rigorous defintion
of the natural logarithm. As you may have
already noticed, many mathematical
texts will simply write

log(x) = log, (x) = In(x),

and this is a matter of preference. (Who
cares about base-10?)

is differentiable at xo, and®
d ,
i F(xo) = F'(x0) = f(x0).
X

Note that

1/q. ifx = p/qand ged(p,q) =1

fR>R:x— oo
0, if x irrational

is integrable, and

g:R—>R:xm— L x>0
0,x <0
is integrable, yet
1, €
gof:R>R:xm— *eQ
0, xeR\Q,

which is not integrable.!® Thus, we cannot really do better than our
composition theorem requiring continuity of g(x).

Theorem 5.4.5 (Change of Variables) Let I, J beopen intervals,u : [ — J
be differentiable, and u' is continuous.” Suppose f : J — R is continuous.
Then, foralla,b € I,

b u(b)
/ (f ouw)(x)u'(x)dx = / f(u)du.
a u(a)

5.5 Natural Logarithm and exp(x)

Let us take a look at the function
1
f:(0,00) >R:xt+> —.
X

Since f(x) is continuous and differentiable, we can define

F(x)::[ ldu.
LU

Moreover, F'(x) = 1/x > 0, s0
F:(0,00) >R

is strictly increasing. Then, we can define'®

In(x) := F(x) = / d_u
1

u

We will soon see that
In:(0,00) > R
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is a bijection. We define

exp(y) := F~'(y),

and by the Inverse Function Theorem we get

d 1 1
FYy=—| (FH= — = = exp(y).
dy, F(F()  epl) F
Additionally, note that
"4
my= [ H—o

so exp(0) = 1.7

Lemma 5.5.1
(1) In(xy) = In(x) + In(y).
(i) In(1/y) = —In(y).
(iii) In(x") = nln(x) foralln € Z.
Since In(2) > In(1) =0,
In(2") = nln(2) —o

The Intermediate Value Theorem gives that In : (0, o) — R is onto.?

Remark 5.5.1 If we take a look at?

ln(exp(x) exp(y)) = ln(exp(x)) + ln(exp(y)) =x+4y,

SO
exp(x) exp(y) = exp(x + y).
Additionally, we get
exp(—x) exp(x) = exp(0) =1,
meaning

exp(—x) = xp(x)’

Definition 5.5.1 For x > 0, define
x%:(0,00) = R: x > exp(xIn(x)).

As a sanity check, for n € Z . we get

x" = exp(nIn(x)) = exp(In(x)) ---exp(In(x)) = x".

n times

We could have also used our previous result to give that

exp(In(x™)) = x".

19: Once we get to power series, we will
define sin(x) and cos(x).

20: As such, we can have the domain of
exp(x) to be all of R.

21: This is similar to the proofs you
may have seen in linear algebra that the
inverse of a linear map is a linear map.
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22: This might be the most dull theorem
we do in this course. In fairness, it gives
us a lot of freedom to work with the
operations we like.

23: We have that In(e) = 1.

24: However, this is not how we defined
it, so we can prove it from our version.

Theorem 5.5.2 %2

(i) x%xP = x*tB,
(i) x%/xP = x*=B,
(iii) (x*)B = x°8.
(iv) (xy)* = x%y%.
(v) d/dx (x%) = ax* L
(vi) d/da (x*) = In(x)x®*.

Definition 5.5.2 (¢*) Define e := exp(1). Then,?

e = exp(aIn(e)) = exp(@),
50

exp(x) = e*.

Lemma 5.5.3 Another common definition®* of e is

. ( 1)
Iim {14+ - ) =e.
n—o0 n
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Interchangeability and Series

6.1 Operations on Sequences of Functions

We will begin with a few examples of why interchanging limits, derivatives,
and integrals is a delicate subject.

Example 6.1.1 Define the sequence of functions

n, 1/n<x<2/n

0, otherwise.

2
/fnzl’
0

lim f,(x) = 0.
n—oo

lim /fn # / lim f,.

[0.2] [0.2]

f,,:[O,Z]—)[R:xr—){

Then,

but for all x € [0, 2],

meaning

Now, we will do some construction so we can find a theorem for when
we have nice behavior in such sequences.!

Example 6.1.2 There exists a sequence of integrable functions

{.fn : [0, 1] e R}n€Z+

such that
) = lim_fu(x)

is not integrable. We construct the countable Q N [0, 1], so there exists
a bijection
Zy —>QN0,1]:n+ry,

meaning we can define

1, ifx=ry,....1p
:[0,1] > R:x —
Ju 2 10.1] 0, otherwise.

Then, each f, is integrable with value 0, and?

lim f,(x) = 1g.
n—oo

6.1 Operations on Sequences of

Functions . .......... 47
6.2 Feynman’s Trick. . . . . .. 48
6.3 Aside on Improper

Integrals. . .......... 50
6.4 Series . ............ 51

1: Yuck; construction is the bane of the
author’s existence.

2: We denote Dirichlet’s indicator
function by 1.
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Theorem 6.1.1 Suppose { f, : [a,b] — Rinez, is a sequence of integrable
functions and suppose f, — f uniformly. Then, f is integrable and

T

[a.b] [a.b] [a.b]

Recall that f, — f uniformly on [a, b] if for all £ > 0 there exists an
N € Z such that
sup |fu(x) — f(x)] <e

x€la,b]

forallm > N.

Theorem 6.1.2 Suppose { f, : (a,b) — Riyez, is a sequence of ®!

functions, and that { f,]} converge uniformly to some function g. Assume

further that there exists a ¢ € (a, b) such that { f,(c)} converges. Then, { f,,}
3: That s to say, converges pointwise to a differentiable function f,and f' = g.3

lim( ;) = (lim f,)'.

6.2 Feynman’s Trick

Theorem 6.2.1 (Feynman'’s Trick) Suppose a < b, ¢ < d, and f is
continuous. Recall

S=la,b]lx(c.d)={(x,y)eR®:a<x<bc<y<d}
Assume further that for all x, y & f(x, ) is differentiable and that

(x,y) = of
dy

4: Note that Feynman's Trick is often is continuous. Then,*

called by mathematicians as Leibniz’s

Integral Rule, as he did discover it first. b

However, Feynman used this trick with . .

parametrization to evaluate n > 1 loop F:(d)>R:iy f flx,y)dx
integrals in Feynman diagrams, which a

is pretty neat. s di tiabl th derivati
1S aijjerentiiaole wi erioarioe
The theorem is also called ﬁf

“Differentiating Under the Integral Sign”
but that is simply boring.

b
d 0
EF()’)=/(; 5]((?6,)’)‘3196-

Here, we present an alternative way of wording Feynman'’s Trick, in case
the rewording makes it easier to digest.

Theorem 6.2.2 (Leibniz’s Rule) Let R := [a, b] x [c,d], U be an open set
in R?with R C U,and f : U — R be continuous. Assume further that

af

— U R
ox -



exists and is continuous. Then,

d
F(x) :=/ S(x,y)dy

is differentiable on (a, b) and

d d
d 0
F’(")=a[ f(x,y>dy:/ — fx.y)dy.

It is important to check that the hypotheses do, in fact, hold, before
computing your integral using Feynman’s Trick. Also, many of the cases
where this is useful happens when considering improper integrals or
complex-valued functions, and the rule often requires some sort of
Lebesgue consideration. We will give an example using the rule in the
complex-valued case, despite the fact that we only proved it for R.

Example 6.2.1 Compute

1
/ e“** cos(sin x) dx .
0

Solution. We will use that for any z € C,
X n
2V
€= Z n!
n=0
exists and

—e% = e

dz

Consequently, for any differentiable function f : (a,b) — C,°

() = T ()

Let
T
I1(b) := e ¥ cos(sin x) dx
0 N ——
g
1 bcosx :
=3 e cos(b sin x) dx
—7T
2w
1 bcosx .
=3 e cos(bsinx)dx.
0
Now,

ix . Ly
ebe — ebl cisx _ ebcosxetbsmx

which we can rewrite as
€< *(cos(b sin x) + i sin(b sin x)),

yielding
eP ¥ cos(b sin x) = Re (ebe™)

6.2 Feynman’s Trick | 49

5: Technically, we could simply work via
real numbers and compute directly, but
this is so much easier and it works.
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Finally,

2w
I(b) =Re (% / ebe™ dx ,)
0

and differentiating gives us

d | 21 1 27
1= beix — _ bel* ix d
ab (2/0 e dx) 2/(; e”" e dx,

meaning
1 2w
dr/ belX ix
——Rel = e e dx
b e(2/0 ‘*’.')
u=e!x
| u(2m)
= Re —/ e du
2i
u(0)
1
=Re | — (@) _ bu(0)) | = 0.
(2ib(e ¢ ))
Therefore,

I1(1) =1(0) = / e cos(0) dx = 7.
0

6.3 Aside on Improper Integrals

Suppose f : R — R is integrable on every closed interval [a, b].

Definition 6.3.1 (Improper Integral I) In this case, we can define

o) b
/ f(X)dxzblim / f(x)dx.

Definition 6.3.2 (Improper Integral IT) Similarly,

b b
/ f@)dx = lim / f(x)dx.

0o b
/ f(x)dx = ali)rgoo blim / f(x)dx.

oo

Note that

Remark 6.3.1 Note further that

a
lim / sinx dx = 0,
a—>o0
—a



/ sin x dx
If f: R — Risintegrable on [a, b] and f(x) = 0 for x ¢ [a, b]. Then,

[ f(x)dx
[ s
[a,b]

does not exist.

exists and equals

6.4 Series

For notation, recall that if {a}72 , is a sequence of numbers,” then we
define

If the limit exists we say that “the series Y _ a, converges.”

Remark 6.4.1 A series does not need to start with 0. If {a, }zz is a
sequence with kg € Z, then

00 N

ar ‘= lim ar.
D aki= lim 3 a
k=ko k=ko

Example 6.4.1 (Geometric Series) We have that

o0
S =1+q P+
k=0

We observe that we can write for g # 1 that

1— n+1
I4g4tq =—1—,
l—g¢
SO
b= pm Lo V-0 gl <
= Nooo 1—gq does not exist, otherwise.

Definition 6.4.1 (Absolutely Convergent) A series Y a, converges
absolutely if

o0
Z |an| converges.

n=0
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6: This is contrary to what quantum
mechancis courses will have you believe.

7: It does not matter whether we use R
or C here.
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8: As you may recall from calculus, the
converse of this statement is not even
close to true. If a;, — 0, then you still
have very little information about Y ay,
besides that it may converge.

9: This is just a sanity check via the
triangle inequality.

10: Additionally, we have the agreement

Zan = an.

Theorem 6.4.1 (Cauchy Criterion for Series) We have that

00
E ap converges

n=0
if and only if
n
S, = Z ay is Cauchy,
k=0
which is true if and only if for all ¢ > 0, there exists an N € Z y such that
n>m—1> N implies
n
2 a
k=m

<é&.

Corollary 6.4.2 If Y a, converges, then a, — 0.8

Lemma 6.4.3 If > a,, converges absolutely, then Y a, converges.’

Note that a good amount of these theorems are “agnostic” of whether we
are in R or C, since all we need is the triangle inequality and completeness
to make them work.

Definition 6.4.2 (Conditionally Convergent) A series Y  a, converges
conditionally if it converges but »_ |a, | does not converge.

Definition 6.4.3 (Rearrangement) A series ) b, is a rearrangement of a
series Y an if there exists a bijection

f ZZ+ —>Z+an = afm).

Theorem 6.4.4 Suppose Y a, converges absolutely. Then, for any bijection
f1Zy — Zy,Y by converges absolutely where by, = ag(y) for all n.°

Remark 6.4.2 If we apply the argument with a,’s replaced with
lax|’s and b,’s replaced with |b,|’s, then we have that ) b, converges
absolutely and the limits agree.

As a warning, this is certainly false if ) a, converges conditionally. In
fact, a conditionally convergent series can be rearranged to converge to
any value you want.

Theorem 6.4.5 (Comparison Test)

(i) Suppose Y_ by converges with by, > 0 for all n, and {a, } is a sequence
with |a,| < by, for all n. Then, Y a, converges absolutely.

(ii) Suppose {a,} and {b,} are two sequences with 0 < a, < b, forall N,
and )" a,, diverges. Then, > b, diverges.
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Theorem 6.4.6 (Root Test) Let {a, } be a sequence and define" 11: This is probably the most powerful of
our tests. Note that we take o € R U 0o

1/k on the extended real line, which gives us
) o a bit more for (ii). We proved this solely

for the finite case, but since we have a

necessary condition of the absolute value

(i) Ifa <1, then Z a converges absolutely. of our terms to zero out, we also get our

(ii) Ifo > 1, then y_ a, diverges. infinite case for free.
(iii) If o = 1, the test gives no information.

o ;= limsup lan|V" = lim (Sup |ag]
n—00 n—o0o \ kxn

Note that )" 1/n diverges, whereas Y 1/n? converges. We have

1/n
lim (l) = lim exp (M) =exp(0) =1,
n

n—oo \ pn n—00
and
1 1/n 1 1/n 2
lim (—) = lim (_) =12 =1,
n—o0 \ p n—00 n
Proof for " 1/n.

n

il_zl_ LR SRS BT
fat k=1k n+1 n+2 n+n " 2n 2

|

so Y~ 1/n diverges by Cauchy criterion. O

Theorem 6.4.7 (Ratio Test) Suppose {x,} is a sequence of nonzero real
numbers.

(i) If there exists r with 0 < r < 1and k € Z such that

Xn+1
Xn

forn >k, then Y, x,, converges absolutely.
(ii) Suppose there exists k € Z . such that

Xn+1
Xn

forn > k. Then, Y x, diverges.

Theorem 6.4.8 (Dirichlet Test) Let {a,} and {b,} be sequences, and take

that
N
2]
n=1

o]

N=1
is bounded with

and lim b, = 0. Then, " anby converges.’? 12: This is occasionally known by the
name “summation by parts,” because of
its parallels with integration by parts.
The proof of this goes back to Abel.






Power Series

We will give the approach for power series on R, though you can do
precisely the same thing on C.

7.1 Radius of Convergence

Definition 7.1.1 (Power Series) Let {a,} be a sequence of real numbers and

Xxo € R. Then,
o0
Z an(x — xo)"
n=0
is called a power series centered at Xo.

Note that
o0
fixe Zan(x — xo)"
n=0

is a function of x! defined on

{x € R : the series Zan (x — x9)" converges}.

Example 7.1.1
(e )
1
Y3 =
= 1—(x—3)

is defined when |x — 3| < 1.

Example 7.1.2
oo xn
x
=20
n=0

converges for all x.

Theorem 7.1.1 Given a power series _ a,(x — xo)", take?

B :=limsup |ak|1/k

and R :=1/B.3

(i) The power series converges absolutely for all x € (xo — R, xo + R).
(ii) The power series diverges for x with x & [xo — R, xo + R].

Definition 7.1.2 (Radius of Convergence) R, as above, is called the radius
of convergence.

7.1 Radius of Convergence .. 55

7.2 Weierstraf M and
Integrating Series . . . . . . 56

1: Well, I would hope so, since making it
a function of the other parameters would
be silly.

2: When extended to formal power
series over C, this result is known as
the Cauchy-Hadamard theorem. Since we
have the root test in our toolkit, the proof
is pretty trivial.

3: If B = 0, thne R = +o0, and if
B = +o00,then R = 0.

4: You have to check the endpoints
separately.
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5: We have not used this exact language
yet, but you know what it means.

Example 7.1.3 Taking

oo

>
P

n=1

we get

1 1/n
limsup |a,|"/" = lim sup (—) =1,
n

so the series converges absolutely on (—1,1). If x = 1, we get Y_ 1/n,
which diverges, and if x = —1 then >_(—1)"/n converges by Dirichlet.
Thus, the interval of convergence is [—1, 1.2

Example 7.1.4 If we take

)
Z 3—k(x . 5)2k7
k=0

then
37k120 2|k
ajp =
0, 2}k,
SO :
lim sup |ak|1/k = —.
k V3

Hence, the series converges absolutely on (5 — +/3, 5 4 +/3). It diverges
on both endpoints.

7.2 Weierstrafs M and Integrating Series

Lemma 7.2.1 Let {a, } be a sequence and a,, # 0 for all n. If

li |an+1|
im —— =

bl
n—o00 |an|

then

L = limsup lan) V™.

n—>00

Example 7.2.1 Consider

i (x — 2)k

-
k=1 k
Then, xo = 2, a; = 1/k?, and

. 1)k i YD
— =lim — = lim ——— =1.
k S 2 koo 1/k2

Thus, the series convergeson (2 —1,2 + 1).
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Example 7.2.2 Now, take a look at

X
n!
n=0
We geta, = 1/n!, and
! 1
im 2 — jim —" — lim -0,
n—oo ay n—oo (n + 1)! n—oon + 1

so the series converges everywhere.

Example 7.2.3 Let us look at®

1)” 2n

(-
f(x) = Z !

What is the radius of convergence? Well, consider

g(y): —Z( R

= (2n)!
Then, f(x) = g(x?), yielding
a,  1/@n)!  @n+1)(2n+2) n—>x

Thus, f(x) converges for all x.

Recall that a sequence { f, : D — R} converges uniformly to a function
f if and only if given & > 0, there exists N € Z such thatn,m > N
implies

| fa(x) = fm(X)| <&
forallx € D.

Remark 7.2.1 A series ) g,(x) converges uniformly on D if and only
if given ¢ > 0, there exists N € Z so thatn > m —1 > N implies

<eé&.

In particular, we must have |g,(x)| < ¢ foralln > N .8
Theorem 7.2.2 (Weierstrafs M -Test) Suppose { My }xez , is a sequence of
nonnegative real numbers such that Y ;7 + My converges. Suppose

{gk : D g [R}kGZ_A,_

is a sequence of functions such that

g (x)] = My

forall x € D and for all k. Then, ZkeZ+ gk (x) converges uniformly on D.°

6: Note that this is precisely cos(x).

7: Thus, if g converges then so does f.

8: We might have stated this previously,
neither Lerman nor the author
remembers.

9: We are taking D € R to be a domian,
but this works perfectly fine on C, as
do most of the results we state in this
section.
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Example 7.2.4 Consider

o0
_ 2
> 274 on [-1.1].
k=0
If you look at
27| < 27
. — . _ 2 .
10: This is just the geometric series Sine Y 27 converges,'* The series Y~ 27¥x* converges uniformly on

the interval [—1, 1].

k=0 Note that the Weierstrafs M -test is sufficient for uniform convergence, but
it is not strictly necessary.

Definition 7.2.1 (Indicator Function) For A C R,

) l,xe A
x) =
X4 0, otherwise.

One example of an indicator function we have seen before is yq = 1q,
the Dirichlet function.

Example 7.2.5 Consider

8k (X) i= X xp1/k+1,1/k) (X)),
for x € [0, 1). Then,

N

D gk(x) = x (/2,0 () + X372 () + -+ 2N+, (X)),
k=1

which we can simply write as
XX[1/N+1,1)(X).
Thus,
N
Jim kg ge(x) = lim xyp/y1n(x) = x
on [0, 1). We claim that ) g (x) converges uniformly to x.We use the

Cauchy criterion to conclude this: given & > 0, we can choose N > 1/3.
Then, form >n—1> N,

> a(x)

k=n

1
= XX[1/m+1,1/n) = Y <eé.

Note that in the example above, if we applied Weierstraf,

1
sup gx(x) = —,
x€[0,1) X

and ) 1/k does not converge.
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Corollary 7.2.3 Suppose Y f»(x) is a series of integrable functions on [a, b].
Assume further that Y f,(x) converges uniformly to f. Then,

/ (Z fn(x)) Z:% / S (%)

[a.6] 1

Corollary 7.2.4 For all Ry with0 < Ry < R, Y_ a,(x — xo)" converges
uniformly on [xo — Ry, xo + Ry].1

Theorem 7.2.5 Suppose f(x) := Y anx" has radius of convergence R > 0.
Then, forall x € (—R, R),

x ( o0 o} .
Zant”) P SR
[ n=0 n=0n+1

Lemma 7.2.6 Suppose the radius of convergence of Y anx"
radii of convergence of

a
Z " x"tU and X:na,,x”1
n+1

is R. Then, the

are also R.1?

Theorem 7.2.7 Suppose ) anx™ has radius R > 0. Then, f is differentiable
on (—R, R) and

fl(x) = Znanx”

Example 7.2.6 Consider

X
n!
The radius is + 00, and
o n—1 o n—1 X n
, . X _ X _ X"
1) =) n— —Z(n_l), =2 5=/
n=0 n=1 n=0

Definition 7.2.2 (Sine and Cosine) We define the symbols'®

l)n 2n+1

(—
sin(x) := Z 2n + 1)!

and )
o —1)*y2n
cos(x) := Z %

n=0

Note that this definition of sine and cosine extends perfectly to C and
M (C).M

We can now define & byw := 2 - inf{x € (0, 00) : cos(x) = 0}.

11: We just prove this via the Weierstraf3
M -test, looking at the series

oo
Y laxly®.
k=0

12: We combine the statements
for integrating term-by-term and
differentiating term-by-term.

13: Note that this gives us what Lerman
calls an “anti-intuitive definition, not
even unintuitive, as you really get no
information of why these things are
periodic. All you know is that they are
infinitely differentiable.”

14: We can define anorm ||| on ., (C)
by
Al = sup [Ax],
IxlI=1

getting 42| < | A|l 2 Then we canjust
use Weierstraf$ M -test.
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Lebesgue Measures

We now diverge from our standard analysis treatment to consider the
theory of Lebesgue Integration, as usually covered in the beginning of
a graduate real analysis course. Hereafter, we will use a lot of the
[0, 00] = [0, 00) U o0, the extended half-real line. Additionally, unlike the
rest of the notes, this section will include proofs of our results.!

8.1 Sums Over Sets

Definition 8.1.1 (Sum Over Set) Given a set S and an associated function
f S — [0, 00], the sum of f over S is?

> fs) i=sup{f(s) + -+ f(sn) :n > 0.51.....5, € S}.

SES

Now, as a sanity check, consider the following proposition.

Proposition 8.1.1 For any f : Z — [0, 00],

Y f =) f.
n=1

S€Z+

Proof. We clearly have that

N
Yo =) S,
n=1

S€Z+

for all N. Hence,
N 0o
D f@=z lim Y f) =) fn).
seZ Oon=1 n=1
On the other hand, given {ny,...,ng} € Z,, let
N :=max{ny,...,ng},
which yields

N 0o
o)+ ) <Y =Y f.

n=1 n=1

As such, we get that?

> fs) =sup{f(n) + -+ fnp) 1k >0} <> f(n).
n=1

SEZ 1

8.1 Sums Over Sets . ...... 63
8.2 Lebesgue Outer Measure . 65
8.3 Lebesgue Measure . . ... 66

1: This is largely because the author
found the proofs in the standard analysis
material incredibly boring, but maybe the
measure theoretic proofs will be more
interesting.

2: This value could be finite, or it could
equal oo.

3: Thus, both directions of the weak
inequality holds.
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O

Proposition 8.1.2 Suppose S is uncountable, and let f : S — [0, oo]. If
4: Thatis, f(s) = 0 almost everywhere. Y ses f(s) < 0o, then f(s) = O for all but countably many s € S.*

Proof. Consider
1
Sni={s€S:f(s)Z— .
n

Since ) ;g f(s) is finite, each S, has to be finite. Since the countable
union of finite sets is countable,

U S, is countable.
nez +

On the other hand, f(s) > 0if and only if s € S, for some n. Thus,

| Su=1{seS: f(s)>0}

neZ+
O

Definition 8.1.2 (Disjoint Union) We write A= BUC if A= BUC
and BN C = @. We say “A is a disjoint union of B and C.”

Similarly,

A= ][] s

nEZ+

if and only if A =Un€Z+ Spand S;NS; =@ fori # .

Definition 8.1.3 (Length) Given (a,b) C R, its length is £((a, b)) :=

b—a.
The question we are trying to figure out is if we can extend £ to a
function
u: P(R) — [0, o0],
such that

(i) p((a,b)) = t((a,b)) =b—a.

(ii) Forall S = [;ez, Si,

u) = L) = 3 ueso.

i€Z+ ieZ
Theorem 8.1.3 No such y exists.

Proof. This is hard. It turns out, this is equivalent to the axiom of choice.
O

The solution to this problem is to restrict the domain of x (“measure”) to
a subset Ml € P(R), where M is the set of Lebesque measurable sets. This
brings us to our main theorem.
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Theorem 8.1.4 There exists a collection M < P(R) and an associated
function p : M — [0, oo] such that

(i) u((a,b)) =>b—a.
(i) Forall E € Ml, ES = R\ E € /.
(iii) For all countable collections { Ep}nez, < M,

U E, = Jl.

nGZ+
Moreover, if E; N E; = @ fori # j,° 5: Thatis,
U E.= ] En
M( U E") = Y W(En). n€Zy  n<Zy
nezZ

nEZ+

We will come back to prove this theorem after developing some nice
tools.

8.2 Lebesgue Outer Measure

We first define
w* P (R) — [0, 0],

called the Lebesgue outer measure.

Definition 8.2.1 (Lebesgue Outer Measure) For all S C R, we define® 6: Our appraoch will be to define the
Lebesgue measure from p™*, and then
. g hopefully arrive at a more intuitive
[,L* (S) = inf {Z Ui :e open interval cover Of S 3 definition afterwards.
VS

Proposition 8.2.1
(i) u* (@) =0.

(ii) Forall S, T C RwithS C T, u*(S) < u*(T).
(iii) Forall {Sp}nez, S P(R),

M*( U S”) < ) (S

nEZJr n€Z+

(i) Proof. Given e > 0, @ C (0, ¢), trivially, so u*(@) < £((0,¢)) = e.
Therefore, u*(@) = 0. O

(if) Proof. Suppose € is a cover of T by open intervals. Then, since
S C T,%isalsoacover of S. Thus,

w*(S) = inf { Z L(I) : € cover of S}
Iew

< mf{Zw) 16 CoverofT}
Ieg

= u*(T).
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7: As you can see, even when
considering outer measures, proving
anything takes a fair amount of work.

8: The use of the character T as our
general subset is common notation,
converying a notion of “testing” E.

9: Just take a look at Carethédory’s
Criterion: if it is true for E, it is true
for the complement.

(iii) Proof. Forallk, Sk € U,ez, Sn,s0

W (Sg) < u*( U S")-
nezZ

So, if u*(Sx) = oo for some k, then u*(|J Sx) = oo, meaning
the statement reduces to co < oo. Next, suppose pn*(S,) < o0.
Fix ¢ > 0. For all n, there exists an open cover €, of S, by open
intervals

% £
D D) = p (S + o

I€%,

Let 6 := U, ez, G- Then’

pAS) =Y U= Y o)

1% neZy 1€,

<> </’L*(Sn)+2in)

n€Z+

=) e Y o

n>1

=D W (S +e.

8.3 Lebesgue Measure

Definition 8.3.1 (Carethéodory’s Criterion) A set E C R is Lebesgue
measurable if forall T C R,8

W (T NE)+ p*(T NEC) = u*(T).
If E is measurable, we define the Lebesgue measure j of E by

W(E) := u*(E).

Remark 8.3.1 Forall 4, B C R,
W (AU B) < u*(A) + u*(B).

Forall T,
T =(TNE)U(TNE®),

we get
w*(T) < p*(ENT)+ p*(T NEC).

Thus, E is measurable if and only if

pu*(T) = pu*(T N E) + p*(T N E°).

Remark 8.3.2 E is measurable if and only if E€ is measurable.’



Remark 8.3.3 We know @ is measurable, as forall 7, T N @ = &,
T N@€ = T,and u*(@) = 0. Hence, we need to check u*(T) =
0+ u*(T).

We need a few more results to continue building this technical
machinery.

Proposition 8.3.1If E, F C R are measurable, then sois E U F.

Proof. Let T € Rbea set.l% Since E, F are measurable, the following
hold:

) u*(T) = p*(T N E) + u*(T N EC).
) p*(TN(ENF)) = w*(TN(ENF))NE)+u*(TN(ENF)NEC).
B) WX (TNES) =p*(TNEC)NF)4+ u*(TNEC)NFC)M

Therefore,

w*(TNE) from (2)

pw*(T) = p*(T N(EUF)—p*(T NFNE®)
+u*(TNECNF)+u*(TNECNF%

w*(TNEC) from (3)
=p*(TN(EUF))+pu* (T N(EUF)),

and we are done. O

Corollary 8.3.2 If E, F are measurable, then sois E N F.

Proof. The proofis that (E N F)¢ = E€ U FC.12 O

Note that nothing we have done that has really used the fact that we are
on the real line, as we could have simply used a higher-order notion of
intervals in our definition of w*.

Proposition 8.3.3 The Lebesgue measutre
WM — [0, o0]

is countably additive. That is, given a collection of pairwise disjoint measurable
sets { Ex kez 4,

Er\ _
“(kl‘z[+ k) = > m(Ep).

kEZ+

Proof. We need to show that forall T € R,
uH(T) = p*(T NU) + p*(T NUC),

where U = | J Ey. Foralln € Z,, let

n n
U, = UEk= ]_[Ek.
k=1 k=1
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10: We hope to use Remark 8.3.1 to
deduce that the union is measurable.

11: So far, all we have done is state the
definition three times with three “test”
sets.

12: Complements are measurable if and
only if their original set is measurable,
and we determined that unions are too.

13: Take a look at the Banach-Tarski
paradox, itis “spectacular” after learning
some measure theory, according to
Lerman.
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By the above work, and some induction, each U, is measurable, so
* * * C
WHT) = p*(T N Uy) + w*(T N UE).
Since U, € U,US 2 U, so
p (T NUS) > pu*(TNU),
meaning we get
WHT) = w*(T N Up) + " (T NUO).
14: The proof directly follows from here. ~ We claim that'
Lim pu*(T NU,) = pu*(T NU),
n—>oo
as

(T NU) = w*(T NU) N Eg) + w*(T N Uk) NES)
= u*(T N Ex) + p*(T N Ug-1).

By induction on k,

pHT OUn) = Y u* (T 0 Ep).
k=1

Now, by monotonicity of the outer measure,

n
Yo w (T N Ey) = p (T NU) < (T NU),
k=1

15: This is a finite sum and a sum (or  which we can rewrite as’®

infinity), so we can take our limits in R

pretty easily. o 0
/L*(U(T n En)) < Zu*(T N Ex)
k=1

n=1

Hence,

o0 n

D uXT N Ep) = lim (Z pu* (T N Ek))

=1 n—o00 k=1
<uNTNU)

o0
<Y (T N Ep).
k=1

It follows that
lim u*(T NU,) = pu*(T NU).
n—>oo

Since u*(T) > w*(T NUy) + u*(T NUC), as n — oo we get
(T NU)+pS(TNU°),

meaning
p*(T) = p*(T NU) + (T NUC),



so U = || Ef is measurable. Finally, let T = R. Then,
o0
;«le)zuwnmyzmnuwwmm)
n=1 n—00

n
j— ] *
= Jim, 3w (R

=Y W(E) =
k=1

oo

w(Ex)
1

Corollary 8.3.4 For any sequence { Ex }3> | of measurable, the union'®

o0
U Ey is measurable.
k=1

Pi’OOf, LetU, := Un Ey, F1 :=U, F> :=U,\Uj,and F,, := U, \Un71.17
Now, the U, are measurable, as they are finite unions of measurable. Since
F,=U,NUC |,

the F, are measurable. Also, ;; N F; = @and |J F; = J Fj,so J E; is
measurable.

O
Proposition 8.3.5 If u*(E) = 0, then E is measurable.'®
Proof. Forany T,
L (ENT) < u*(E)=0.
Hence, u*(E N T) = 0. Since
p*(T) = p*(ECNT) = p*(ESNT)+pu*(ENT).
E is measurable with u(E) = 0. O

Corollary 8.3.6 Countable sets are measurable and have measure zero.

Proof. For all x € R, u*({x}) = 0. Then, for any countable £ C R,
E =1l epix} O

Remark 8.3.4 There are sets of measure 0 that are not countable.!’

We still need to prove that intervals are measurable, and for any interval
I () = &(I).

Definition 8.3.2 (Interval) Note that in this course, an interval is a connected,
bounded subset of R.?°
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16: This is not a direct result, as we are
making the union countably arbitrary.

17: We get a lot of measurable things
here, as set difference is an intersection
with complement, both of which are
measurable.

18: Of course, w(E) = 0.

19: For instance, consider Cantor sets.

20: Thatis, a st of the form (a, b), (a, b],
[a,b),and [a, b].
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21: The method we use here is extremely
painful in higher dimensions. However,
over R, it is a nice way to cheat.

22: We use that
*(T) = inf L(T).
wH(T) =inf 3 4(T)

C Iee

23: We still do not know anything about
the measures yet. If we did, we would be
done. Note that Lerman has said “I don’'t
want to do the cases,” about six times
during this proof, finding a slick way to
avoid them. I think he might not want to
do the cases.

Definition 8.3.3 (Ray) Similarly, a ray is a connected set of the form (a, 0o),
[a, o0), (—o0, b), or (—o0, b].

Lemma 8.3.7 A ray R C R is measurable.”!

Proof. We need to show that forall 7 € R,
w*(T) = p*(T N R) + u*(T N RE).

If w*(T') = oo, we are done, so suppose u*(T) < oo. Then, for all ¢ > 0,
there exists a cover € of T by open intervals such that*

YU = p (@) + 5.
VS

Since ) ;o £(I) is finite, £(I) # 0 for at most countably many /. Since
the I are open, I = @ for all but countably many /. Thus, we may
assume 6 is countable, hence, € is finite or countably infinite. As such,
we can assume 6 = {I},cz . Foralln,

I, "R and I,N R¢
are intervals, and®
£(I, N R) + £(I, N RC) = £(I).

For all n, choose open intervals J,, K, such that I, "R C J,, I, N R€ C
K., and

&
on+2"

&
on+2’

0(J,) < (I, N R) + U(Ky,) < €I, N R®) +

Then, {Jn}nez, ({Kn}nez,)isanopencoverby T N R (T N R€). What
do we have? Well,

WHTOR) +p (TARE) < D I+ Y (Kn).
n€Z+ n€Z+

and we can bound this above by
iy
Yt nR + > U, mRC)+2ZW.
neZ nez n=1

We get

> )+ 5 = pt(T) +e
neZ+

Since ¢ is arbitrary,

w* (T N R) + u*(T N RE) < (7).

Corollary 8.3.8 Intervals are measurable.



Theorem 8.3.9 For any interval J,
(J) = p(J) = pu*(J).

First, note that if § is an interval, the indicator ys is Riemann integrable
onany [a,b]. If S € [-R, R], then

xs = £(S) forall R.

[-R.R]

/ xs(x)dx = £(S).

o0

In particular,*

Proof. We first argue that u(J) < £(J). For any ¢ > 0, there exists an
open interval J' such that J € J" and £(J’) = £(J) + &. Then, for all ¢,

- n —
n(J) = 1%f26(1) <LJ =) +e.
Ics
Now, let 6 be a cover J by open intervals. This tells us that
Jelyr
Ics

Given ¢ > 0, there exists a closed interval K such that K € J and
£(K) > £(J) — &. Since K is compact, there exists

{Ii,....1,} =6

such that
KclLuUu---Ul,.

Then, yx < x1, +:-++ x1,,, 50

Z(K)Z[ XK(X)de/ Xll(x)dx+”'+/ X1, (x)dx,

which we can simply bound above by

EI) + - L(In) = YD),

Ieg

Hence,

e —e <y L)

Ieg

for all € and ¢, yielding that
t(J)—e = u*(J),
meaning £(J) < pu*(J). Thus,

eJ) = p(J).
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24: Necessarily, this intergral exists.






Lebesgue Integration

At this point, we have that the ordered triple (R, J(, 1) is an example of a
measure space. We want to use this environment to integrate. Integration
via these measures we have developed requires a certain amount of
careful attention. We begin with a definition.

9.1 Measurable and Simple Functions

Definition 9.1.1 (Measurable Function) A function f : R — [—o0, o]
is measurable if the sets

(@, 00]) = {x € R: f(x) > a}

are measurable for all a.!

Note that we state the domain of f to be R, but we could really take any
measurable set, and it would state make sense.

Definition 9.1.2 (Simple Function) A function s : R — R is simple if it is
measurable and takes only finitely many values.>

This amounts to: there exists N € Z and c¢y,...,cy € R such that

N
S=) CalEn
n=1

where E,, = s (cy).

Example 9.1.1 Take the function

0, x¢o,1]
f@) =11, xe0,1\Q
1/2, xel0,1]NQ.

The function f is a simple function, where we use that countable sets
are measurable.?

Definition 9.1.3 (Simple Integral) Let s : R — [0, oo] be a nonnegative
simple function, and E C R be a measurable set. We define the integral I (s)
of s over E by

N
Ig(s) =) ci-w(ENEy),

i=1

where c1, . .., cy are values of s, and E; = s~ 1(¢;).4

Remark 9.1.1 /£(s) can be 400, as u(£ N E;) may be +o0.

9.1 Measurable and Simple

Functions . .......... 73
9.2 Nonnegative Lebesgue

Integral ............ 75
9.3 Arithmetic on the Extended

Line .............. 78

9.4 Lebesgue L1 (E,du) Space 79

1: We are almost ready to integrate, but
we need a bit more.

2: This is a step function.

3: After we define our integral, it is clear
that Io,11(f) = 1, and it takes almost
no effort.

4: We leave it as an exercise to show
thatif f : R — R is measurable, then
£~ 1(c) is measurable for any c.
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Proposition 9.1.1 The integral

nonnegative
E:3 . . — [0, 00]
simple functions
is “linear” and monotone:
5: We generally take 0 - 0o = 0, as we (i) Ig(cs) =clg (s)for all s and ¢ > 0.°
want the integral of the 0 function over (ii) Ig(sy +s2) = Ig(s1) + Ig (sz)for all 51, 82.

all of R tobe 0. (iii) If s1(x) < s2(x) forall x, then Ig(s1) < Ig(s2) for all 51, 52.

(ii) Proof. Letcy,...,cm be the distinct values of 51, and dy, . . ., d, the
distinct values of 5,. We take E; := s71(c;) and F; := s, 1(d;).We

can write that
R=[[E =]]F.

and for all x € E; N Fj, the sum
(51 +52)(x) = ¢; +dj.
Hence,

Ig(si+52) = Y (ci +dj) - p(E N E; N Fy)
i,J

= Zcizu((EﬂFj)ﬂEi)
i J
+ dj+ Y w((E N E;) N Fy)
j i

=> GuENE)+ Y diu(E N Fy)
i J
=1g(s1) + Ig(s2)

O
(iii) Proof. We have that s, — 51 is a nonnegative simple function, and
s» = (s2 —s1) + 51. Hence,

Ig(s2) = IE(s2 —s1) + 1E(s1) = I (s1).

Proposition 9.1.2 Let f : R — [—00, oo]. The following are equivalent:

(i) f~'((a, <)) are measurable for all a.
(ii) f~'([a, 00]) are measurable for all a.
(iii) f~1([—o0,a)) are measurable for all a.
(iv) f~1([oo, a]) are measurable for all a.
(v) The sets f~1({—o0}), f~1({oo}), and f~'((a,b)) are measurable
foralla < b.

Proof.
(@) = (ii)
. - 1
o= ()1 ((a_;,oo)).

(i) = (iii)
f7H([=o0.a)) = R\ f7!([a, 0]).
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(i) = (iv)

M osal = () £ ([—oo,a + %))

n=1
(iv) = (v)
e = s ([-2-7))
Hence, we have
(@, b)) = f7H([=00.b)) \ [ ([~00, a)).
SN (=00} = [ £ ([—o0. —n)
n=1
and® -
F o) = () ST (noc]) = ...
n=1
V)= @© .
SN (@, 00) = 7 (foohy U | £ (@ a + n)).
n=1
a
Corollary 9.1.3 Simple functions are measurable.
Proof.
@) = 7 ([~o0.a]) N 7 ([a, o0)).
O

9.2 Nonnegative Lebesgue Integral

We now define our Lebesgue integral for a nonnegative function.

Definition 9.2.1 (Nonnegative Lebesgue Integral) Let f : R — [0, oc]
be a nonnegative measurable function, and E C R be measurable. Then, we

define the Lebesgue integral’

/ fdp :=sup{lge(s) : 0 <s < f and s is simple}.
E

Proposition 9.2.1 Let s : R — [0, o] be nonnegative and simple. Then,®

Ig(s) = / sdp
E

Ig(s) <sup{lgp(s’) : s’ <s}.

Proof. Since s <,

6: The remainder of this equivalence is
left as an exercise.

7: Note that the du is just to follow
tradition, showing that we are taking this
supremum with respect to a measure ft.

8: This is simply to ensure our definition
is consistent.
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9: This is a pretty long proof.

10: We are going to “chop up” the range.

11: Yuck; combinatorics are the bane of
the author’s existence.

12: We clearly want our sequence to be
increasing to match the statement.

13: Similarly, s, (x) < s;41(x) for all
x € Fy,. We skip the proof for brevity.

One the other hand, for all simple s" with s’ <,
Ie(s") < IE(s),

meaning
Ig(s) > sup{lg(s’) : s’ <s}.

Theorem 9.2.2 Let f : R — [0, 00| be measurable. Then, there exists a
sequence of nonnegative simple functions

0<s1<sp<---<f

such that s, — f pointwise. If f is bounded, s, — f uniformly.’

Proof. Consider [0,n) € R such thatn € Z .. Take™
1 .

I,~:={te[R:—l §t<l—},

2n 2n

where 1 <i <n2""Let E; :== f~'(I;) and F, := f~1([n,0)). Then,

n2"
R = (]_[ E,-) U Fy,
i=1

giving
n2"—1 .

() = Y 2 () + i, ()

i=1

For any x € E;, we can write

i—1
on

i—1
-

< () < 5 and 5, (1) =

Therefore, s,(x) < f(x) for all x € E; and for all i. For x € F,
sp(x) =nand n < f(x), so s,(x) < f(x) for all x. We first claim that
Sn (%) < Spi1(x).12 We can write

i—1 i\ [2-22i-1 2i—1 2i
on Con | T | on+1 ? on+d v on+l ’on+l |-

1 I 17

Let E := f~Y(I), E' := f~'(I’), and E” := f~1(I1"). Then, for all
x €E,

i—1
Sn(x)z on
i—1 2i —1
Sn+1(x) = = ot
for x € E/,and
2i — 1

Snt1(x) = o+l

for x € E” .13 Our second claim is that for all x,

$n(¥) —— f ().
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There are two cases.

(C1) If f(x) = +oo, then x € F, foralln, sos,(x) =n,and n — oo as

n — oot 14: Fascinating.
(C2) If f(x)is finite, then f(x) < ng forsomengy € Z.Then, forn > ny,

f(x) ¢ [n,00). Hence,

i

—1 i
n Sf(x)<2—n

for some i. Finally, since s,(x) = (i —1)/2%,

|ﬂﬂ—%@ﬂ<%,

giving us pointwise convergence. Moreover,' for n > no, 15: If f is bounded there exists an nq
such that f(x) < ng for all x.

7)) < 5

for all x, so s, — f uniformly.

We now list some properties of Lebesgue integrals of nonnegative
functions. We will explore Lebesgue integrals with a wider class of

functions soon.® 16: It turns out, the set of all Lebesgue

integrable functions forms a vector space
L'(R) which is complete with respect
to the metric induced by the L! norm.

Proposition 9.2.3 (Properties) Let E, FF € R be measurable sets, and take
/. g to be nonnegative measurable functions.

(i) Ifffg,then/fduffgdu-
E E

(i) IngF,then/fdug/fdu.

E F

(iii) If W(E) =0, then | fdp=0.
E
(i) Proof. Since f < g,

sup{lg(s):0<s < f} <sup{lg(s) : 0 <s < g}.

(if) Proof. If f = yg for some measurable G, then

/XGZM(GQE)SM(GHF)Z/XG-
E F

If f =73 cixg,, then

[f=zci XGiSZCi/XGi:/f
E E F F

For arbitrary f R4 17: This general strategy extends well
to a lot of cases, starting with indicator
functions, moving to simple functions,
and then other functions.
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O
(iii) Proof. If f = yg and u(E) =0,
0§/XG=/L(EHG)§M(E)=0~
E
If f =2 cixe,
/f=ZCi X6, =Y ci-0=0.
E E
Finally, for arbitrary f,
/fduzsup{/s:Ofsff}
E E
= sup({0}) = 0.
O

9.3 Arithmetic on the Extended Line

18: We probably should have done this ~ We now take an aside on how to do arithmetic on the extended real line.'?

earlier. Forx € R
4

X 4+ (£o0) = o0
X — (Foo0) = Foo.

Additionally,
(+00) + (+00) = 00 = (+00) — (—00).
Note that (+00) + (—o0) and (+00) — (+00) are not defined. For x € R,

+oo, x>0
X - (£o0) = (F£o0)-x =<0, x=0
Foo, x>0.



9.4 Lebesgue L' (E,dw) Space

9.4 Lebesgue L'(E,du) Space

Definition 9.4.1 (Function Parity Components) Given f : R —
[—o0, o0], we define

_ {0, f0 =0
f+(x) = {O f(x) <0

_{~f®. fm=o
= {0, ()20,

Notethat f = f4+ — f_and | f| = f+ + f-.

Lemma 9.411f f : R — [—00, 00] is measurable, then so are fy and f_.

Proof. Fora > 0,

(f) " (@, 00 = f7((a. 00)).

Fora <0,

(/)7 ((a, ) = R.
Similarly, for a < 0,

(/2 ' ((a,00]) = R.
Fora > 0,

x € (f2)™ ((a,oq])

if and only if — f(x) € (a, 0o}, which is true if and only if f(x) € [-0c0, a),
which holds if and only if

X € f_l ([-o0, a)).

Thus, f- is measurable. O

Definition 9.4.2 (Lebesgue Integral) Let f : R — [—o00,00] be
measurable, and E C R is measurable. Suppose

/ f+ d/l' P f F_ d/l'
E E
are finite. We define

/fdu:=/f+du—/f—du-
E E E

Note that it may happen that

00 Ry
[ f(x)dx = Rl,Iyzn—l—oo\/R‘ f(x)dx
/f+du,/f—du
R R

exists, but

79
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19: This is precisely the difference
betwen absolute and conditional
convergence.

20: This proof uses a fun trick.

21: There is a similar statement for
products, but we are skipping it so we
can get somewhere interesting.

22: It takes a bit of work, but this also
holds for general functions.

23: We have done such proofs before.
Oftentimes, proving for the indicator
gives you everything you need.

are infinite. Then, / f du does not exist.!?
R

Example 9.4.1 Let
(G

n
0, x < 0.

Jf(x) 1={

Then,

/ fdx=)" (_;)
— n=1

o0

Proposition 9.4.2 Suppose f, g : R — [—00, 0o] are measurable and f + g
is defined. Then, f + g is measurable.?

Proof. For all x € R, let us take a look at
{x: fO)+g(x) >ap={x: f(x)>a—g)}
However, this is also the same as
{x: f(x) >r>a—g(x)forsomer € Q}.

Since we have rationals in the middle, so we can write that the set equals

U Gx: f@ >rintx:r>a—g).

reQ

which is measurable.?! O

Corollary 9.4.3 If f is measurable, so is | f|.

Lemma 9.4.4 Take a simple map s : R — [0, 00). Let
EyCE,C---CE, S

be a sequence of measurable sets. Define E := | ) E,. Then,*

/sdu: lim/ sdu .
n—>o0
E En

Proof. It is no loss of generality to assume s = ¢ for some measurable
set G.% Note that

sdu = uw(E, N G).
Ep
SinceGNE; CGNEy,C---,and

o0
UGOE,,:GHE,

n=1

w(GNE)= lim w(G N Ey,).
n—o0
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Theorem 9.4.5 (Monotone Convergence Theorem) Let

0<fA<fos < fa<-

be a sequence of measurable functions. Define f := lim f, and let E € R
be measurable. Then,**

lim/f,,du:/fdu.
n—>0o0
E E

Proof. Since f, < f foralln,

/‘fndﬂfffdﬂ
E E
lim/fndMS/fdM~

The hard part is proving the other direction. Consider a simple function
s such that 0 < s < f. We now argue that

lim /fndME/SdM-
n—>o0
E E

Choose ¢ > 0, and let
E,:={xeE: fu(x)>(1—¢g)s}.
This is the same as
E,={xeR:(e—1s+ fu(x)>0}NE

is measurable. Also, | J E, = E, since f, — f > s. By the earlier lemma,

lim(l—s)/ sdu = (1—8)/sdu.
n—o00 E, ©
Hence,

lim /fnduz hm(l—s)/ sd,uz(l—e)/sdu.
n—oo n—o0
E En E

We get that®
lim /f,,du Z/Sdﬂ,
n—>oo
E E
so equality holds via the supremum definitions of integrals.?® O

Theorem 9.4.6 Let f, g : R — [0, 0o] be nonnegative measurable functions.
Take ¢ > 0 and E to be measurable. Then,

(i)/cfdu:c/fdu.
E E

24: Recall that the RHS is

/ lim f;, due .
E

25: We use ¢ being arbitrary.

26: We will use this to prove that the
integral of the sum is the sum of the
integrals for measurable functions.
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(ii) /(f+g)du=/fdu+/gdu-
E E E

27: Check this for simple functions, then (i) We leave this as an exercise.?”

take the supremum. (ii) Proof. If f, g are simple and nonnegative, then
Ig(s+1t)=1Ig(s)+ Ig(t).
In general, choose sequences of simple functions

O<si<-=sp=<-=fisn—>f

0<ti=--=Sth=--=8t—g

28: Remember, we put a fair amount of Then, s, + 1, — f +g 28 By the Lebesgue monotone convergence
effort into showing these sequences exist. theorem
4

/(f +g)dp = lim /(sn+tn)d/t,
E n—>0o0 E

29: This is our result. which we can write?’
lim /sndu—i— lim /an,u.
n—00 A n—00 o

Corollary 9.4.7 Suppose { f,}52, is a sequence of nonnegative measurable
functions. Then, ) fy is a nonnegative measurable function, and for any

measurable E,
o0 o
[(Z)an=3 [ an
E \n=1 n=1JE

O

Proof. Let

F, :=Zf,~.

i=1

Then,

o0

0SF<FhH<<F<2) fu

i=1

30: Because of our buildup, this was very Then, Z Jfn = lim F,, is measurable, s0%

easy!

o0 n o0
Zdu:nli_{ganduanLngoZ f,-d,u:Z fidw.
E n=1 i=1JE n=1JE

Recall that f : R — [—00, 00] is integrable over E if

/f+du,/f—du<00-
E E



Then, we set

/fdu=/f+du—/f—du-
E E E

Lemma 9.4.8 f : R — [—00, 00] is integrable over E if and only if

/Ifldu<<>0-
E

Proof. Since|f| = f++ f—,and fy, f_ are measurable, | f| is measurable.

/Ifldu=/f+du+/f—du,
E E E

Moreover,

so the result follows.?

Definition 9.4.3 (L! Space) We define>

f:/|f|du<oo}.
E

Definition 9.4.4 (L' Norm) We define the norm>

1Az 1=/|fldu~
E

Ixlly = [xal 4= + |xal.

LY(E,dp) :=

Recall that for x € R" 34

Theorem 9.4.9 Let E C R be measurable, f,g € L'(E), ¢ € R. Then,*®

=/fdu+/gdu-
E E

(cf)+cf+. (cf)-

/(cf)d/t=/c’f+du+/6f—du
E E E
/f+du—/f—du)-
E E

€+ =N+ =4/~ (cf)-

(i) cf eLl(E)and/(cf)d;L:c

E

(i1) f—l—gELl(E)and/(f—l-g)du

E

(i) Proof. If c >0,

SO

=C

If c = —1, then

9.4 Lebesgue L'(E,du) Space | 83

31: The LHS is finite if and only if the
RHS is finite.

32: Take f to be measurable.

33: It is not trivially clear why this is
a norm, nor is it clear that L! forms a
vector space.

34: This is the £! or Ly or L! norm.
As you can tell, notation is not very
standardized.

35: We prove these the ugly way, as the
more sophistacted approach takes a long
time.
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Then,

/(—f)dﬂ=/f—dﬂ—/fdu
E E E
=(—1)/fdﬂ-
E
O

(ii) Proof. Leth = f + g. Assume f, g, h do not change sign on E. We
get 6 sub-cases:

1) f>0,g>0,h>00nE.
2 f=0,g=<0,h=0.
B) f=0,g<0,h=>0.

) If f,g = 0, we know

/fdqu/gdu:/(erg)du-
E E E

/(—h)du=/(—f)du+/(—g)du

E E E

—/hdu=—/fdu+(—1)/gdu-
E E E

(3) h = f +gisequivalentto f = h+(—g), so again, everything
reduces to (1).

2)

Now, write

E=FE,UE,u---U FEg,
where

E; :={x € E: casei holds }.
Then,
6

/ fdu=>"[ fdu.

E i=1JE;
Similar formulas hold for g and 4. O

36: If you want to do quantum Corollary 9.4.10 LY(E, dp) = LI(E) is a vector SpaCE.P’6

mechanics, you will use L2(R"),
looking at complex valued wave

functions W(x,1) : R" = C, and Corollary 9.4.11 With f,g € L'(E), f < g implies

taking squares to be Lebesgue integrable.
/ Sdu < / gdu.
E E



Proof. Well, f < g implies that g — f > 0, so

05/(g—f)du=/gdu—/fdu-
E E E

Hence, the result holds.

Corollary 9.4.12 If f € L'(E), then

ffdﬂ S/|f|dﬂ~
E E

- f=1fl

/fdMS/IfIdM

E E

—/fdMZ/(—f)dMS/IfI,
E E E

/fdﬂ S/|f|dﬂ~
E E

Finally, as a remark, we define the vector space L?(E).

Proof.

Definition 9.4.5 (L? Space) We define

f:/|f|pdp,<oo}.
E

Definition 9.4.6 (L? Norm) We define

1/p
Ifll = (/ Iflpdu) :
E

L?(E) :=

9.4 Lebesgue L' (E,dw) Space
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